南方花岗岩区典型崩岗侵蚀泥沙来源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
崩岗侵蚀是一种特殊的侵蚀形式,了解崩岗侵蚀产沙过程是研究崩岗侵蚀机理所必须解决的关键问题。本研究在福建省安溪县选择3条典型崩岗,在每条崩壁上从下到上采集土样,分析其在不同粒径下的元素含量,筛选出含量显著差异的元素作为最佳指纹因子;同时分析降雨后崩壁侵蚀泥沙中各指纹因子的浓度,通过多元判别法和主成分分析法确定各土层对侵蚀泥沙的贡献率,确定适合南方花岗岩崩岗泥沙来源的组合指纹识别方法;利用该方法分析崩岗系统各部位沉积泥沙来源。主要得到以下结论:
     1.对南方花岗岩区选定的崩岗土体样品不同粒径下64种测定指标的分析表明,崩岗A通过Kruskal-Wallis H-test筛选出来不同粒径下的指纹因子共有36种,崩岗B有22种,崩崩C有31种。
     2.应用逐步判别分析的方法对Kruskal-Wallis检验筛选出具有差异的指纹因子进行组合得到最佳组合指纹因子,崩岗A的最佳组合指纹因子有6种,崩岗B的有5种,崩岗C的有5种。
     3.通过对研究区一次崩岗崩坍的监测,采样,根据多元混合模型计算,得到了这次崩塌来自3种源地的的泥沙贡献率,对于崩岗A来说,红土层、砂土层和碎屑层对崩积堆泥沙的相对贡献分别为66.24%、16.06%、17.7%,相对平均误差为2.70%,对冲积扇泥沙的相对贡献分别为10.25%、38.99%、50.76%,相对平均误差为3.29%;对于崩岗B来说,红土层、砂土层和碎屑层对崩积堆泥沙的相对贡献分别为25.00%、42.08%、39.92%,相对平均误差为5.32%,对冲积扇泥沙的相对贡献分别为30.08%、42.31%、27.61%,相对平均误差为6.37%;对于崩岗C来说,红土层、砂土层和碎屑层对崩积堆泥沙的相对贡献分别为31.38%、50.31%、18.32%,相对平均误差为7.64%,对冲积扇泥沙的相对贡献分别为29.13%、40.54%、30.33%,相对平均误差为9.82%。
     4.根据计算结果,本次试验得到崩岗A的崩积堆和冲积扇的GOF值为0.86和0.90;崩岗B的崩积堆和冲积扇的GOF值为0.82和0.91;崩岗C的崩积堆和冲积扇的GOF值为0.92和0.88;可见所得到的GOF的值都大于0.8,再次证明由该混合模型所得出的结果可以接受。
Slope collapse erosion is a special kind of erosion. Understanding the sedimentformation process of slope collapse erosion is the key to the research on themechanism of slope collapse erosion.In this thesis,three typical eroded slopes werechosen in Anxi county in Fujian province and the soil samples were collected fromeach of the three slopes from the bottom up.Various element contents of the soilsamples of different grain sizes were analyzed and the element contents which wereobviously different from each other were selected as the best fingerprintfactors;Meanwhile, the concentrations of various fingerprint factors in the sedimentforming after the rainfall erosion were analyzed as well and the contribution rates ofvarious soil layers to sediment were determined through the mltivariate discriminantmethod and the principal component analysis. Besides,the composite fingerprintidentification method which was suitable for the analysis on the sediment source ofthe slope collape erosion in the granite area in the south was determined; Thesediment source of every parts of the slope collape system was analyzed through thismethod and the results were as follows:
     1.Through analysis on the69kinds of the determined indices of the soil samplesof different grain diameters in the granite area in the south,it was showed that throughKruskal-Wallis H-test,the eroded slope A had36fingerprint factors under differentgrain sizes while the eroded slope B and C had22factors and31factors respectively.
