二芳基乙烯分子开关及其金属配合物的设计、合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,分子电子器件(如分子场效应管、分子整流器、分子储存器、分子导线、分子开关和分子马达等)作为下一代电子器件得到了快速的发展。其中,分子开关作为未来逻辑和存储电路的基本单元而备受人们的关注。在各种分子开关体系中,二芳基乙烯化合物由于其良好的热稳定性和优秀的抗疲劳性而成为最有应用前景的光致变色化合物之一。因此,发展结构新颖、性能独特的二芳基乙烯化合物具有重要的意义。在本论文中,我们分别从取代基效应、溶剂效应、酸碱效应及金属配位效应对2-(2-吡啶)咪唑类的二芳基乙烯化合物(PI-BTEs)荧光和光致变色性能的影响进行了系统的研究。主要的研究内容如下:
     1、为研究不同取代基对2-(2-吡啶)咪唑类的二芳基乙烯化合物(PI-BTEs)荧光和光致变色性能的影响,我们设计合成了一系列二芳基乙烯化合物L1-L5,同时我们也研究了溶剂效应对母体化合物L3荧光和光致变色性能的影响。这些研究结果将为我们今后根据需要来设计新型的PI-BTEs化合物提供一定的借鉴和指导。
     2、由于碱性基团(咪唑和吡啶)和酸能发生酸碱作用,因此,我们设计合成了一系列以咪唑为烯桥的二芳基乙烯化合物L2、L3、L6及L7来研究酸对它们吸收光谱、荧光光谱和热稳定性的影响。研究结果显示,在酸的诱导下,我们不仅能实现咪唑二芳基乙烯化合物在P型光致变色和T型光致变色之间相互切换(这种光致变色化合物在光写-热擦的可再写纸领域有潜在的应用);而且通过调节酸的量,我们还能够对咪唑二芳基乙烯化合物的光致变色性能实现可逆的酸致门控“锁”的调控。在这个过程中,强酸起着门控“锁”的作用,而碱性的三乙胺则起着门控“钥匙”的作用。这种门控光致变色在数据无损读取方面有潜在的应用。
     3、通过2-(2-吡啶)咪唑与金属砌块的螯合作用,我们设计合成了铂金属配合物L2-Pt和L4-Pt。研究结果显示,配合物L2-Pt不仅展示了良好的近红外的光致变色性能,而且还展示了荧光“turn on”的性能。据我们所知,这是第一例荧光“turn on”且近红外光致变色的金属二芳基乙烯分子开关,这种分子开关在高分辨荧光成像和生物荧光标签方面具有潜在的应用价值。
In recent years, molecular electronic devices (such as molecular field effect tube, molecular rectifier, molecular memory, molecular wire, molecular switch and molecular motor, etc.) as the next generation of electronic devices have been rapid development. Among them, the molecular switch as the basic unit of future logic and storage circuit has attracted much attention. Among the various molecular switch systems, diarylethenes, due to their excellent thermal stability and outstanding fatigue resistance, are one of the most promising photochromic compounds for practical applications. Therefore, it is very significant to develop the diarylethenes with novel structures and unique performances. In this thesis, we systematically studied the substituent effects, solvent effects, acid-base effect and metal complexing effect on the fluorescent and photochromic properties of2-(2-pyridyl) imidazole containing diarylethene derivatives (PI-BTEs). The main research contents are as follows:
     1. For studying the different substituents on the fluorescent and photochromic performances of2-(2-pyridyl) imidazole containing diarylethene derivatives (PI-BTEs), we designed to synthesize a series of diarylethene compounds L1-L5, and studied the solvent effect of the parent compound L3on the fluorescence and photochromic properties. The results would provide some reference and guidance for us to design novel PI-BTEs compounds according to the requirement in future.
     2. Because of the acid-base interaction between the alkaline groups (imidazole and pyridine) and the acid, a series of diarylethene derivatives with imidazoles as the ethene bridges (L2, L3, L6and L7) are prepared to investigate the influence on their absorption spectra, fluorescence spectra and thermal stability by the acid. It has been demonstrated that not only switch of the diarylethene derivatives between P-type and T-type photochromism by the acid stimuli (this photochromic compound has a potential application in rewritable papers of write-by light/erase-by-heat systems) is achieved, but also the reversible acid induced gating "lock" regulation by adjusting the quantity of acid is accomplished. The strong acid plays a gated "lock" role and the alkaline triethylamine may act as the "key" role in this process. Such gating photochromism has potential applications in nondestructive readout.
     3. By chelating metallic subunits with2-(2-pyridyl) imidazole, we designed to synthesize the platinum complexes of L2-Pt and L4-Pt. The results show that L2-Pt complex exhibits not only the near-infrared photochromism but also the turn-on fluorescence. To the best of our knowledge, this is the first turn-on fluorescence and near-infrared photochromism of metal diarylethene molecular switch, which has potential applications in the high resolution fluorescence imaging and biological fluorescence label.
引文
[1]Eigler D M, Lutz C P, Rudge W E. An atomic switch realized with the scanning tunnelling microscope[J]. Nature,1991,352(6336):600-603.
    [2]Chiabrera A, Di Zitti E, Costa F, et al. Physical limits of integration and information processing in molecular systems[J]. Journal of Physics D:Applied Physics,1989,22(11):1571.
    [3]Joachim C, Gimzewski J, Aviram A. Electronics using hybrid-molecular and mono-molecular devices[J]. Nature,2000,408(6812):541-548.
    [4]Feynman R P In There's Plenty of Room at the Bottom, Annual meeting of the American Physical Society,1959.
    [5]Feynman R P. There's plenty of room at the bottom[J]. Engineering and Science,1960,23(5): 22-36.
    [6]Feynman R P. There's plenty of room at the bottom[J]. Miniaturization"(HD Gilbert, ed.) Reinhold, New York,1961.
    [7]Aviram A, Ratner M A. Molecular rectifiers[J]. Chemical Physics Letters,1974,29(2): 277-283.
    [8]Carroll R L, Gorman C B. The Genesis of Molecular Electronics[J]. Angewandte Chemie International Edition,2002,41(23):4378-4400.
    [9]Carter F L. Molecular electronic devices Ⅱ[M]. New York: Marcel Dekker, INC.1987.
    [10]Tour J M. Molecular electronics. Synthesis and testing of components[J]. Accounts of Chemical Research,2000,33(11):791-804.
    [11]刘德胜.分子开关研究进展[J].济宁学院学报,2008,29(6):5-9.
    [12]Irie M. Diarylethenes for Memories and Switches[J]. Chemical Reviews,2000,100(5): 1685-1716.
    [13]Feringa B L. Molecular switches[M]. Germany: Wiley-VCH Verlag GmbH,Weinheim.2001.
    [14]Tian H, Yang S. Recent progresses on diarylethene based photochromic switches[J]. Chemical Society Reviews,2004,33(2):85-97.
    [15]Tian H, Wang S. Photochromic bisthienylethene as multi-function switches[J]. Chemical Communications,2007, (8):781-792.
    [16]Zhang J, Zou Q, Tian H. Photochromic Materials: More Than Meets The Eye[J]. Advanced Materials,2013,25(3):378-399.
    [17]Baker E H, Tompkins F C, Fahim H A, et al. Notes[J]. Journal of the Chemical Society (Resumed),1952,0(0):4518-4548.
    [18]Hirshberg Y. Reversible Formation and Eradication of Colors by Irradiation at Low Temperatures. A Photochemical Memory Model[J]. Journal of the American Chemical Society, 1956,78(10):2304-2312.
    [19]Heiligman-Rim R, Hirshberg Y, Fischer E. PHOTOCHROMISM IN SPIROPYRANS. PART Ⅳ.1 EVIDENCE FOR THE EXISTENCE OF SEVERAL FORMS OF THE COLORED MODIFICATION[J]. The Journal of Physical Chemistry,1962,66(12):2465-2470.
    [20]Kobatake S, Irie M.8 Photochromism[J]. Annual Reports Section "C" (Physical Chemistry), 2003,99:277-313.
    [21]刘浪.有机光致变色化合物的合成,结构与性质研究.新疆大学,2001.
    [22]蒋莹莹.光致变色化合物的制备及其在纺织品上的应用.青岛大学,2009.
