重构钢渣及性能与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢渣是炼钢过程中的副产品,钢渣的排放量约占钢产量的15%-20%。钢渣利用率较低,尤其在建材方面。2009年,全国钢渣累计积存量达到3亿吨,大量钢渣弃置堆积,既污染环境又占用大量的土地,同时造成资源的浪费,给生态环境造成巨大的破坏,影响钢铁工业的可持续发展,所以对钢渣进行减量化、资源化和高价值综合利用研究,实现钢渣的高效回收利用,是我国钢铁工业以及建材工业等相关产业面临的重要课题之一。
     钢渣的成分非常复杂,通过对钢渣化学分析表明,钢渣含有的矿物与硅酸盐水泥熟料相类似,有C_3S、C_2S和C_4AF等胶凝性矿物,但其含量较少,导致钢渣活性较低,另外由于f-CaO和f-MgO的存在,容易引起钢渣的安定性不良。根据已有的研究可知,钢渣的活性偏低和体积稳定性差是制约其在水泥和混凝土中应用的两个根本原因,为此,本文提出了钢渣重构设计方案,通过添加校正材料(粘土、石灰石)改性,优化性能。实验设计单掺、复掺两种方式,研究了校正材料掺量、工艺条件对重构钢渣性能的影响,确定了最佳校正材料掺量、煅烧温度、保温时间、冷却方式等工艺制度。以最佳工艺制度重构钢渣,研究了重构钢渣作为水泥混合材和混凝土掺和料对水泥和混凝土性能的影响,确定了重构钢渣满足水泥混合材和混凝土掺和料的掺量范围。取得结论如下:
     (1)随着煅烧温度的升高,保温时间的延长,重构钢渣性能优化程度增大;另外,急冷与自然冷却相比,急冷后的重构钢渣生成的活性矿物较多。最佳工艺参数为:煅烧温度为1280℃,保温时间为60min,冷却方式为风冷。
     (2)重构钢渣的力学性能随着校正材料掺量的增加呈现先增高后降低的规律,说明校正材料掺量存在一个最佳值,使得重构钢渣生成较多C_4AF、C_2S等胶凝性矿物,提高其活性,改善其体积安定性。单掺粘土重构钢渣最佳配比为粘土6%,钢渣94%;单掺石灰石最佳配比为石灰石15%,钢渣85%。
     (3)复掺校正材料的最佳配比为:粘土为5%,石灰石为15%,钢渣为80%。与单掺校正材料重构钢渣相比,复掺校正材料重构钢渣的性能有较大的提高,体积安定性得到较大的改善;校正材料的比表面积越大,重构钢渣的性能越优越,活性越高,体积安定性改善越明显。
     (4)与掺入等量钢渣相比,掺重构钢渣的普通硅酸盐水泥的抗压强度增强,标准稠度需水量降低,初终凝时间缩短,重构钢渣掺量<50%时,体积安定性合格,能够作为混合材用于水泥中。
     (5)与掺入等量钢渣相比,掺重构钢渣的混凝土抗压强度明显增强,抗渗性、抗冻性较好,重构钢渣替代水泥的量≤20%时,能够作为掺合料用于混凝土。
Steel slag is a by-product of steelmaking process, its emission is about 15%-20% of steel output. By 2009, the amount of steel slag was 0.3 billion ton in our country. The accumulation of a large number of steel slag will pollute the environment and takes up a lot of land. As well as it causes tremendous damage to the ecological environment and a waste of resources, further more it hinders the sustainable development. So it is one important issue of iron and steel industry and building material industry in China that it realizes slag reduction, resource utilization and high added value research to make turning waste into treasure. In one word it realizes efficient recycling of steel slag.