     2.Through the stepwise discriminant analysis method,the fingerprint factorswhich were selected by Kruskal-Wallis H-test and different from each other arecombined to gain the best composite factors.The number of the best compositefingerprint factors of slope A,slope B and slope C was6,5and5respectively.
     3.Through monitoring and sampling toward the slope collapse in the researcharea and according to the multiplex mixed model,the contribution rate of the threesource regions to the sediment was obtained.As for slope collapse A,the relativecontribution rates of the red soil layer,the sandy soil layer and the fragment layer tothe sediment of the collapse heap were66.24%,16.06%and17.7%respectively and the relative average error was2.70%;the relative contribution rates of the red soillayer,the sandy soil layer and the fragment layer to the sediment of the alluvial fanwere10.25%,38.99%and50.76%respectively and the relative average error was3.29%.As for slope collapse B,the relative contribution rates of the red soil layer,thesandy soil layer and the fragment layer to the sediment of the collapse heap were25%,42.08%and32.92%respectively and the relative average error was5.32%;therelative contribution rates of the red soil layer,the sandy soil layer and the fragmentlayer to the sediment of the alluvial fan were30.08%,42.31%and27.67%respectively and the relative average error was6.37%.As for slope collapse C,therelative contribution rates of the red soil layer,the sandy soil layer and the fragmentlayer to the sediment of the collapse heap were31.38%,50.31%and18.32%respectively and the relative average error was7.64%;the relative contribution rates ofthe red soil layer,the sandy soil layer and the fragment layer to the sediment of thealluvial fan were29.13%,40.54%and30.33%respectively and the relative averageerror was9.82%.
     4.According to the computing result,the GOF values of the collapse heap and thealluvial fan of the slope collapse A obtained by this experiment were0.86and0.90;theGOF values of the collapse heap and the alluvial fan of the slope collapse B were0.82and0.91;the GOF values of the collapse heap and the alluvial fan of the slope collapseC were0.92and0.88;it was showed that all the GOF values were more than0.8,which again proved that the result obtained by this mixed model was acceptable.
引文
[1]史德明,周伏健,徐朋.我国南方土壤侵蚀动态与水土保持发展趋势[J].福建水土保持,1993(3):9~13
    [2]王礼先,孙保平,余新晓等.中国水利百科全书:水土保持分册[M].北京:中国水利水电出版社,2004:48~49.
    [3]唐克丽.中国水土保持[M].北京:科学出版社,2004:80~82.
    [4]冯明汉,廖纯艳等.我国南方崩岗侵蚀现状调查[J].人民长江,2009,40(8):66-68.
    [5]梁音,宁堆虎,潘贤章等.南方红壤区崩岗侵蚀的特点与治理[J].中国水土保持,2009,(01):31-34.
    [6]牛德奎,郭晓敏,左长清等.我国南方红壤丘陵区崩岗侵蚀的分布及其环境背景分析[J].江西农业大学学报,2000,(02):204-208.
    [7]王学强,蔡强国.崩岗及其治理措施的系统分析[J].中国水土保持,2007,(7):29-31.
    [8]牛德奎.崩岗侵蚀调查方法的探讨[J].江西水利科技,1994,20(1):42-47.
    [9]阮伏水,周伏建等.花岗岩风化壳抗侵蚀特征研究[J].福建水土保,1995,(4):37-42.
    [10]吴志峰,钟伟青.崩岗灾害地貌及其环境效应[J].生态科学,1997,16(2):91-96.
    [11]陈金华.安溪县崩岗侵蚀现状与防治对策[J].福建水土保持,1999,11(4):21-43.
    [12]丁光敏.福建省崩岗侵蚀成因及治理模式研究[J].水土保持通报,2001,21(5):10-15.
    [13]吴海彪.种植麻竹治理崩岗侵蚀的主要技术措施[J].福建水土保持,2001,13(3):24-26.
