有限元模拟NdFeB永磁环脉冲充磁的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用计算机模拟与实验相结合的方法,利用有限元分析软件ANSYS对NdFeB稀土永磁磁环脉冲充磁(包括辐射充磁和六对十二极充磁)过程中的初始电压、磁场分布、铁芯材料选择、线圈匝数及绕法、外层磁轭、磁场的轴向分布等影响因素展开了系统的研究,并结合实验结果进行证实。
     减小初始电压可降低磁化电流的峰值,增加电容可延长磁化电流的持续时间,因此,减小初始电压和增加电容可以从很大程度上消除涡流的影响,提高电流的有效值。在满足磁体磁化场均匀度的前提下,电压应选择满足饱和磁化场的最小值。对于辐射充磁,最低电压可选在1550V;对于十二极充磁,最低电压在1000V。铁芯工作点应处于饱和区,以保证磁环磁化均匀,同时,为降低能量损耗,外加电压和电流应处于最低点。就所选用的材料来说,硅钢由于电阻率高,受感应电流影响小,内部磁力线扩散速度快,能在较小电压下进入饱和工作区,所以选择硅钢作为铁芯;纯铁由于磁导率较高,导磁性能好,所以选择纯铁作为磁轭,有利于导磁。
     在辐射充磁过程中,线圈总匝数相同的情况下,应选择层数较多、每层匝数较少的线圈;但应用中从减小所用电压和电流考虑,每层匝数要跟铁芯磁化饱和电压相适应。选择与磁环外径相同尺寸的线圈,这时,产生的电感较小,涡流也较小,磁场能够较容易渗透至铁芯中心,将铁芯磁化饱和。
     在六对十二极充磁过程中,较粗铜线的峰值电流大,能较早进入饱和区,磁力线分布均匀,电压和发热量减小。但粗铜线也增加了实际绕线操作的难度,在实践中,对实验所用的六对十二极线圈,φ1mm铜线为最佳铜线尺寸。磁轭的增加减小了所充磁体磁性能(如表磁)峰值大小,但可以增加峰值宽度,更好的满足电机矩形波的要求。实验中,采用纯铁磁轭,在同样的表磁下,波形宽度是未采用磁轭的1.67倍。磁环应放于夹具的轴向中间部分,有利于发挥铁芯轴向中间部分磁场强度强且均匀的优点。由计算得到,轴向长度为磁环高度的1.2-1.5倍为最佳。
     本论文采用理论分析方法研究充磁实践过程中的规律,对生产实践磁环的充磁设计具有一定的指导意义。
The impulse magnetization for NdFeB permanent ring magnets including radialhomopolar and twelve-pole magnetization is studied in this paper using finite-elementanalytic software ANSYS combining the experiment. The factors are systematicallydiscussed containing the initial voltage, the distribution of magnetizing field, the corematerial, the number of coil, the twist way and yoke based on the finite-elementanalysis and the experimental results.
     The results show that the decrease of initial voltage can reduce the peakmagnetizing current, and at the same time, the increasing capacitance can also prolongcontinuous time of magnetizing current. Therefore, the adverse effect of eddy currentcan be greatly reduced through decreasing the initial voltage and increasing thecapacitance. On the conditions that the saturation magnetic field intensity ishomogeneous, initial voltage should be selected a minimum value. For example, it isproper that the initial voltage is selected to be 1550v for radial homopolarmagnetization and 1000v for the twelve-pole magnetization. The core should work inthe saturation area to ensure the uniformity of magnetized ring magnet. In order todecrease power loss, the initial voltage and magnetizing current should be minimumvalues. Using silicon steel with high resistivity as the core benefits achieving fastdissipation of flux lines by decreasing the effect of eddy current. On the contrary,using the iron with high permeability as the yoke can get the good magneticconductibility.
     During the radial homopolar magnetization, it would preferred to use the coilwith more layers and less tunas on one layer on the condition of the same total coil turns. However, in order to reduce the voltage and the current, the turns on one layershould fit the voltage of saturation magnetization of the core. In the experiment ofradial homopolar magnetization, the coil with 4 turns and 8 layers can fulfil therequirement of saturation magnetization with small voltage and current. When the coilhas the same diameter with the ring magnet, producing little inductance and eddycurrent are reduced and the core can be easily magnetized due to the permeation to thecenter of the magnetic filed.
     During the twelve-pole magnetization, the thicker copper wire produces thebigger current and the homogeneous distribution of flux lines, which makes the coreenter the saturation area easily. However, it is difficult to achieve the coil from thethicker copper wire in practice. The copper wire withφ1mm is the best selection inthe experiments of twelve-pole magnetization coil. Using yoke can reduce magneticcharacteristic, for example, the surface magnetic field strength, but increase the widthof peak value, which can satisfy the requirement of rectangular waveform for themotor applications. In the experiments, the waveform with a yoke is 1.67 times widerthan that without yoke at the same surface field strength. The ring magnet should bein the middle of the core in the axial direction where the magnetic field is strong andsymmetrical. The calculated result shows that the core is proper with the height1.2-1.5 times higher than that of ring magnet.