    [23]Patel P D, Mikhailov I A, Belfield K D, et al. Theoretical study of photochromic compounds, part 2:Thermal mechanism for byproduct formation and fatigue resistance of diarylethenes used as data storage materials[J]. International Journal of Quantum Chemistry,2009,109(15): 3711-3722.
    [24]Shoji H, Kobatake S. Thermal bleaching reactions of photochromic diarylethenes with thiophene-S,S-dioxide for a light-starting irreversible thermosensor[J]. Chemical Communications, 2013,49(23):2362-2364.
    [25]樊美公.光子存储原理与光致变色材料[J].化学进展,1997,9(2):170-178.
    [26]Tsujioka T, Shimizu Y, Irie M. Crosstalk in photon-mode photochromic multi-wavelength recording[J]. Japanese journal of applied physics,1994,33(part 1):1914-1919.
    [27]Fritsche M. Comp.Rend.,1867,69:1035.
    [28]ter Meer E. Uber Dinitroverbindungen der Fettreihe[J]. Justus Liebigs Annalen der Chemie, 1876,181(1):1-22.
    [29]Marckwald W. Zeitschrift fur Physikalische Chemie,1899,30:140.
    [30]樊美公.光化学基本原理与光子学材料科学[M].科学出版社.2001.
    [31]Harris L, Kaminsky J, Simard R G The absorption spectrum of malachite green leucocyanide and the mechanism of the dark reaction after photolysis[J]. Journal of the American Chemical Society,1935,57(7):1151-1154.
    [32]Calvert J G, Rechen H J. Precision actinometry at low light intensities with malachite green leucocyanide[J]. Journal of the American Chemical Society,1952,74(8):2101-2103.
    [33]Brown G H. Photochromism[M]. New York:Wiley-Interscience.1971.
    [34]Heller H G The development of photochromic compounds for use in optical information stores[J]. Chemistry & Industry,1978,18:193-198.
    [35]Irie M, Mohri M. Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives[J]. The Journal of Organic Chemistry,1988,53(4):803-808.
    [36]Parthenopoulos D A, Rentzepis P M. Three-dimensional optical storage memory [J]. Science, 1989,245(4920):843-845.
    [37]Diirr H, Bouas-Laurent H. Photochromism:molecules and systems[M]. Elsevier Science Limited.1990.
    [38]McArdle C. Applied photochromic polymer systems[M]. Blackie Academic & Professional. 1992.
    [39]Crano J C, Guglielmetti R J. Organic Photochromic and Thermochromic Compounds: Volume 1:Photochromic Families[M]. Springer.1999.
    [40]Crano J C, Guglielmetti R J. Organic Photochromic and Thermochromic Compounds: Volume 2:Physicochemical Studies, Biological Applications, and Thermochromism[M]. Springer. 1999.
    [41]Irie M, Kobatake S, Horichi M. Reversible surface morphology changes of a photochromic diarylethene single crystal by photoirradiation[J]. Science,2001,291(5509):1769-1772.
    [42]Matsuda K, Takayama K, Irie M. Single-crystalline photochromism of a linear coordination polymer composed of 1,2-bis[2-methyl-5-(4-pyridyl)-3-thienyl]perfluorocyclopentene and bis(hexafluoroacetylacetonato)zinc(II)[J]. Chemical Communications,2001, (4):363-364.
    [43]Kobatake S, Uchida K, Tsuchida E, et al. Single-crystalline photochromism of diarylethenes: reactivity-structure relationship[J]. Chemical Communications,2002, (23):2804-2805.
    [44]Kuroki L, Takami S, Shibata K, et al. Photochromism of single crystals composed of dioxazolylethene and dithiazolylethene[J]. Chemical Communications,2005, (48):6005-6007.
    [45]Morimoto M, Irie M. Photochromism of diarylethene single crystals: crystal structures and photochromic performance[J]. Chemical Communications,2005, (31):3895-3905.
    [46]Kobatake S, Takami S, Muto H, et al. Rapid and reversible shape changes of molecular crystals on photoirradiation[J]. Nature,2007,446(7137):778-781.
    [47]Yamaguchi T, Taniguchi W, Ozeki T, et al. Photochromism of diarylethene oxazole derivatives in a single-crystalline phase[J]. Journal of Photochemistry and Photobiology A: Chemistry,2009,207(2-3):282-287.
    [48]Kuroki L, Takami S, Yoza K, et al. Photoinduced shape changes of diarylethene single crystals: correlation between shape changes and molecular packing[J]. Photochemical & Photobiological Sciences,2010,9(2):221-225.
    [49]Ohara H, Morimoto M, Irie M. Photochromism of dithienylethene single crystals having anthracene substituents[J]. Photochemical & Photobiological Sciences,2010,9(8):1079-1081.
    [50]Kobatake S, Hasegawa H, Miyamura K. High-Convertible Photochromism of a Diarylethene Single Crystal Accompanying the Crystal Shape Deformation[J]. Crystal Growth & Design,2011, 11(4):1223-1229.
    [51]Feringa B L, Jager W F, de Lange B. Organic materials for reversible optical data storage[J]. Tetrahedron,1993,49(37):8267-8310.
    [52]Hampp N. Bacteriorhodopsin as a Photochromic Retinal Protein for Optical Memories[J]. Chemical Reviews,2000,100(5):1755-1776.
    [53]Kawata S, Kawata Y. Three-Dimensional Optical Data Storage Using Photochromic Materials[J]. Chemical Reviews,2000,100(5):1777-1788.
    [54]Jiang G, Song Y, Guo X, et al. Organic Functional Molecules towards Information Processing and High-Density Information Storage[J]. Advanced Materials,2008,20(15): 2888-2898.
    [55]Willner I, Rubin S, Wonner J, et al. Photoswitchable binding of substrates to proteins: photoregulated binding of.alpha.-D-mannopyranose to concanavalin A modified by a thiophenefulgide dye[J]. Journal of the American Chemical Society,1992,114(8):3150-3151.
    [56]Rubin S, Willner I. Photoregulation of the Activities of Proteins[J]. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals,1994, 246(1):201-205.
    [57]Fissi A, Pieroni O, Ruggeri G, et al. Photoresponsive Polymers. Photomodulation of the Macromolecular Structure in Poly(L-lysine) Containing Spiropyran Units[J]. Macromolecules, 1995,28(1):302-309.
    [58]Sakata T, Yan Y, Marriott G. Family of Site-Selective Molecular Optical Switches[J]. The Journal of Organic Chemistry,2005,70(6):2009-2013.
    [59]Vomasta D, Hogner C, Branda N R, et al. Regulation of Human Carbonic Anhydrase I (hCAI) Activity by Using a Photochromic Inhibitor[J]. Angewandte Chemie International Edition,2008, 47(40):7644-7647.
    [60]Vomasta D, H6gner C, Branda N R, et al. Regulation der Aktivitat von humaner Carboanhydrase I (hCAI) durch einen photochromen Inhibitor[J]. Angewandte Chemie,2008, 120(40):7756-7759.
    [61]Al-Atar U, Fernandes R, Johnsen B, et al. A Photocontrolled Molecular Switch Regulates Paralysis in a Living Organism[J]. Journal of the American Chemical Society,2009,131(44): 15966-15967.
    [62]Yoon B, Lee J, Park I S, et al. Recent functional material based approaches to prevent and detect counterfeiting[J]. Journal of Materials Chemistry C,2013,1(13):2388-2403.
    [63]王建营,冯长根.光致变色现象及其在国防上的应用[J].国防科技,2005,3:22-25.
    [64]Morimoto M, Kobatake S, Irie M. Multi-Colored Photochromic Crystals of Diarylethene Mixtures[J]. Advanced Materials,2002,14(15):1027-1029.
    [65]Saluja P, Kaur N, Singh N, et al. Benzimidazole-based fluorescent sensors for Cr3+ and their resultant complexes for sensing and F-[J]. Tetrahedron,2012,68(41):8551-8556.
    [66]Satapathy R, Padhy H, Wu Y-H, et al. Synthesis and Characterization of Reversible Chemosensory Polymers: Modulation of Sensitivity through the Attachment of Novel Imidazole Pendants[J]. Chemistry-A European Journal,2012,18(50):16061-16072.