    [14]葛宏力,黄炎和,蒋芳市.2007,福建省崩岗发生的地质和地貌条件分析,水土保持通报,27(2):128~132
    [15]牛德奎,赣南山地丘陵区崩岗侵蚀阶段发育的研究,江西农业大学学报,1990,12(1):29~36
    [16]史德明,我国热带亚热带地区崩岗侵蚀的剖析,水土保持通报,1984(3):32~36
    [17]吴志峰,王继增.华南花岗岩风化壳岩土特性与崩岗侵蚀关系[J].水土保持学报,2000,14(2):31-35.
    [18]张淑光,钟朝章.广东省崩岗形成机理与类型[J].水土保持通报,1990,10(3):8-16
    [19]廖建文,2006,广东省崩岗侵蚀现状与防治对策探讨,人民珠江,2006(1):35~37
    [20]周作旺.浅析地下水对崩岗形成的作用[J].广西水利水电,2000,(3):55-58.
    [21]牛德奎,郭晓敏,左长清等,我国南方红壤丘陵区崩岗侵蚀的分布及其环境背景分析,江西农业大学学报,2000,22(2):204~208
    [22]阮伏水,2003,福建省崩岗侵蚀与治理模式探讨,山地学报,21(6):675~680
    [23]王彦华,谢先德,风化花岗岩崩岗灾害的成因机理,山地学报,2000,18(6):496~501.
    [24]谢建辉.德庆县崩岗治理及其防治对策[J].亚热带水土保持,2006,18(2):52-54.
    [25]丁光敏.福建省引种香根草治理水土流失探讨[J].福建水土保持,1997(4):18-20.
    [26]殷祚云,李熙深.花岗岩风化壳崩岗侵蚀整治方案及效益[J].水土保持通报,1999,19(4):12-17.
    [27]张淑光,钟朝章.广东省崩岗形成机理与类型[J].水土保持通报,1990,10(3):8-16.
    [28]吴志锋,王继增.华南花岗岩风华壳的崩岗地形与土壤侵蚀关系[J].水土保持学报,2000,14(2):31-35.
    [29]李思平.广东省崩岗侵蚀规律和防治的研究[J].自然灾害学报,1992,1(3):68-74.
    [30]颜波,汤连生,胡辉等.花岗岩风化土崩岗破坏机理分析[J].水文地质工程地质,2009,4(6):68-71
    [31]吴志峰,邓南荣,王继增.崩岗侵蚀地貌与侵蚀过程[J].中国水土保持,1999(4):10~12
    [32]周作旺,2000,浅析地下水对崩岗形成的作用,广西水利水电,2000(3):55~58
    [33]张信宝.崩岗边坡失稳的岩石风化膨胀机理探讨[J].中国水土保持,2005(7):10~11.
    [34]林敬兰,黄炎和.崩岗侵蚀的成因机理研究与问题,水土保持研究,2010,17(2):1-4.
    [35]魏多落.南方花岗岩区崩岗剖面特征研究福建农林大学硕士论文,福州,2009
    [36]杨少芹等.粤东崩岗侵蚀作用下土壤中Ti-Zr的重分布[J].矿物岩石地球化学通报,2008(27)2:127~131
    [37]尚彦军,吴宏伟,曲永新,花岗岩风化程度的化学指标及微观特征对比——以香港九龙地区为例,地质科学,2001,36(3):279~294
    [38]王彦华,谢先德,王春云.广东花岗岩风化剖面的物性特征,热带地理,2000,20(4):256~260
    [39]王学强,蔡强国,和继军等.花岗岩风化壳的层次特性对土壤侵蚀及其防治措施的影响,亚热带水土保持,2008,20(2):20-24.
    [40]吴志峰.华南花岗岩分化土体粒度成分的分型特征[J].中国水土保持,1997(5)17~19
    [41] Dus Zanchar. Soil Erosion[M]. New York. Elesrier Scientific Publishing Company,1982:281-287.