     The composition of steel slag is very complex. By the chemical analysis, it shows that the steel slag contains minerals which are similar to Portland cement clinker, such as the gelling minerals of C_3S, C_2S and C_4AF. But the quantity of them is very a little which leads to a low activity. And the unsoundness of steel slag is caused by f-CaO and f-MgO. According to existing research we can find that the low activity and unsoundness of the steel slag are the two fundamental reasons for restriction of use in cement and concrete. Therefore, a design method of reconstructed steel slag is put forward in this paper. By adding industry calibration materials (clay, limestone), the properties of reconstructed steel slag were improved. After forming process, samples were put in high-temperature furnaces to reconstruct. Two kinds of experimental method were designed, one for corrected materials single-added, and the other for corrected materials compound-added. It is researched that corrected materials and reconstructed factors effected on the performance of reconstructed steel slag. At last, the optimal temperature, holding time and cooled system were determined. Prepare reconstructed steel slag in the best reconstructed system, and then the application of reconstructed steel slag in the fields of cement and concrete was studied. Through the study of reconstructed steel slag performance, the dosage was determined to meet the requirement of cement and concrete. The conclusions reached are as follows.
     (1) The process conditions had important influence on the performance of slag when the reconstructed steel slag was prepared. The results show that the properties of reconstructed steel slag become better with temperature increased and holding time prolonged. The optimal process system as follows: temperature was 1280℃, holding time was 60min, and cooling style was air cooling.
     (2) With the corrected quantity increased, the mechanical properties of reconstructed steel slag became elevated first, and then decreased. That exists an optimum value, makes reconstructed steel slag with more C_4AF, the activity and soundness of reconstructed steel slag were improved. The research shows that the best content of clay was 6% and slag was 94% and the best content of limestone was 15%, and slag was 85%.
     (3) The best ratio for corrected materials was 5% clay, 15% limestone and 80% steel slag. Compared with the reconstructed steel slag doped with single corrected material, the performance and volume stability of reconstructed steel slag doped with mixed corrected materials were both improved greatly. So mixed corrected materials were chosen for the use of cement and concrete. Meanwhile, the effect of fineness on the performance of steel slag was studied. The results showed that the greater the surface area of corrected materials, the better performance of reconstructed steel slag. The activity was increased and the soundness was also improved.