     This paper is studying the rules in practical magnetization using theory analysismethod, and it benefits giving the guidance for the practical magnetization of NdFeBpermanent ring magnets.
引文
[1] 田民波.磁性材料[M].北京:清华大学出版社,2001.27-29
    [2] 林其壬,赵佑民.磁路设计原理[M].北京:机械工业出版社,1987.198
    [3] 吴良宏.多极磁化技术及其应用研究[J].上海钢研,1995,(1):19-24
    [4] 蒋芳芳,郑颖.永磁铁氧体多极磁环磁场取向和充磁系统研究[J].磁性材料及器件,2006,(6):57-61
    [5] 刘力真,何玉林.强场脉冲充磁退磁装置[J].宇航计测技术,2003,23(3):58-60
    [6] 王旭波,曲选辉.注射成形钕铁硼粘结磁体研究的现状及前景[J].粉末冶金材料科学与工程,2002,7(2):114-118
    [7] 董正柱,甄美茹,祁宝忠等.高性能多极磁环研究[J].矿冶,2000,9(3):80-83
    [8] 沈嫁丰,董艳杰,周美兰等.国内充磁机的发展状况及整体充磁机的主要技术问题[J].哈尔滨电工学院学报,1996,19(3):349-352
    [9] 赵宪铭.一种高性能脉冲式充磁机[J].电声技术,1993,(12):54-56
    [10] 谢祖荣,勒其兵,曾建唐等.电容放电脉冲充磁技术中放电回路参数的选择[J].辽宁工程技术大学学报(自然科学版),2002,21(2):187-189
    [11] 邹光荣,傅恒志,姜战军等.稀土永磁材料退磁曲线的计算及应用[J].微电机,1999,32(3):44-46
    [12] Fritz Hedach, Jos A A J Perenboom. Magnet laboratory facilities worldwide-an update[J]. Physiea B, 1995, (211): 1-16
    [13] J C Maan, P Wyder. Dynamic modelling of magnetic materials for high frequency applications[J]. Physica B, 1992, (177): 22
    [14] A Cotton. Electromagnetic analyses for the design of a new active shell for RFX[J].Compt Rend Acad Sci, 1928, (187): 77
    [15] Paul Frings, Yingkai Huang, Eric Hennes. Pulsed-high-field technology, close to the edge[J].Physica B, 2002, 319: 330-338
    [16] H Deslandres, A Perot. Improvement of magnetic field calculations by extrapolation[J]. Compt Rend Acad Sci, 1914, (159): 439
    [17] F Bitter. Novel pulsed magnetization process for cryo-permanent magnets[J]. Rev Sci Instrum, 1936, (7): 479
    [18] H Witte, H Jones. High-field magnet facilities and associated technology at Oxford[J]. PhysicaB, 2004, 346-347: 663-667
    [19] M F Wood. in: eds. H Kolm, B Lax, F Bitter and R Mills. Confon high magnetic fields[C]. New York: MIT Press/Wiley, 1962. 387
    [20] H J Schneider-Muntau. Distributions of forces in the inductors used in metal processing in the pulse magnetic field[J]. IEEE Transaction on Magnetics, 1982, (18): 1565
    [21] M F Wood, D B Montgomery. ConfLes Champs Magnetiques Intenses[C], Grenoble: Publ. C.N.R.S., 1966.91
    [22] D B Montgoery, J E C Williams, N T Pierce. Modeling of the electromagnetic forming of sheet metals: state-of-the-art and future needs[J]. Adv Cryogenic Eng, 1969, (14): 88
    [23] K Inoue, T Takeuchi, T Kiyoshi and so on. New sensors for measuring M and H in high magnetic fields[J]. Physica B, 1994, (201): 517.