    [67]Ding Y, Li X, Li T, et al. α-Monoacylated and a, a'-and α,β'-Diacylated Dipyrrins as Highly Sensitive Fluorescence "Turn-on" Zn2+ Probes[J]. The Journal of Organic Chemistry, 2013,78(11):5328-5338.
    [68]Lee S, Flood A H. Photoresponsive receptors for binding and releasing anions[J]. Journal of Physical Organic Chemistry,2013,26(2):79-86.
    [69]Liu Q-X, Yao Z-Q, Zhao X-J, et al. NHC Metal (Silver, Mercury, and Nickel) Complexes Based on Quinoxaline-Dibenzimidazolium Salts:Synthesis, Structural Studies, and Fluorescent Chemosensors for Cu2+by Charge Transfer[J]. Organometallics,2013,32(12):3493-3501.
    [70]Zheng C, Pu S, Liu G, et al. A highly selective colorimetric sensor for cysteine and homocysteine based on a new photochromic diarylethene[J]. Dyes and Pigments,2013,98(2): 280-285.
    [71]Tan W, Zhou J, Li F, et al. Visible Light-Triggered Photoswitchable Diarylethene-Based Iridium(III) Complexes for Imaging Living Cells[J]. Chemistry-An Asian Journal,2011,6(5): 1263-1268.
    [72]Kim Y, Jung H-y, Choe Y H, et al. High-Contrast Reversible Fluorescence Photoswitching of Dye-Crosslinked Dendritic Nanoclusters in Living Vertebrates[J]. Angewandte Chemie International Edition,2012,51(12):2878-2882.
    [73]Osakada Y, Hanson L, Cui B. Diarylethene doped biocompatible polymer dots for fluorescence switching[J]. Chemical Communications,2012,48(27):3285-3287.
    [74]Pang S-C, Hyun H, Lee S, et al. Photoswitchable fluorescent diarylethene in a turn-on mode for live cell imaging[J]. Chemical Communications,2012,48(31):3745-3747.
    [75]Uchida K, Nishikawa N, Izumi N, et al. Phototunable Diarylethene Microcrystalline Surfaces:Lotus and Petal Effects upon Wetting[J]. Angewandte Chemie International Edition, 2010,49(34):5942-5944.
    [76]Kitagawa D, Yamashita I, Kobatake S. Photoinduced micropatterning by polymorphic crystallization of a photochromic diarylethene in a polymer film[J]. Chemical Communications, 2010,46(21):3723-3725.
    [77]Maafi M. The potential of AB(1 [capital Phi]) systems for direct actinometry. Diarylethenes as successful actinometers for the visible range[J]. Physical Chemistry Chemical Physics,2010, 12(40):13248-13254.
    [78]Green K A, Cifuentes M P, Corkery T C, et al. Switching the Cubic Nonlinear Optical Properties of an Electro-, Halo-, and Photochromic Ruthenium Alkynyl Complex Across Six States[J]. Angewandte Chemie International Edition,2009,48(42):7867-7870.
    [79]Gust D, Andreasson J, Pischel U, et al. Data and signal processing using photochromic molecules[J]. Chemical Communications,2012,48(14):1947-1957.
    [80]Castet F, Rodriguez V, Pozzo J-L, et al. Design and Characterization of Molecular Nonlinear Optical Switches[J]. Accounts of Chemical Research,2013.
    [81]Gilat S L, Kawai S H, Lehn J-M. Light-triggered electrical and optical switching devices[J]. Journal of the Chemical Society, Chemical Communications,1993, (18):1439-1442.
    [82]Gilat S L, Kawai S H, Lehn J-M. Light-Triggered Molecular Devices:Photochemical Switching Of optical and Electrochemical Properties in Molecular Wire Type Diarylethene Species[J]. Chemistry-A European Journal,1995,1(5):275-284.
    [83]Lehn J-M, Tsivgouli G M. Photoswitched sexithiophenes: Towards switchable molecular wires[J]. Advanced Materials,1997,9(1):39-42.
    [84]Tanaka Y, Inagaki A, Akita M. A photoswitchable molecular wire with the dithienylethene (DTE) linker, (dppe)([small eta]5-C5Me5)Fe-C[triple bond, length as m-dash]C-DTE-C[triple bond, length as m-dash]C-Fe([small eta]5-C5Me5)(dppe)[J]. Chemical Communications,2007, 0(11):1169-1171.
    [85]Areephong J, Hurenkamp J H, Milder M T W, et al. Photoswitchable Sexithiophene-Based Molecular Wires[J]. Organic Letters,2009,11(3):721-724.
    [86]Meng F, Hervault Y-M, Norel L, et al. Photo-modulable molecular transport junctions based on organometallic molecular wires[J]. Chemical Science,2012,3(10):3113-3118.
    [87]Feringa B L. The Art of Building Small: From Molecular Switches to Molecular Motors[J]. The Journal of Organic Chemistry,2007,72(18):6635-6652.
    [88]Terao F, Morimoto M, Irie M. Light-Driven Molecular-Crystal Actuators: Rapid and Reversible Bending of Rodlike Mixed Crystals of Diarylethene Derivatives[J]. Angewandte Chemie International Edition,2012,51(4):901-904.
    [89]Tong R, Hemmati H D, Langer R, et al. Photoswitchable Nanoparticles for Triggered Tissue Penetration and Drug Delivery[J]. Journal of the American Chemical Society,2012,134(21): 8848-8855.
    [90]Soh N, Yoshida K, Nakajima H, et al. A fluorescent photochromic compound for labeling biomolecules[J]. Chemical Communications,2007, (48):5206-5208.
    [91]Ueno A, Takahashi K, Osa T. Photoregulation of catalytic activity of [small beta]-cyclodextrin by an azo inhibitor[J]. Journal of the Chemical Society, Chemical Communications,1980,0(17):837-838.
    [92]Cacciapaglia R, Di Stefano S, Mandolini L. The Bis-Barium Complex of a Butterfly Crown Ether as a Phototunable Supramolecular Catalyst[J]. Journal of the American Chemical Society, 2003,125(8):2224-2227.
    [93]Sud D, Norsten T B, Branda N R. Photoswitching of Stereoselectivity in Catalysis Using a Copper Dithienylethene Complex[J]. Angewandte Chemie International Edition,2005,44(13): 2019-2021.
    [94]Samachetty H D, Branda N R. Integrating molecular switching and chemical reactivity using photoresponsive hexatrienes[J]. Pure and applied chemistry,2006,78(12):2351-2359.
    [95]Neilson B M, Lynch V M, Bielawski C W. Photoswitchable N-Heterocyclic Carbenes: Using Light to Modulate Electron-Donating Properties[J]. Angewandte Chemie International Edition, 2011,50(44):10322-10326.
    [96]Neilson B M, Bielawski C W. Photoswitchable Organocatalysis:Using Light To Modulate the Catalytic Activities of N-Heterocyclic Carbenes[J]. Journal of the American Chemical Society, 2012,134(30):12693-12699.
    [97]Neilson B M, Bielawski C W. Photoswitchable Metal-Mediated Catalysis: Remotely Tuned Alkene and Alkyne Hydroborations[J]. Organometallics,2013,32(10):3121-3128.
    [98]Neilson B M, Bielawski C W. Illuminating Photoswitchable Catalysis[J]. ACS Catalysis, 2013,3:1874-1885.
    [99]Denekamp C, Feringa B L. Optically Active Diarylethenes for Multimode Photoswitching Between Liquid-Crystalline Phases[J]. Advanced Materials,1998,10(14):1080-1082.
    [100]Kodani T, Matsuda K, Yamada T, et al. Reversible Diastereoselective Photocyclization of a Diarylethene in a Single-Crystalline Phase[J]. Journal of the American Chemical Society,2000, 122(40):9631-9637.
    [101]Myles A J, Zhang Z, Liu G, et al. Novel Synthesis of Photochromic Polymers via ROMP[J]. Organic Letters,2000,2(18):2749-2751.
    [102]Norsten T B, Branda N R. Photoregulation of Fluorescence in a Porphyrinic Dithienylethene Photochrome[J]. Journal of the American Chemical Society,2001,123(8):1784-1785.
    [103]Osuka A, Fujikane D, Shinmori H, et al. Synthesis and Photoisomerization of Dithienylethene-Bridged Diporphyrins[J]. The Journal of Organic Chemistry,2001,66(11): 3913-3923.