     (4) Compared with incorporation of equivalent steel slag, The compressive strength of ordinary Portland cement could be improved as incorporation of reconstructed steel slag, the water consumption of cement for normal consistency was reduced, the initial and final setting time of cement was shorten. When the amount of reconstructed steel slag is <50%, the soundness of cement was qualified. So it can meet the basic requirements of cement need.
     (5) Researches were carried out on the application of reconstructed steel slag on concrete. As the replacement mass fraction of reconstructed steel slag≤20%, the concrete curing compressive strength of all ages didn’t significantly lower. Reconstructed steel slag grinded played a role of filling, which improved the pore structure and impermeability of concrete.
引文
[1]陈美祝,周明凯,伦云霞.钢渣高附加值利用模式分析[J].中国矿业,2006,15(6): 79-83
    [2]林加冲.金融危机下我国废钢供求回顾与展望[J].再生资源与循环经济,2009,(2): 1-4
    [3] J.Geiseler. Use of Steelworks Slag in Europe[J]. Waste Management,1996,16(3): 59-63
    [4]郭建秀.浅议开发钢渣资源利用-发展循环经济[J].四川冶金,2006,28(3): 21-24
    [5] Hideaki Suito, Ryo Inoue. Behavior of phosphorous transfer from CaO–FetO–P2O5(–SiO2) slag to CaO particles[J]. ISIJ International, 2006(46): 180-187
    [6] J. Rawers, L. Iverson, K. Collins. Initial stages of coal slag interaction with high chromia sesquioxide refractories[J]. Journal of Materials Science, 2002(37): 531-538
    [7] Wang Hongming, Li Guirong, Dai Qixun. Effect of additives on viscosity of LATS refining ladle slag[J]. ISIJ International, 2006(46): 637-640
    [8] Tatsuhito Takahashi, Kazuya Yabuta. New applications for iron and steelmaking slag[J]. NKK Technical Review, 2002(87): 38-44
    [9]叶斌.德国PFAFF公司自动压片机在制备钢渣样片中的应用[J].安徽冶金,2007(3): 40-42
    [10]宋喜民.钢渣综合利用的新工艺和设备[J].矿山机械,2004(7): 27-29
    [11]潘利文.液态钢渣离心粒化机水淬新方法构思法[J].冶金能源, 2008(2): 60-63
    [12]徐彬,邓国柱,张天石.碱激发钢渣水泥研究[J].重庆环境科学,1998(6): 39-41
    [13] Guangren Qian, Darren Delai Sun, Joo Hwa Tay, Zhenyu Lai, Guangliang Xu. Autoclave properties of kirschsteinite-based steel slag[J]. Cement and Concrete Research, 2002(32): 1377-1382
    [14] Caijun Shi, Shunfu Hu. Cementitious properties of ladle slag fines under autoclave curing conditions[J]. Cement and Concrete Research, 2003(33): 1851-1856
    [15]徐彬.固态碱组分碱矿渣水泥的研制及其水化机理和性能的研究[M].清华大学博士学位论文,1995,26-84
    [16]胡曙光,韦江雄,丁庆军,等.水玻璃对钢渣水泥激发机理的研究[J].水泥工程,2001(5): 4-7
    [17]赵国,陆雷.改性剂对钢渣助磨效果的研究[J].材料开发与应用,2004,19(6): 16-19
    [18]张德成,黄世峰,吴波.钢渣矿渣水泥碱性激发剂的研究[J].硅酸盐通报,2004 (3): 118-120
    [19]孙家瑛.钢渣细度对水泥混凝土物理力学性能影响[J].粉煤灰综合利用,2004(5): 3-5
    [20]孙家瑛.磨细钢渣对混凝土力学性能及安定性影响研究[J].粉煤灰,2003(5): 7-9
    [21] I.Akin Altun, Ismail Yilmaz. Study on steel furnace slags with high MgO as additive in Portland cement[J]. Cement and Concrete Research, 2002(32): 1247-1249
    [22]赵国,陆雷.钢渣的表面改性研究[J].材料开发与应用,2004,19(4): 13-15
    [23]赵国.钢渣的表面改性研究[M].南京工业大学,2004.5
    [24]温金保.钢渣的机械力化学效应研究[M].南京工业大学,2003.4
    [25]陆雷,温金保,姚强.机械力化学效应对钢渣性能的影响[J].矿产综合利用,2005(5): 9-13
    [26]林宗寿,陶海征,涂成厚.钢渣粉煤灰活化方法研究[J].汉理工大学学报,2001,23(2): 4-7