    [24] P Kapitza. A pulsed field magnetometer for the qualitiy control of permanent magnets[J]. Proc Roy SocA, 1927, (115): 658
    [25] S Foner. The design and construction of a thin foil high field magnet[J]. Appl Phys Lett, 1986, (49): 982
    [26] Koichi Kindo. 100T magnet developed in Osaka[J]. Physica B, 2001, 294-295: 585-590
    [27] F Herlach. Strong and ultrastrong magnetic fields[A]. F Hedach. Springer Topics in Applied Physics[C]. Berlin/Heidelberg: Springer, 1985. Vol 57, p 1
    [28] Fritz Herlach, J J M Franse. Proc 2nd Int Symposium on High Field Magnetism[C]. Leuven, 20-23 July 1988. Physica B, 1989, (155): 433-439
    [29] Anter El-Azab, Mark Gamich, Ashish Kapoor. Modeling of the electromagnetic forming of sheet metals: state-of-the-art and future needs[J]. Journal of Materials Processing Tchnology, 2003, 142: 744-754
    [30] 林其壬,赵佑民.磁路设计原理[M].北京:机械工业出版社,1987.67
    [31] 周寿增,董清飞.超强永磁体[M].北京:冶金工业出版社,2004.43-45
    [32] G W Jewell, D Howe and T S Birch. Simulation of capacitor discharge magnetisation[J]. IEEE Transaction on Magnetics, 1990, 26 (5): 1638-1640
    [33] 陈永煌.电容充、放电式自动充、退磁机[J].安徽机电学院学报,2000,15(3):65-68
    [34] 谢祖荣,周晓正,曾建唐等.脉冲充磁技术与装置研究[J].北京石油化工学院学报,2001,9(1):51-54
    [35] Pill-Soo Kim, Yong Kim, Nam-Hyuk Yim. Exact parameter estimation of impulse magnetizer and thermal analysis under this parameter[J]. Physica B, 1997, (199): 435
    [36] 张效昌,雷振林.脉冲磁体的设计[J].中央民族大学学报(自然科学版),1996,5(1):68
    [37] 赵永成,陈天旗,唐宜胜.一种实用脉冲磁化机rJ].机械设计与制造,1999,6:70
    [38] 张祖信.脉冲磁场充磁的若干问题探讨[J].磁性材料及器件,2000,(10):45-48
    [39] 刘亚丕,刑怀中.稀土永磁磁体系统的饱和充磁若干问题探讨[J].磁性材料及器件,1999,(12):43-46
    [40] 辜程宏,钱国强.轴向充磁钕铁硼圆柱产品成型模具设计[J].磁性材料及器件,1996,27(4):52-54
    [41] 朱长青.数值计算方法及其应用[M].北京:科学出版社,2006.11
    [42] 王烈衡,许学军.有限元方法的数学基础[MI.北京:科学出版社,2004.1
    [43] 许福永,赵克玉.电磁场与电磁波[M].北京:科学出版社,2005.206-207
    [44] Sslomon Askenazy. Analytical solution for pulsed field coils placed in a magnetic field[J]. Physica B, 1995, 211: 56-64
    [45] V M Korablev, L M Tkachenko. Calculation of magnetic fields using surface currents and law of full current conservation[J]. Nuclear Instruments and Methods in Physics Research A, 1996, 378: 620-623
    [46] 鞠立华,蒋书运.稀土永磁无刷直流电动机电磁场有限元分析[J].机械制造 与自动化,2005,34(1):115-116
    [47] 刘国强,赵凌云,蒋继娅等.Ansoft工程电磁场有限元分析[M].北京:电子工业出版社,2005.2
    [48] 王世山,王德林,李彦明.大型有限元软件ANSYS在电磁领域的使用[J].高压电器,38(3):27
    [49] 刘相新,孟宪颐.ANSYS基础与应用教程[M].北京:科学出版社,2006.13
    [50] 王富耻,张朝晖.ANSYS10.0有限元分析理论与工程应用[M].北京:电子工业出版社,2006.3
    [51] C D Riley, G W Jewell and D Howe. Design of impulse magnetizing fixtures for the radial homopolar magnetization of isotropic NdFeB ring magnets[J]. IEEE Transactions onMagnetics, 2000, 36 (5): 3846-3857
    [52] Jiabin Wang, Weiya Wang, G W Jewell. Design of a miniature permanent magnet generator and energy storage system[J]. IEEE Transactions on Industrial Electronics, 2005, 52 (5): 1383-1390
    [53] C D Riley, G W Jewell and D Howe. The design and analysis of axial field multipole impulse magnetizing fixtures[J]. Journal of Applied Physics, 1998, 83 (11): 7113
    [54] 邱关源.电路[M].北京:高等教育出版社,1999.11
    [55] 张宝裕,刘恒基.磁场的产生[M].北京:机械工业出版社,1987.121
    [56] 许福永,赵克玉.电磁场与电磁波[M].北京:科学出版社,2005.195
    [57] 邱关源.电路[M].北京:高等教育出版社,1999.12
    [58] 林其壬,赵佑民.磁路设计原理[M].北京:机械工业出版社,1987.206
    [59] 张宝裕,刘恒基.磁场的产生[M].北京:机械工业出版社,1987.277
    [60] C D Riley, G W Jewell and D Howe. Design of Impulse magnetizing fixtures for the radial homopolar magnetization of isotropic NdFeB ring magnets[J]. IEEE Transactions on Magnetics, 2000, 36 (5): 3846-3857
    [61] 申佑芝.多极磁体及其充磁[J].微特电机,2004,(1):46
    [62] H Haiji, K Okada, T Hiratani. Magnetic properties and workability of 6.5% Si steel sheet[J]. Journal of Magnetism and Magnetic Materials, 1996, 160: 109-114
    [63] H Jones, M Van Cleemput, A L Hickman. Progress in high-field pulsed magnets and conductor development in Oxford[J]. Physica B, 1998, 246-247:337-340
    [64] G W Jewell, D Howe and C D Riley. The Design of radial-field multipole impolse magnetizing fixtures for isotropic NdFeB magnets[J]. IEEE Transactions on Magnetics, 1997, 33 (1): 708-722
    [65] 孙玉魁,张长安,董学智等.金属软磁材料及其应用[M].北京:冶金工业出版社,1986.117
    [66] Y N Zhilichev. Precise multipole magnetization of disc magnet for sensor application[J]. IEEE Transactions on Magnetics, 2003, 39 (5): 3301-3303

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700