    [104]Liddell P A, Kodis G, Moore A L, et al. Photonic Switching of Photoinduced Electron Transfer in a Dithienylethene-Porphyrin-Fullerene Triad Molecule[J]. Journal of the American Chemical Society,2002,124(26):7668-7669.
    [105]Mulder A, Jukovic A, Lucas L N, et al. A dithienylethene-tethered [small beta]-cyclodextrin dimer as a photoswitchable host[J]. Chemical Communications,2002, (22):2734-2735.
    [106]Chen Y, Zeng D X. Study on Photochromic Diarylethene with Phenolic Schiff Base: Preparation and Photochromism of Diarylethene with Benzoxazole[J]. The Journal of Organic Chemistry,2004,69(15):5037-5040.
    [107]Copley G, Moore T A, Moore A L, et al. Analog Applications of Photochemical Switches[J]. Advanced Materials,2013,25(3):456-461.
    [108]He Y, Zhu Y, Chen Z, et al. Remote-control photocycloreversion of dithienylethene driven by strong push-pull azo chromophores[J]. Chemical Communications,2013,49(49):5556-5558.
    [109]Liu G, Pu S, Wang R. Photochromism of Asymmetrical Diarylethenes with a Pyrrole Unit: Effects of Aromatic Stabilization Energies of Aryl Rings[J]. Organic Letters,2013,15(5): 980-983.
    [110]Pu S, Jiang D, Liu W, et al. Multi-addressable molecular switches based on photochromic diarylethenes bearing a rhodamine unit[J]. Journal of Materials Chemistry,2012,22(8): 3517-3526.
    [111]Nakayama Y, Hayashi K, Irie M. Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-diselenenylethene and 1,2-diindolylethene derivatives[J]. The Journal of Organic Chemistry,1990,55(9):2592-2596.
    [112]Fan G-B, Ming Y-F, Fan M-G Synthesis and Studies on Photochromic Reaction of Heterocyclic Diarylethenes[J]. Chinese Journal of Organic Chemistry,1994,14:599-599.
    [113]Xu B A, Huang Z N, Jin S, et al. Synthesis and photochromic mechanism of 3,4-bis[2,5-dimethylthiophene-3-yl]-2,5-dihydrothiophene[J]. Journal of Photochemistry and Photobiology A:Chemistry,1997,110(1):35-40.
    [114]Yamaguchi T, Uchida K, Irie M. Asymmetric Photocyclization of Diarylethene Derivatives[J]. Journal of the American Chemical Society,1997,119(26):6066-6071.
    [115]Krayushkin M, Ivanov S, Martynkin A Y, et al. Photochromic dihetarylethenes.7. Synthesis of bis (thienylazoles), photochromic analogs of diarylethenes[J]. Russian Chemical Bulletin,2001, 50(1):116-121.
    [116]Mrozek T, Gorner H, Daub J. Multimode-Photochromism Based on Strongly Coupled Dihydroazulene and Diarylethene[J]. Chemistry-A European Journal,2001,7(5):1028-1040.
    [117]Lucas Linda N, Jong Jaap J D d, Esch Jan H v, et al. Syntheses of Dithienylcyclopentene Optical Molecular Switches[J]. European Journal of Organic Chemistry,2003,2003(1):155-166.
    [118]Luo Q, Chen B, Wang M, et al. Mono-Bisthienylethene Ring-Fused versus Multi-Bisthienylethene Ring-Fused Photochromic Hybrids[J]. Advanced Functional Materials, 2003,13(3):233-239.
    [119]Luo Q, Li X, Jing S, et al. A Novel Bisthienylethene as Acidichromic and Photochromic Yellow Dye[J]. Chemistry Letters,2003,32(12):1116-1117.
    [120]Kawai T, Iseda T, Irie M. Photochromism of triangle terthiophene derivatives as molecular re-router[J]. Chemical Communications,2004,0(1):72-73.
    [121]Yam V W-W, Ko C-C, Zhu N. Photochromic and Luminescence Switching Properties of a Versatile Diarylethene-Containing 1,10-Phenanthroline Ligand and Its Rhenium(I) Complex[J]. Journal of the American Chemical Society,2004,126(40):12734-12735.
    [122]Luo Q, Sheng S, Cheng S, et al. Tunable luminescence of new photochromic bisthienylethenes containing triphenylamine[J]. Australian Journal of Chemistry,2005,58(5): 321-326.
    [123]Tanifuji N, Matsuda K, Irie M. Synthesis of a new diarylethene diradical which has extended π-conjugated chains from the 2,5-position of one thiophene ring[J]. Polyhedron,2005,24(16): 2484-2490.
    [124]Meng X, Zhu W, Zhang Q, et al. Novel Bisthienylethenes Containing Naphthalimide as the Center Ethene Bridge: Photochromism and Solvatochromism for Combined NOR and INHIBIT Logic Gates[J]. The Journal of Physical Chemistry B,2008,112(49):15636-15645.
    [125]Suzuki K, Ubukata T, Yokoyama Y. Dual-mode fluorescence switching of photochromic bisthiazolylcoumarin[J]. Chemical Communications,2012,48(5):765-767.
    [126]Herder M, Patzel M, Grubert L, et al. Photoswitchable triple hydrogen-bonding motif[J]. Chemical Communications,2011,47(1):460-462.
    [127]Hiroto S, Suzuki K, Kamiya H, et al. Synthetic protocol for diarylethenes through Suzuki-Miyaura coupling[J]. Chemical Communications,2011,47(25):7149-7151.
    [128]Li Z, Zhang C, Ren Y, et al. Amide- and Urea-Functionalized Dithienylethene: Synthesis, Photochromism, and Binding with Halide Anions[J]. Organic Letters,2011,13(22):6022-6025.
    [129]Uno K, Niikura H, Morimoto M, et al. In Situ Preparation of Highly Fluorescent Dyes upon Photoirradiation[J]. Journal of the American Chemical Society,2011,133(34):13558-13564.
    [130]Zhou X, Duan Y, Yan S, et al. Optical modulation of supramolecular assembly of amphiphilic photochromic diarylethene: from nanofiber to nanosphere[J]. Chemical Communications,2011,47(24):6876-6878.
    [131]Beydoun K, Roger J, Boixel J, et al. A straightforward access to photochromic diarylethene derivatives via palladium-catalysed direct heteroarylation of 1,2-dichloroperfluorocyclopentene[J]. Chemical Communications,2012,48(98):11951-11953.
    [132]Furumi S, Fudouzi H, Sawada T. Dynamic photoswitching of micropatterned lasing in colloidal crystals by the photochromic reaction[J]. Journal of Materials Chemistry,2012,22(40): 21519-21528.
    [133]Sysoiev D, Yushchenko T, Scheer E, et al. Pronounced effects on switching efficiency of diarylcycloalkenes upon cycloalkene ring contraction[J]. Chemical Communications,2012,48(92): 11355-11357.
    [134]Shallcross R C, Zacharias P, Kohnen A, et al. Photochromic Transduction Layers in Organic Memory Elements[J]. Advanced Materials,2013,25(3):469-476.
    [135]Irie M, Sakemura K, Okinaka M, et al. Photochromism of Dithienylethenes with Electron-Donating Substituents[J]. The Journal of Organic Chemistry,1995,60(25):8305-8309.
    [136]Utsumi H, Nagahama D, Nakano H, et al. A novel family of photochromic amorphous molecular materials based on dithienylethene[J]. Journal of Materials Chemistry,2000,10(11): 2436-2437.
    [137]Malval J-P, Gosse I, Morand J-P, et al. Photoswitching of Cation Complexation with A Monoaza-crown Dithienylethene Photochrome[J]. Journal of the American Chemical Society, 2002,124(6):904-905.
    [138]Yamamoto S, Matsuda K, Irie M. Absolute Asymmetric Photocyclization of a Photochromic Diarylethene Derivative in Single Crystals[J]. Angewandte Chemie International Edition,2003, 42(14):1636-1639.
    [139]Tanifuji N, Matsuda K, Irie M. Effect of Imino Nitroxyl and Nitronyl Nitroxyl Groups on the Photochromic Reactivity of Diarylethenes[J]. Organic Letters,2005,7(17):3777-3780.