    [27] Zhang Shengfu, Qiu Guibao, Chen Dengfu. Effect of microwave treating the blast furnace slag bearing titanium on thermal action[J]. ISIJ International, 2007(47): 1239-1244
    [28] Haiping Sun, Kunihiko Nakashima, Katsumi Mori. Influence of slag composition on slag–iron interfacial tension[J]. ISIJ International, 2006(46): 407-412
    [29] Yoshiaki Kashiwaya, Keigo Toishi, Yuichi Kaneki. Catalytic effect of slags on the formation of Bio- diesel fuel[J]. ISIJ International, 2007(47): 1829-1831
    [30] Sun Haiping, Sheng Jason Chew. Slag reduction in the coke bed of a blast furnace[J]. ISIJ International, 2006(46): 1108-1110
    [31]方卫民,王炳龙,周顺华.钢渣改良路基土填料的试验研究[J].上海铁道大学学报,2000,21(4): 63-66
    [32]常峰,赵利斌,李培德.浅谈用钢渣作垫层处理湿软地基[J].内蒙古科技与经济,2004(7): 76-84
    [33]伦云霞,周明凯,陈美祝.钢渣集料的体积稳定性与工程应用前景[J].矿业快报,2006(4): 37-40
    [34]左德元,邱宗明.钢渣作为路基填料的应用[J].铁道建筑技术,2001(2): 17-18
    [35]潘放,李军,赵平.钢渣在沥青路面基层中的应用[J].合肥工业大学学报,2002,25(6): 1218-1231
    [36]薛永杰.钢渣沥青玛蹄脂混合料制备与性能研究[M].武汉理工大学,2005
    [37]曹亚东,韩勇强.电炉钢渣在沥青路面中的应用研究[J].中国市政工程,2001(1): 18-22
    [38]姜从盛,彭波,李春.钢渣作耐磨集料的研究[J].武汉理工大学学报,2001,23(4): 14-17
    [39]丁庆军,王发洲,姜从盛,胡曙光.高耐磨钢渣水泥砂浆的研究[J].山东建材学院学报,2001, 15(1): 1-3
    [40]方宏辉.钢渣细集料混凝土的配制及性能研究[J].河南建材,2001(1): 12-16
    [41]李永鑫.含钢渣粉掺合料的水泥混凝土组成、结构与性能的研究[M].中国建筑材料科学研究院,2003
    [42]李建平,倪文,陈德平.影响大掺量钢渣水泥强度的主要因素探讨[J].矿物岩石,2003,23(4):105-109
    [43]吕林女,何永佳,丁庆军.利用磨细钢渣矿粉配制C60高性能混凝土的研究[J].混凝土,2004(6): 51-53
    [44]赵群,吴东海,郭自力.内掺钢渣、硅粉的C80高性能混凝土研究[J].工业建筑,2004,34(11): 58-61
    [45]马秉东,陈春雷,亓树文.磨细钢渣作泵送混凝土掺合料的性能[J].筑技术开发,2000, 27(5):30-32
    [46] Yabuta Kazuya, Tozawa Hirokazu, Takahashi Tatsuhito. New applications of iron and steelmaking slag contributing to a recycling-oriented society[J]. JFE Technical Report, 2006(8): 17-23
    [47] Tasuku Hamano, Shinya Fukagai, Fumitaka Tsukihashi. Reaction mechanism between Solid CaO and FeOx–CaO–SiO2– P2O5 slag at 1573 K[J]. ISIJ International,2006(46): 490-495
    [48] Tang Ping, Qi Xin, Liu Yongqing. Development of fluoride-free mold powders for peritectic steel slab casting[J]. ISIJ International,2007(47): 1117-1125
    [49]张云莲,李启令,陈志源.钢渣作水泥基材料掺合料的相关问题[J].机械工程材料,2004,28(5): 38-40
    [50] T.Cerulli, C.Pistolesi, C.Maltese, D.Salvioni. Durability of traditional plasters with respect to blast furnace slag-based plaster[J]. Cement and Concrete Research, 2003(33): 1375-1383
    [51] Vsevolod A.Mymrin, Haroldo A.Ponte, Carlos I.Yamamoto.Synthesis of new colloidal formations during the strengthening of different activated hydrated metallurgical slags[J]. Colloids and Surfaces A, 2003(220): 211-221
    [52]赵三银,赵旭光,李宁.高钢渣掺量钢渣矿渣水泥粉磨工艺的研究[J].水泥,2002(4):1-5
    [53]蔡雪军,李君,刘震.钢渣和粉煤灰生产砂浆干粉料[J].新型建筑材料,2004(10): 12-13
    [54]帐高勤,秦鸿根,王元纲.掺钢渣微粉干粉砂浆的早强激发剂的研究[J].混凝土与水泥制品,2006(1): 138-140
    [55]陈庆民,郑宗法,孙烨.钢渣替代熟料做晶种的研究[J].山东建材,2001(5): 30-31
    [56]邹伟斌,张颂蛟.利用钢渣、还原渣配料煅烧高强水泥熟料[J].山西建材,2000(3): 21-25
    [57]孙凤金,侯宪钦,付兴华.少(无)熟料钢渣水泥的研究[J].河南建材,2000 (1): 19-21
    [58]黄振荣,王洪起,周维海,等.无熟料钢渣、矿渣水泥[P].中国专利,CN1166462A.1997.12
    [59]张德成,柏宜莲,李树海,等.钢渣、矿渣早强无熟料水泥[P].中国专利,CN1033505C.1996.12
    [60]张德成.钢渣矿渣水泥的发展与现状[J].山东建材,1998,(2): 12-15