    [42] Julius Budel.1982, Climatic Geomorphology (English Edition by Lenir Fischer and DetlefBusche)[M]. Princeton University Press. New Jersey, U.S.A., P.1987:pp122-201.
    [43] Martyinez-Casasnovas J.A., M.C. Ramos, J. Poesen. Assessment of sidewall erosion in largegullies using multi-temporal DEMs and logistic regression analysis[J]. Geomorphology,2004,(58):305-321.
    [44] S.W.C. Au. Rain-induced slope instability in Hong Kong[J]. Engineering Geology,1998,(51):1-36.
    [45] Archibold O.W, L.M.J. Le′vesque, D.H. de Boer, A.E. Aitken, L. Delanoy. Gully retreat in asemi-urban catchment in Saskatoon, Saskatchewan[J]. Applied Geography,2003,(23):261-279.
    [46] S.H.Luk.Soil Erosion(China)project[R]. progress Report, University of Toronto Press-3,1987.
    [47]Collins,A.L.,Walling,D.E., Leeks,G.J.L.,1997b.Fingerprinting the origin of fluvial suspendedsediment based on a quantitative composite fngerprinting technique.Catena29,1–27.
    [48]Collins, A.L., Walling,D.E.,Leeks,G.J.L.,1997a.Source type ascription for fuvial suspendedsediment based on a quantitative composite fngerprinting technique. Catena29,1-27.
    [49]Collins, A.L., Walling, D.E., Leeks, G.J.L.,1997c. Sediment sources in the upper Severncatchment: a fngerprinting approach. Hydrology and Earth System Sciences1,509-521.
    [50] Carter J, Owens, P N, Walling, D E, et al. Fingerprinting suspended sediment sources in alarge urban river system[J].Sci. Total Environ.,2003,314~316:513~534.
    [51]Collins,A.L.,Walling,D.E.,2002.Selecting fingerprint properties for discriminating potentialsuspended sediment sources in river basins. Journal of Hydrology261,218–244.
    [52]Collins, A.L., Walling, D.E., Leeks, G.J.L.,1996. Composite fngerprinting of the Spatialsource of fuvial suspended sediment: a case study of the Exe and Severn River basins,UnitedKingdom.Geomorphologie:Relief,Processus, Environnement2,41-54.
    [53]Collins, A.L.,Walling, D.E., Leeks, G.J.L.,1998. Use of composite fingerprints to Determinethe provenance of the contemporary suspended sediment load transported by rivers. EarthSurface Processes and Landforms23,31–52.
    [54]Collins, A.L., Walling, D.E., Sichingabula, H.M., Leeks, G.J.L.,2001. Suspended Sedimentfingerprinting in a small tropical catchment and some management implications.AppliedGeography21,387-412.
    [55]Franks,S.W.,Rowan,J.S.,2000.Multi-parameter fingerprinting of sedimentsources:uncertainty estimation and tracer selection. In: Bentley, L.R., Brebbia, C.A.,Gray,W.G.,Pinder, G.F., Sykes, J.F.(Eds.), Computational Methods in Water Resources.Balkema,Rotterdam, pp.1067-1074.
    [56]Minella, J.P.G., Clarke, R.T., Merten, G.H., Walling, D.E.,2008b.Sediment sourcefingerprinting: testing hypotheses about contributions from potential sediment sources. In:Schmidt, J., Cochrane, T., Phillips, C., Elliott, S., Davies, T., Basker,L.(Eds.), Sedimentbudgets1. International Association of Hydrological Sciences Publication No.325. IAHSPress, Wallingford, UK, pp.31-37.
    [57] Collins, A. L., Walling, D. E., Webb, L., et al. Apportioning catchment scale sedimentsources using a modified composite fingerprinting technique incorporating propertyweightings and prior information[J]. Geoderma,2010,155:249-261.