    [140]Traven V F, Bochkov A Y, Krayushkin M M, et al. Coumarinyl(thienyl)thiazoles: Novel Photochromes with Modulated Fluorescence[J]. Organic Letters,2008,10(6):1319-1322.
    [141]Migulin V A, Krayushkin M M, Barachevsky V A, et al. Synthesis and Characterization of Nonsymmetric Cyclopentene-Based Dithienylethenes[J]. The Journal of Organic Chemistry,2011, 77(1):332-340.
    [142]Mengel A K C, He B, Wenger O S. A Triarylamine-Triarylborane Dyad with a Photochromic Dithienylethene Bridge[J]. The Journal of Organic Chemistry,2012,77(15):6545-6552.
    [143]Migulin V A, Krayushkin M M, Barachevsky V A, et al. Synthesis and Characterization of Nonsymmetric Cyclopentene-Based Dithienylethenes[J]. The Journal of Organic Chemistry,2012, 77(1):332-340.
    [144]Zou Q, Li X, Zhang J, et al. Unsymmetrical diarylethenes as molecular keypad locks with tunable photochromism and fluorescence via Cu2+ and CN-coordinations[J]. Chemical Communications,2012,48(15):2095-2097.
    [145]Wang H, Lin H, Xu W, et al. Nonsymmetrical Dithienylethenes Bearing Dithieno[3,2-b:2 ',3'-d]thiophene Units with Photochromic Performance in the Crystalline Phase[J]. Chemistry-A European Journal,2013,19(10):3366-3373.
    [146]罗千福,范曲立,黄维.二芳基乙烯类光致变色材料的合成概述[J].有机化学,2007,27(2):175-187.
    [147]Nakamura S, Irie M. Thermally irreversible photochromic systems. A theoretical study[J]. The Journal of Organic Chemistry,1988,53(26):6136-6138.
    [148]Irie M, Uchida K. Synthesis and Properties of Photochromic Diarylethenes with Heterocyclic Aryl Groups[J]. Bulletin of the Chemical Society of Japan,1998,71(5):985-996.
    [149]Frederick J H, Fujiwara Y, Penn J H, et al. Models for stilbene photoisomerization: experimental and theoretical studies of the excited-state dynamics of 1,2-diphenylcycloalkenes[J]. The Journal of Physical Chemistry,1991,95(7):2845-2858.
    [150]Hohlneicher G, Mueller M, Demmer M, et al.1,2-Diphenylcycloalkenes: electronic and geometric structures in the gas phase, solution, and solid state[J]. Journal of the American Chemical Society,1988,110(14):4483-4494.
    [151]Hanazawa M, Sumiya R, Horikawa Y, et al. Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-bis (2-methylbenzo[b]thiophen-3-yl)perfluorocyclocoalkene derivatives[J]. Journal of the Chemical Society, Chemical Communications,1992, (3):206-207.
    [152]Irie M, Miyatake O, Uchida K, et al. Photochromic Diarylethenes with Intralocking Arms[J]. Journal of the American Chemical Society,1994,116(22):9894-9900.
    [153]Stellacci F, Bertarelli C, Toscano F, et al. A High Quantum Yield Diarylethene-Backbone Photochromic Polymer[J]. Advanced Materials,1999,11(4):292-295.
    [154]Uchida K, Tsuchida E, Aoi Y, et al. Substitution effect on the coloration quantum yield of a photochromic bisbenzothienylethene[J]. Chemistry Letters,1999, (1):63-64.
    [155]Hossain M K, Takeshita M, Yamato T. Synthesis and photochromic properties of a dithia-dithienylethenophane[J]. Tetrahedron Letters,2005,46(3):431-433.
    [156]Kamrul Hossain M, Takeshita M, Yamato T. Synthesis, Structure, and Photochromic Properties of Dithia-(dithienylethena)phane Derivatives[J]. European Journal of Organic Chemistry,2005,2005(13):2771-2776.
    [157]Takeshita M, Nagai M, Yamato T. A photochromic thiophenophan-1-ene[J]. Chemical Communications,2003, (13):1496-1497.
    [158]Takeshita M, Irie M. Enhancement of the photocyclization quantum yield of 2,2[prime or minute]-dimethyl-3,3[prime or minute]-(perfluorocyclopentene-1,2-diyl)bis(benzo[b]-thiophene-6-sulfonate) by inclusion in a cyclodextrin cavity[J]. Chemical Communications,1997, (23):2265-2266.
    [159]Takeshita M, Kato N, Kawauchi S, et al. Photochromism of Dithienylethenes Included in Cyclodextrins[J]. The Journal of Organic Chemistry,1998,63(25):9306-9313.
    [160]Takeshita M, Yamada M, Kato N, et al. Photochromism of dithienylethene-bis(trimethylammonium) iodide in cyclodextrin cavities[J]. Journal of the Chemical Society, Perkin Transactions 2,2000, (4):619-622.
    [161]Irie M, Sayo K. Solvent effects on the photochromic reactions of diary lethene derivatives[J]. The Journal of Physical Chemistry,1992,96(19):7671-7674.
    [162]Zhu W, Yang Y, Metivier R, et al. Unprecedented Stability of a Photochromic Bisthienylethene Based on Benzobisthiadiazole as an Ethene Bridge[J]. Angewandte Chemie International Edition,2011,50(46):10986-10990.
    [163]Uchida K, Matsuoka T, Sayo K, et al. Thermally Reversible Photochromic Systems. Photochromism of a Dipyrrolylperfluorocyclopentene[J]. Chemistry Letters,1999,28(8): 835-836.
    [164]Irie M, Lifka T, Uchida K, et al. Fatigue resistant properties of photochromic dithienylethenes: by-product formation[J]. Chemical Communications,1999,0(8):747-750.
    [165]Peters A, Branda N R. Limited photochromism in covalently linked double 1,2-dithienylethenes[J]. Advanced Materials for Optics and Electronics,2000,10(6):245-249.
    [166]Ikeda H, Sakai A, Kawabe A, et al. Photochromic properties of tetrakis(2-methylthien-3-yl)ethene and its tetrakis(methylthio) derivative[J]. Tetrahedron Letters, 2008,49(33):4972-4976.
    [167]Delbaere S, Berthet J, Shiozawa T, et al. Photochromic C2-Symmetric Chiral Diarylethene: From the Initial State to the Final State[J]. The Journal of Organic Chemistry,2012,77(4): 1853-1859.
    [168]Fujimoto K, Maruyama T, Okada Y, et al. Development of a new class of photochromic peptides by using diarylethene-based non-natural amino acids[J]. Tetrahedron,2013,69(30): 6170-6175.
    [169]Irie M. Photochromic diarylethenes for molecular photonics[J]. Supramolecular Science, 1996,3(1-3):87-89.
    [170]Higashiguchi K, Matsuda K, Kobatake S, et al. Fatigue Mechanism of Photochromic 1,2-Bis(2,5-dimethyl-3-thienyl)perfluorocyclopentene[J]. Bulletin of the Chemical Society of Japan,2000,73(10):2389-2394.
    [171]Higashiguchi K, Matsuda K, Yamada T, et al. Fatigue Mechanism of Photochromic 1,2-Bis(3-thienyl)perfluorocyclopentene[J]. Chemistry Letters,2000,29(12):1358-1359.
    [172]Irie S, Irie M. Radiation-Induced Coloration of Photochromic Dithienylethene Derivatives in Polymer Matrices[J]. Bulletin of the Chemical Society of Japan,2000,73(10):2385-2388.
    [173]Irie M, Eriguchi T, Takada T, et al. Photochromism of diarylethenes having thiophene oligomers as the aryl groups[J]. Tetrahedron,1997,53(36):12263-12271.
    [174]Irie M, Miyatake O, Uchida K. Blocked photochromism of diarylethenes[J]. Journal of the American Chemical Society,1992,114(22):8715-8716.
    [175]Li X, Ma Y, Wang B, et al. "Lock and Key Control" of Photochromic Reactivity by Controlling the Oxidation/Reduction State[J]. Organic Letters,2008,10(16):3639-3642.
    [176]Takeshita M, Uchida K, Irie M. Novel saccharide tweezers with a diarylethene photoswitch[J]. Chemical Communications,1996,0(15):1807-1808.
