电动多叶光栅通讯部分的FPGA实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在肿瘤放射治疗技术中,三维适形放疗、调强放射治疗等技术中,电动多叶光栅(dynamic multi-leaf collimator)在其中是不可缺少的,它是精确放疗的大型医疗设备,使得放射治疗从辅助的普通放疗进入到了精确放疗的崭新阶段。它全部由电脑控制,接收并执行计划系统的计划文件,驱动叶片到位遮挡X射线,代替了传统的挡铅和手动光栅,而且大大缩短了病人的治疗时间,深受医生的欢迎。但由于国外设备进口价格昂贵,极大的限制了其发展。
     本课题通过实践研究,完全自主开发出了新型电动多叶光栅,它具有开野大、稳定、易扩展维护等特点,本文介绍了老的光栅的系统结构,其设计采用了多块FPGA,通过插座和板相连,存在接触不良的问题,而且设计容量小无法进行扩展;同时新的需求要求两边能整体移动,这样两边的通讯不能通过PCB而要通过软线连接。我们采用了分布式的系统建立两边主从关系,通过LVDS技术进行高速通信,两边的处理器负责各自的控制算法,扩充了系统容量且提高了实时性,由于每个处理器的负荷只有以前的一半,所以整个系统驱动的叶片对数可以提高到以前的两倍以上。本人承担了其中的PC控制软件开发和底层的FPGA驱动部分。着重论述了FPGA的通讯模块,利用软硬件协同设计的思想划分系统模块,使得系统层次结构清楚、易维护。
     根据放疗的4D治疗发展趋势,本文还进行了呼吸信号的采集和预测,进行了预测算法的研究,取得了不错的效果。此外根据实际需要给产品增加了远程更新程序的功能,以便于给用户升级维护。
     最后实际产品测试和使用都非常稳定,取得的控制方案令人满意。近年来投放市场,产品的精度性能和稳定性非常好,取得了非常高的知名度,深受医院的欢迎。
In the radiation therapy technology, with the development of 3D conformal radiotherapy and intensity modulate radiotherapy, dynamic multi-leaf collimator is an indispensable equipment. It is a Precision radiotherapy Large-scale medical equipment, it make radiation therapy of the general radiation from the auxiliary entered a new stage of precision radiotherapy, It is all controlled by computer, receive and implement the plan from TPS, drive leaves in place to shelter-ray, instead the traditional lead and manually grating, but also greatly shortened the patients’time, welcomed by doctors. Due to the high cost of foreign equipment, Greatly limited its development.
     Research on the subject through practice, Developed a fully new autonomous DMLC, It has the characteristics of large size, stability, easy to maintain. This paper introduces the old DMLC architecture, the design use several FPGAs, connected the board with the socket,so there is a problem of the bad connection. And the capacity is so small that can’t expand. And the old way of control is one control panel to control both sides of the leaves, But he needs of the new requirements is both sides is movable, So the communication can not be PCB, but through the soft-wire connection. We have adopted a distributed system,the two sides communication with each other through LVDS, each processor is responsible for their own control algorithms. As the load of each processor is only half of the previous, Therefore, the driven leaves can be increased to more than double the previous.I am responsible for the development of the PC control software and FPGA driver. Focuses on the FPGA communication module, Use the idea of hardware and software co-design module to partition the system, makes the system hierarchical structure clear and easy to maintain. According with the development trend of 4D radiotherapy treatment, We also had a respiratory signal collection and prediction, conducted a study of prediction algorithm, Achieved good results. In addition we need to give products based on the actual increase in the functions of the remote update, in order to upgrade for user, Finally, the actual product testing and the use of very stable, achieved satisfactory control. The accuracy of product performance and stability very good, Achieved very high visibility, Welcomed by the hospital.
引文
[1] Boyer L。Multi-leaf collimators。ESTRO Pre-meeting Workshop on challenges in conformal Radiotherapy。September。Nice, France。1997:410~411
    [2]Boyer L。Basic applications of a multi-leaf collimator, Based on the Report of Task Group 50 of the American Aisoation of Physicists in Medicine。AAPM Summer-school。1996: 379~380
    [3]戴建荣,胡逸民。独立准直器在适形放疗中的应用。中华放射肿瘤杂志。第7卷,1998:21~23
    [4] Yu, C.X. Intensity-modulated arc therapy with dynamic moltileaf collimation:An alternative to tomothereapy. Phys. Mad. Biol. 40 ,1995::1435-49
    [5]胡逸民.肿瘤放射物理学.原子能出版社.1999: 538~541, 550~553
    [6]胡逸民、谷铣之。适形放射治疗-肿瘤放射治疗技术的进展。中华放射肿瘤杂志。第6卷第一期,1997: 13~14
    [7]赵彦钧,基于Sliding Window的电动多叶光栅,2004
    [8] S. V. Spirou and C. S. Chui,“Generation of arbitrary intensity profiles by dynamic jaws or multi-leaf collimators,”Med. Phys 21(7)1994:1031–1041
    [9] T. Neicu, H. Shirato, Y. Seppenwoolde, and S. B. Jiang,“Synchronized moving aperture radiation therapy sSMARTd: Average tumour trajectory for lung patients,”Phys. Med. Biol. 48 (5),2003: 587–598.
    [10] C. Ozhasoglu and M. J. Murphy,“Issues in respiratory motion compensation during external-beam radiotherapy,”Int. J. Radiat. Oncol., Biol.,Phys. 52 (5),2002: 1389–1399
    [11] Murphy MJ. Tracking moving organs in real time. Semin Radiat Oncol 2004; 14:91–100.
    [12]梁月强,新型电动多叶光栅及软件实现,2005
    [13]Shirato H, Shimizu S, Kitamura K, et al. Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor. Int J Radiat Oncol Biol Phys 2000;48:435– 442.
    [14]谢剑英.微型计算机控制技术.国防工业出版社.1991: 127~129,134~137
    [15]罗胜钦.数字集成系统芯片(SOC)设计.北京希望电子出版社.2002:260~262
    [16]张雄伟,曹铁勇。DSP芯片的原理与开发应用。电子工业出版社,2000 198~201
    [17]蒋艳红。基于FPGA的UART设计与应用。计算机工程,2008.11
    [18] fm1808.pdf. http://www.altera.com,2007
    [19] National Semiconductor 18-bit SerDes Design Guide[EB/OL] http://www.national.com,2005
    [20]简方军。一种基于平台的SoPC软硬件协同设计与实现,2006
    [21] Nios II Processor Reference Handbook http://www.altera.com,2007
    [22] Nios II Software Developer's Handbook http://www.altera.com,2007
    [23] Kcall P J,Todor A D,Vedam S S,et al.On the use of EPID based implanted marker tracking for 4D radiotherapy[J].Med Phys,2004,31(12):3492—3499.
    [24] Sharp G C,Jiang S B,Shimizu S,et al.Prediction of respiratory tumour motion for real—time image-guided radiotherapy[J].Phys Med Biol,2004,49(3):425—440.
    [25] Manish K, Hakan N, Lasse R A,Trine J N, Dag R Olsen et al, Respiratory motion prediction by using the adaptive neuro fuzzy inference system[J],Phys.Med.Biol.50(2005) 4721-4728
    [26]呼李宝生,王立英。吸运动分析在肺癌放射治疗中的应用研究现状。中华肿瘤防治杂志,2006
    [27]范逸之、江文贤、陈立元。C++ Builder与RS 232串行通信控制。清华大学出版社,2002
    [28] Varian。MLC Systems and Maintenance Guide。Varian Co.。1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700