    [58]A.L. Collins, Y. Zhang, D.E. Walling, S.E. Grenfell, P. Smith.2010.Tracing sediment lossfrom eroding farm tracks using a geochemical fingerprinting procedure combining local andgenetic algorithm optimisation.Science of the Total Environment.5461-5471.
    [59]徐龙江,杨明义,刘普灵等.指纹识别技术在泥沙来源研究中的应用进展[J].水土保持学报,2007,(06):197-200.
    [60] Wall brink P J, Murray A S. Use of fallout radio nuclides as indicators of erosion processes [J].Hydrological Processes,1993,7:297-304.
    [61]文安邦,张信宝,等.长江上游云贵高原区泥沙来源137Cs法研究[J].水土保持学报,2000,14(2):25-27,103.
    [62] De Boer D H, Crosby G. Evaluating the potential of SEM/EDS analysis for fingerprintingsuspended sediment derived from two contrasting top soils [J]. Catena,1995,24:243-258.
    [63] Caitcheon G G. The significance of various sediment magnetic mineral fractions for tracingsediment sources in Killimicat Creek [J]. Catena,1998,32:131-142.
    [64]王晓.用粒度分析法计算砒砂岩区小流域泥沙来源的探讨[J].中国水土保持,2001(1):22-24.
    [65]王晓燕,田均良,杨明义.示踪技术在流域泥沙研究中的应用[J].泥沙研究,2003,(1):18-23.
    [66] Zhang, X. B., Wen, Z. M., Feng, M. Y., et al. Application Of (CS)-C-137fingerprintingtechnique to interpreting sediment production records from reservoir deposits in a smallcatchment of the Hilly Loess Plateau, China[J]. Science in China Series D-Earth Sciences,2007,50(2):254-260.
    [67] Gingele, F. X., De Deckker, P. Clay mineral, geochemical and Sr-Nd isotopic fingerprintingof sediments in the Murray-Darling fluvial system, southeast Australia[J]. AustralianJournal of Earth Sciences,2005,52(6):965-974.
    [68] Krause, A. K., Franks, S. W., Kalma, J. D., et al. Multi-parameter fingerprinting of sedimentdeposition in a small gullied catchment in SE Australia[J]. CATENA,2003,53(4):327-348.
    [69] Walling, D. E., Owens, P. N., Leeks, G. J. L. Fingerprinting suspended sediment sources inthe catchment of the River Ouse, Yorkshire, UK[J]. Hydrological Processes,1999,13(7):955-975.
    [70]张信宝,贺秀斌,文安邦,等.川中丘陵区小流域泥沙来源的137Cs和210Pb双同位素法研究[J].科学通报,2004,49(15):1537~1541.
    [71] Walling D E, Owens P N, Leeks G J L. Fingerprinting suspended sediment sources in thecatchment of the River Ouse, Yorkshire, UK [J]. Hydrol. Process,1999,13:955~975.
    [72]张红武,江恩惠,白永梅,等.黄河高含沙洪水模型的相似律[M].郑州:河南科学技术出版社,1994
    [73]张红武,张清.黄河水流挟沙力的计算公式[J].人民黄河,1992,14(11):7-9
    [74]魏多落.南方花岗岩区崩岗剖面特征研究[D].福州:福建农林大学,2009.
    [75]陈志朋,林敬兰,许永明等.安溪县崩岗侵蚀防治分区探讨[J].亚热带水土保持,2010(1):14-18.
    [76]葛宏力,黄炎和,蒋芳市.福建省崩岗发生的地质和地貌条件分析[J].水土保持通报,2007(2):129-131.
    [77]王晓.用粒度分析法计算砒砂岩区小流域泥沙来源的探讨[J].中国水土保持,2001(1):22-24.
    [78] Motha JA, WallbrinkPJ, Hairsine PB, et al. Determining the sources of suspended sediment ina forested catchment in southeastern Australia [J]. Water Resour. Res.2003,39(3):1056.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700