    [177]Takeshita M, Soong C F, Irie M. Alkali metal ion effect on the photochromism of 1,2-bis(2,4-dimethylthien-3-yl)-perfluorocyclopentene having benzo-15-crown-5 moieties[J]. Tetrahedron Letters,1998,39(42):7717-7720.
    [178]Irie M, Miyatake O, Sumiya R, et al. Photochromism of diarylethenes with intralocking arms[J]. Molecular Crystals and Liquid Crystals,1994,246(1):155-158.
    [179]Li S-L, Xiao T, Xia W, et al. New Light on the Ring-Chain Equilibrium of a Hydrogen-Bonded Supramolecular Polymer Based on a Photochromic Dithienylethene Unit and its Energy-Transfer Properties as a Storage Material[J]. Chemistry-A European Journal,2011, 17(38):10716-10723.
    [180]Miyasaka H, Murakami M, Itaya A, et al. Multiphoton Gated Photochromic Reaction in a Diarylethene Derivative[J]. Journal of the American Chemical Society,2001,123(4):753-754.
    [181]Miyasaka H, Murakami M, Okada T, et al. Picosecond and femtosecond laser photolysis studies of a photochromic diarylethene derivative:multiphoton gated reaction[J]. Chemical Physics Letters,2003,371(1-2):40-48.
    [182]Murakami M, Miyasaka H, Okada T, et al. Dynamics and Mechanisms of the Multiphoton Gated Photochromic Reaction of Diarylethene Derivatives[J]. Journal of the American Chemical Society,2004,126(45):14764-14772.
    [183]Ishibashi Y, Tani K, Miyasaka H, et al. Picosecond laser photolysis study of cycloreversion reaction of a diarylethene derivative in polycrystals:Multiphoton-gated reaction[J]. Chemical Physics Letters,2007,437(4-6):243-247.
    [184]Ryo S, Ishibashi Y, Murakami M, et al. Multiphoton-gated photochromic reaction of diarylethene derivatives in PMMA solid film[J]. Journal of Physical Organic Chemistry,2007, 20(11):953-959.
    [185]Tani K, Ishibashi Y, Miyasaka H, et al. Dynamics of Cyclization, Cycloreversion, and Multiphoton-Gated Reaction of a Photochromic Diarylethene Derivative in Crystalline Phase[J]. The Journal of Physical Chemistry C,2008,112(30):11150-11157.
    [186]Ishibashi Y, Okuno K, Ota C, et al. Multiphoton-gated cycloreversion reactions of photochromic diarylethene derivatives with low reaction yields upon one-photon visible excitation[J]. Photochemical & Photobiological Sciences,2010,9(2):172-180.
    [187]Kawai S H, Gilat S L, Lehn J-M. A dual-mode optical-electrical molecular switching device[J]. Journal of the Chemical Society, Chemical Communications,1994,0(8):1011-1013.
    [188]Kawai S H, Gilat S L, Ponsinet R, et al. A Dual-Mode Molecular Switching Device: Bisphenolic Diarylethenes with Integrated Photochromic and Electrochromic Properties[J]. Chemistry-A European Journal,1995,1(5):285-293.
    [189]Yumoto K, Irie M, Matsuda K. Control of the Photoreactivity of Diarylethene Derivatives by Quaternarization of the Pyridylethynyl Group[J]. Organic Letters,2008,10(10):2051-2054.
    [190]Liu H-H, Chen Y. Construction and properties of multi-addressable switching system based on a photochromic diarylethene[J]. Journal of Materials Chemistry,2009,19(6):706-709.
    [191]Liu H-H, Chen Y. Carbon dioxide and water as a key for unlocking photochromism of diarylethene derivative[J]. Journal of Photochemistry and Photobiology A: Chemistry,2010, 215(1):103-107.
    [192]Liu H-H, Chen Y. Modulation of absorption and fluorescence of photochromic diarylethene by intramolecular hydrogen bond[J]. Journal of Physical Organic Chemistry,2012,25(2): 142-146.
    [193]Song B, Li H, Yang L, et al. Acid/Alkali Gated Photochromism of Diarylethenes with Quinoline Derivatives[J]. Chinese Journal of Chemistry,2012,30(7):1393-1398.
    [194]Ohsumi M, Fukaminato T, Irie M. Chemical control of the photochromic reactivity of diarylethene derivatives[J]. Chemical Communications,2005,0(31):3921-3923.
    [195]Nourmohammadian F, Wu T, Branda N R. A 'chemically-gated' photoresponsive compound as a visible detector for organophosphorus nerve agents[J]. Chemical Communications,2011, 47(39):10954-10956.
    [196]Poon C-T, Lam W H, Yam V W-W. Gated Photochromism in Triarylborane-Containing Dithienylethenes: A New Approach to a "Lock-Unlock" System[J]. Journal of the American Chemical Society,2011,133(49):19622-19625.
    [197]Song B, Li H, Yang L, et al. Esterifiable/hydrolytic control of photochromism of diarylethenes with 8-hydroxyquinoline derivatives[J]. Journal of Photochemistry and Photobiology A:Chemistry,2012,241(0):21-25.
    [198]Wu Y, Chen S, Yang Y, et al. A novel gated photochromic reactivity controlled by complexation/dissociation with BF3[J]. Chemical Communications,2012,48(4):528-530.
    [199]Zhu W, Song L, Yang Y, et al. Novel Bisthienylethene Containing Ferrocenyl-Substituted Naphthalimide: A Photo-and Redox Multi-Addressable Molecular Switch[J]. Chemistry-A European Journal,2012,18(42):13388-13394.
    [200]Tsivgoulis G M, Lehn J-M. Photonic Molecular Devices: Reversibly Photoswitchable Fluorophores for Nondestructive Readout for Optical Memory[J]. Angewandte Chemie International Edition in English,1995,34(10):1119-1122.
    [201]Fernandez-Acebes A, Lehn J-M. Optical Switching and Fluorescence Modulation in Photochromic Metal Complexes[J]. Advanced Materials,1998,10(18):1519-1522.
    [202]Norsten T B, Branda N R. Axially Coordinated Porphyrinic Photochromes for Non-destructive Information Processing[J]. Advanced Materials,2001,13(5):347-349.
    [203]Chen B, Wang M, Wu Y, et al. Reversible near-infrared fluorescence switch by novel photochromic unsymmetrical-phthalocyanine hybrids based on bisthienylethene[J]. Chemical Communications,2002,0(10):1060-1061.
    [204]Tian H, Chen B, Tu H Y, et al. Novel Bisthienylethene-Based Photochromic Tetraazaporphyrin with Photoregulating Luminescence[J]. Advanced Materials,2002,14(12): 918-923.
    [205]Chen B-Z, Wang M-Z, Luo Q-F, et al. Novel bisthienylethene-based photochromic materials with photoregulating fluorescence[J]. Synthetic Metals,2003,137(1-3):985-987.
    [206]Jeong Y-C, Yang S I, Ahn K-H, et al. Highly fluorescent photochromic diarylethene in the closed-ring form[J]. Chemical Communications,2005, (19):2503-2505.
    [207]Jeong Y-C, Yang S I, Kim E, et al. Development of highly fluorescent photochromic material with high fatigue resistance[J]. Tetrahedron,2006,62(25):5855-5861.
    [208]Jeong Y-C, Yang S I, Kim E, et al. A High-Content Diarylethene Photochromic Polymer for an Efficient Fluorescence Modulation[J]. Macromolecular Rapid Communications,2006,27(20): 1769-1773.
    [209]Lim S-J, Seo J, Park S Y. Photochromic Switching of Excited-State Intramolecular Proton-Transfer (ESIPT) Fluorescence: A Unique Route to High-Contrast Memory Switching and Nondestructive Readout[J]. Journal of the American Chemical Society,2006,128(45): 14542-14547.
    [210]Nakagawa T, Hasegawa Y, Kawai T. Nondestructive luminescence intensity readout of a photochromic lanthanide(iii) complex[J]. Chemical Communications,2009, (37):5630-5632.
    [211]Karnbratt J, Hammarson M, Li S, et al. Photochromic Supramolecular Memory With Nondestructive Readout[J]. Angewandte Chemie,2010,122(10):1898-1901.