    [61] Martin Valdez, George S. Shannon, Seetharaman Sridhar. The Ability of slags to absorb Solid oxide inclusions[J]. International, 2006(46): 450-457
    [62] S.Akkurt, H.D. Leigh. Corrosion of MgO-C ladle refractories[J]. American Ceramic Society Bulletin, 2003(82): 32-40
    [63] Kenichi Nakajima, Kazuyo Yokoyama. Tetsuya nagasaka. substance flow analysis of manganese associated with iron and steel flow in Japan[J]. International, 2008(48): 549-553
    [64]皱俊甫,郝挺惠,张颂蛟.浅谈钢渣在水泥工业中的应用[J].四川水泥,2001(4): 22-24
    [65]米春艳,林宗寿.钢渣膨胀水泥的膨胀性能研究[J].武汉理工大学学报,2001,23(4): 22-25
    [66]皱伟斌,张菊花.钢渣-矿渣-粉煤灰复合硅酸盐水泥[J].水泥工程,2002(5): 21-22
    [67]马保国,白建飞,朱洪波.高钙灰、钢渣复合水泥的改性技术[J].粉煤灰,2005(3): 14-17
    [68]赵旭光,赵三银,李宁.高钢渣掺量和高强度钢渣水泥的研制[J].武汉理工大学学报,2004,26(1): 38-42
    [69] Wu Xuequan, Zhu Hong, Hou Xinkai, Li Husen. Study on steel slag and fly ash composite Portland cement[J]. Cement and Concrete Research, 1999(29): 1103-1106
    [70]蔡洪明,盛明.用钢渗代替铁粉生产水泥[J].水泥工程,2000(5): 29-30
    [71] Li Dongxue, Fu Xinhua, Wu Xuequan, Tang Mingshu. Durability study of steel slag cement[J].Cement and Concrete Research, 1997, 27(7): 983-987
    [72] Caijun Shi, Jueshi Qian. High performance cementing materials from industrial slags-a review[J]. Resources Conservation & Recycling, 2000(29): 195-207
    [73] Ahmad Monshi, Masoud Kasiri Asgarani. Producing Portland cement from iron and steel slags and limestone[J]. Cement and Concrete Research, 1999(29): 1373-1377
    [74]李长太.钢渣混凝土的导电性与压敏性研究[M].重庆大学硕士学位论文,2004.5
    [75]马晓辉.利用钢渣开发高性能无机填料的研究[M].武汉理工大学,2004
    [76] Pai-Haung Shih, Zong-Zheng Wu, Hung-Lung Chian. Characteristics of bricks made from waste steel slag[J]. Waste Management, 2004(24): 1043-1047
    [77]杨扬.钢渣复合人造花岗石饰面板[J].房材与应用,1995(1): 30
    [78]张元志.钢渣、粉煤灰微晶玻璃试制探讨[J].安徽化工,1998(6): 31
    [79]邓春明,肖汉宁,赵运才.添加剂对钢渣微晶玻璃微晶化行为的影响[J].陶瓷,2003(1): 20-23
    [80] Kausik Dana, Jayanta Dey, Swapan Kumar Das. Synergistic effect of fly ash and blast furnace slag on the mechanical strength of traditiongal porcelain tiles[J]. Ceramics International,2005(31): 147-152
    [81] G.A. Khater. The use of Saudi slag for the production of glass-ceramic materials[J]. Ceramics International, 2002(28): 59-67
    [82]郑礼胜,李惠光.用钢渣处理含As废水[J].化工环保,1996(16): 342-345
    [83]张运徽.钢渣处理含Cr废水的研究[J].三明高等专科学校学报,2001(12): 6-9
    [84]王士龙,张虹,刘军.用钢渣处理含镍废水[J].贵州环保科技,2003(2): 45-48
    [85] N.Ortiz, M.A.F.Pires, J.C.Bressiani. Use of steel converter slag as nickel adsorber to wastewater treatment[J]. Waste Management, 2001(21): 631-635
    [86]邓雁希,许虹,黄玲.钢渣在含磷废水处理中的应用[J].有色矿冶,2002,18(3): 43-45
    [87]刘平,马少健,蒋艳红.钢渣吸附剂去除废水中氟的试验研究[J].有色矿冶,2005(21): 121-122
    [88] A.K.Jain, V.K.Gupta, A.Bhatnagar. Utilization of industrial waste products as adsorbents for the removal of dyes[J]. Journal of Hazardous Materials, 2003(B101): 31-42
    [89]邓雁希,许虹,黄玲.炉渣处理含磷废水的实验研究[J].岩石矿物学杂志,2003,22(3): 290
    [90]郭上型,董元篪,陈二保.返回转炉钢渣对铁水脱硅、脱磷的影响[J].钢铁研究学报,2002,14(6): 10-13
    [91]王益人.钢渣多级磁选综合利用实践[J].炼钢,2002,18(6): 23-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700