    [212]Fukaminato T, Doi T, Tamaoki N, et al. Single-Molecule Fluorescence Photoswitching of a Diarylethene-Perylenebisimide Dyad: Non-destructive Fluorescence Readout[J]. Journal of the American Chemical Society,2011,133(13):4984-4990.
    [213]Edelsztein V C, Jares-Erijman E A, Mullen K, et al. A luminescent steroid-based organogel: ON-OFF photoswitching by dopant interplay and templated synthesis of fluorescent nanoparticles[J]. Journal of Materials Chemistry,2012,22(41):21857-21861.
    [214]Seibold M, Port H. Mid-infrared recognition of the reversible photoswitching of fulgides[J]. Chemical Physics Letters,1996,252(1-2):135-140.
    [215]Stellacci F, Bertarelli C, Toscano F, et al. Diarylethene-based photochromic rewritable optical memories: on the possibility of reading in the mid-infrared[J]. Chemical Physics Letters, 1999,302(5-6):563-570.
    [216]Uchida K, Saito M, Murakami A, et al. Non-Destructive Readout of the Photochromic Reactions of Diarylethene Derivatives Using Infrared Light[J]. Advanced Materials,2003,15(2): 121-125.
    [217]Uchida K, Saito M, Murakami A, et al. Multifrequency Photochromic Recording and Nondestructive Readout using IR Light[J]. ChemPhysChem,2003,4(10):1124-1127.
    [218]Uchida K, Takata A, Saito M, et al. A Novel Photochromic Film by Oxidation Polymerization of a Bisbenzothienylethene with Phenol Groups[J]. Advanced Materials,2003, 15(10):785-788.
    [219]Uchida K, Takata A, Saito M, et al. Synthesis of Novel Photochromic Films by Oxidation Polymerization of Diarylethenes Containing Phenol Groups[J]. Advanced Functional Materials, 2003,13(10):755-762.
    [220]Bianco A, Bertarelli C, Rabolt J F, et al. Diarylethenes with Electroactive Substituents: A Theoretical Study to Understand the Effect on the IR Spectrum and a Simple Way to Read Optical Memory in the Mid-IR[J]. Chemistry of Materials,2005,17(4):869-874.
    [221]Uchida K, Saito M, Murakami A, et al. Three Bits Eight States Photochromic Recording and Nondestructive Readout by Using IR Light[J]. Chemistry-A European Journal,2005,11(2): 534-542.
    [222]Takata A, Yokojima S, Nakagawa H, et al. Substituent effect of diarylethenes on IR spectra for application of non-destructive readout of photochromic recording[J]. Journal of Physical Organic Chemistry,2007,20(11):998-1006.
    [223]Jeong Y-C, Kim S H, Ko H, et al. Photochromic optical memory based on non-destructive IR read-out[J]. Photochemical & Photobiological Sciences,2009,8(11):1590-1594.
    [224]de Jong J J D, Browne W R, Walko M, et al. Raman scattering and FT-IR spectroscopic studies on dithienylethene switches-towards non-destructive optical readout[J]. Organic & Biomolecular Chemistry,2006,4(12):2387-2392.
    [225]Brayshaw S K, Schiffers S, Stevenson A J, et al. Highly Efficient Visible-Light Driven Photochromism:Developments towards a Solid-State Molecular Switch Operating through a Triplet-Sensitised Pathway[J]. Chemistry-A European Journal,2011,17(16):4385-4395.
    [226]Pariani G, Castagna R, Dassa G, et al. Diarylethene-based photochromic polyurethanes for multistate optical memories[J]. Journal of Materials Chemistry,2011,21(35):13223-13231.
    [227]Toriumi A, Herrmann J, Kawata S. Nondestructive readout of a three-dimensional photochromic optical memory with a near-infrared differential phase-contrast microscope[J]. Optics letters,1997,22(8):555-557.
    [228]Kim M-S, Maruyama H, Kawai T, et al. Refractive Index Changes of Amorphous Diarylethenes Containing 2,4-Diphenylphenyl Substituents[J]. Chemistry of Materials,2003, 15(24):4539-4543.
    [229]Yamaguchi T, Inagawa T, Nakazumi H, et al. Photoinduced pitch changes in chiral nematic liquid crystals formed by doping with chiral diarylethene[J]. Journal of Materials Chemistry,2001, 11(10):2453-2458.
    [230]Wigglesworth T J, Sud D, Norsten T B, et al. Chiral Discrimination in Photochromic Helicenes[J]. Journal of the American Chemical Society,2005,127(20):7272-7273.
    [231]Miyasaka H, Araki S, Tabata A, et al. Picosecond laser photolysis studies on photochromic reactions of 1,2-bis(2,4,5-trimethyl-3-thienyl)maleic anhydride in solutions[J]. Chemical Physics Letters,1991,230(3):249-254.
    [232]Tamai N, Saika T, Shimidzu T, et al. Femtosecond Dynamics of a Thiophene Oligomer with a Photoswitch by Transient Absorption Spectroscopy[J]. The Journal of Physical Chemistry,1996, 100(12):4689-4692.
    [233]Okabe C, Nakabayashi T, Nishi N, et al. Picosecond Time-Resolved Stokes and Anti-Stokes Raman Studies on the Photochromic Reactions of Diarylethene Derivatives[J]. The Journal of Physical Chemistry A,2003,107(28):5384-5390.
    [234]Shim S, Joo T, Bae S C, et al. Ring Opening Dynamics of a Photochromic Diarylethene Derivative in Solutiont[J]. The Journal of Physical Chemistry A,2003,107(40):8106-8110.
    [235]Uchida K, Takata A, Ryo S-i, et al. Picosecond laser photolysis studies on a photochromic oxidation polymer film consisting of diarylethene molecules[J]. Journal of Materials Chemistry, 2005,15(21):2128-2133.
    [236]Ishibashi Y, Fujiwara M, Umesato T, et al. Cyclization Reaction Dynamics of a Photochromic Diarylethene Derivative as Revealed by Femtosecond to Microsecond Time-Resolved Spectroscopy[J]. The Journal of Physical Chemistry C,2011,115(10):4265-4272.
    [237]Jean-Ruel H, Cooney R R, Gao M, et al. Femtosecond Dynamics of the Ring Closing Process of Diarylethene: A Case Study of Electrocyclic Reactions in Photochromic Single Crystals[J]. The Journal of Physical Chemistry A,2011,115(45):13158-13168.
    [238]Ishibashi Y, Umesato T, Kobatake S, et al. Femtosecond Laser Photolysis Studies on Temperature Dependence of Cyclization and Cycloreversion Reactions of a Photochromic Diarylethene Derivative[J]. The Journal of Physical Chemistry C,2012,116(7):4862-4869.
    [239]Tamai N, Miyasaka H. Ultrafast Dynamics of Photochromic Systems[J]. Chemical Reviews, 2000,100(5):1875-1890.
    [240]Lim S-J, An B-K, Jung S D, et al. Photoswitchable Organic Nanoparticles and a Polymer Film Employing Multifunctional Molecules with Enhanced Fluorescence Emission and Bistable Photochromism[J]. Angewandte Chemie International Edition,2004,43(46):6346-6350.
    [241]Wang S, Shen W, Feng Y, et al. A multiple switching bisthienylethene and its photochromic fluorescent organogelator[J]. Chemical Communications,2006, (14):1497-1499.
    [242]Finden J, Kunz T K, Branda N R, et al. Reversible and Amplified Fluorescence Quenching of a Photochromic Polythiophene[J]. Advanced Materials,2008,20(10):1998-2002.
    [243]Yildiz I, Deniz E, Raymo F M. Fluorescence modulation with photochromic switches in nanostructured constructs[J]. Chemical Society Reviews,2009,38(7):1859-1867.
    [244]Zheng H, Zhou W, Yuan M, et al. Optic and proton dual-control of the fluorescence of Rhodamine based on photochromic diarylethene:mimicking the performance of an integrated logic gate[J]. Tetrahedron Letters,2009,50(14):1588-1592.
    [245]Keirstead A E, Bridgewater J W, Terazono Y, et al. Photochemical "Triode" Molecular Signal Transducer [J]. Journal of the American Chemical Society,2010,132(18):6588-6595.
    [246]Cipolloni M, Ortica F, Bougdid L, et al. Tetra- and tri-thienyl ethenes: new fluorescent photochromic compounds[J]. Photochemical & Photobiological Sciences,2011,10(6):964-972.
    [247]Liu H-H, Chen Y. Construction of multi-level fluorescent switch using photochromic diarylethene and fluorescent dye[J]. Dyes and Pigments,2011,89(3):212-216.
    [248]Sanz-Menez N, Monnier V, Colombier I, et al. Photochromic fluorescent diarylethene nanocrystals grown in sol-gel thin films[J]. Dyes and Pigments,2011,89(3):241-245.
    [249]Taguchi M, Nakagawa T, Nakashima T, et al. Photochromic and fluorescence switching properties of oxidized triangle terarylenes in solution and in amorphous solid states[J]. Journal of Materials Chemistry,2011,21(43):17425-17432.
    [250]Tan W, Li X, Zhang J, et al. A photochromic diarylethene dyad based on perylene diimide[J]. Dyes and Pigments,2011,89(3):260-265.
    [251]Li X, Xu Y, Wang B, et al. Toggle-switchable fluorescence of bisindolylmaleimide derivatives by reversible esterification/hydrolysis[J]. Tetrahedron Letters,2012,53(9):1098-1101.
    [252]Ouhenia-Ouadahi K, Metivier R, Maisonneuve S, et al. Fluorescence photoswitching and photoreversible two-way energy transfer in a photochrome-fluorophore dyad[J]. Photochemical & Photobiological Sciences,2012,11(11):1705-1714.
    [253]Pu S, Wang T, Liu G, et al. A new photoinduced fluorescent switch based on a photochromic diarylethene with a rhodamine fluorophore[J]. Dyes and Pigments,2012,94(3):416-422.
    [254]Price J T, Ragogna P J. A Versatile Dithienylethene-Functionalized Ph-Diazabutadiene (DAB) Ligand:From Photoswitchable Main-Group Molecules to Photochromic Polymers[J]. Chemistry-A European Journal,2013,19(26):8473-8477.
    [255]Matsuda K, Irie M. Diarylethene as a photoswitching unit[J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2004,5(2):169-182.
    [256]Raymo F M, Tomasulo M. Fluorescence Modulation with Photochromic Switches[J]. The Journal of Physical Chemistry A,2005,109(33):7343-7352.
    [257]Raymo F M, Tomasulo M. Electron and energy transfer modulation with photochromic switches[J]. Chemical Society Reviews,2005,34(4):327-336.
    [258]Cusido J, Deniz E, Raymo F M. Fluorescent Switches Based on Photochromic Compounds[J]. European Journal of Organic Chemistry,2009,2009(13):2031-2045.
    [259]Yun C, You J, Kim J, et al. Photochromic fluorescence switching from diarylethenes and its applications[J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2009, 10(3):111-129.
    [260]Fukaminato T. Single-molecule fluorescence photoswitching:Design and synthesis of photoswitchable fluorescent molecules[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2011,12(3):177-208.
    [261]Tuyoshi F. Single-molecule fluorescence photoswitching:Design and synthesis of photoswitchable fluorescent molecules[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2011,12(3):177-208.
    [262]Yamamoto S, Matsuda K, Irie M. Diastereoselective Cyclization in Chiral Diarylethene Crystals: Polymorphism and Selectivity[J]. Organic Letters,2003,5(10):1769-1772.
    [263]Yokoyama Y, Shiraishi H, Tani Y, et al. Diastereoselective Photochromism of a Bisbenzothienylethene Governed by Steric as Well as Electronic Interactions[J]. Journal of the American Chemical Society,2003,125(24):7194-7195.
    [264]de Jong J J, Lucas L N, Kellogg R M, et al. Reversible optical transcription of supramolecular chirality into molecular chirality[J]. Science,2004,304(5668):278-281.
    [265]Kose M, Shinoura M, Yokoyama Y, et al. Diastereoselective Photochromism of Bisbenzothienylethenes with an Oxycarbonyl-Related Functional Group on the Side Chain[J]. The Journal of Organic Chemistry,2004,69(24):8403-8406.
    [266]Yamaguchi T, Nomiyama K, Isayama M, et al. Reversible Diastereoselective Photocyclization of Diarylethenes in a Bulk Amorphous State[J]. Advanced Materials,2004,16(7): 643-645.
    [267]de Jong J J D, Tiemersma-Wegman T D, van Esch J H, et al. Dynamic Chiral Selection and Amplification Using Photoresponsive Organogelators[J]. Journal of the American Chemical Society,2005,127(40):13804-13805.
    [268]Hecht S. Optical Switching of Hierarchical Self-Assembly: Towards "Enlightened" Materials[J]. Small,2005,1(1):26-29.
    [269]Uchida K, Walko M, de Jong J J D, et al. Diastereoselective cyclization of a dithienylethene switch through single crystal confinement[J]. Organic & Biomolecular Chemistry,2006,4(6): 1002-1006.
    [270]Katsonis N, Minoia A, Kudernac T, et al. Locking of Helicity and Shape Complementarity in Diarylethene Dimers on Graphite[J]. Journal of the American Chemical Society,2007,130(2): 386-387.
    [271]Okuyama T, Tani Y, Miyake K, et al. Chiral Helicenoid Diarylethene with Large Change in Specific Optical Rotation by Photochromism1,2[J]. The Journal of Organic Chemistry,2007, 72(5):1634-1638.
    [272]Tani Y, Ubukata T, Yokoyama Y, et al. Chiral Helicenoid Diarylethene with Highly Diastereoselective Photocyclization1[J]. The Journal of Organic Chemistry,2007,72(5): 1639-1644.
    [273]Walko M, Feringa B L. The isolation and photochemistry of individual atropisomers of photochromic diarylethenes[J]. Chemical Communications,2007, (17):1745-1747.
    [274]de Jong J J D, van Rijn P, Tiemersma-Wegeman T D, et al. Dynamic chirality, chirality transfer and aggregation behaviour of dithienylethene switches[J]. Tetrahedron,2008,64(36): 8324-8335.
    [275]Hirose T, Irie M, Matsuda K. Temperature-Light Dual Control of Clouding Behavior of an Oligo(ethylene glycol)-Diarylethene Hybrid System[J]. Advanced Materials,2008,20(11): 2137-2141.
    [276]Uchida K, Sukata S-i, Matsuzawa Y, et al. Photoresponsive rolling and bending of thin crystals of chiral diarylethenes[J]. Chemical Communications,2008, (3):326-328.
    [277]Hirose T, Irie M, Matsuda K. The photochromic and self-assembling properties of diarylethenes having chiral amphiphilic chains at the reactive carbon atoms[J]. New Journal of Chemistry,2009,33(6):1332-1334.
    [278]Yokoyama Y, Shiozawa T, Tani Y, et al. A Unified Strategy for Exceptionally High Diastereoselectivity in the Photochemical Ring Closure of Chiral Diarylethenes[J]. Angewandte Chemie International Edition,2009,48(25):4521-4523.
    [279]Hayasaka H, Miyashita T, Tamura K, et al. Helically π-Stacked Conjugated Polymers Bearing Photoresponsive and Chiral Moieties in Side Chains:Reversible Photoisomerization-Enforced Switching Between Emission and Quenching of Circularly Polarized Fluorescence[J]. Advanced Functional Materials,2010,20(8):1243-1250.
    [280]Shiozawa T, Hossain M K, Ubukata T, et al. Ultimate diastereoselectivity in the ring closure of photochromic diarylethene possessing facial chirality[J]. Chemical Communications,2010, 46(26):4785-4787.
    [281]Li Y, Urbas A, Li Q. Synthesis and Characterization of Light-Driven Dithienylcyclopentene Switches with Axial Chirality[J]. The Journal of Organic Chemistry,2011,76(17):7148-7156.
    [282]Mammana A, Carroll G T, Areephong J, et al. A Chiroptical Photoswitchable DNA Complex[J]. The Journal of Physical Chemistry B,2011,115(40):11581-11587.
    [283]Yokoyama Y, Hasegawa T, Ubukata T. Highly diastereoselective photochromic ring closure of bisbenzothienylethenes possessing dual fluorinated stereocontrollers[J]. Dyes and Pigments, 2011,89(3):223-229.
    [284]Li Y, Li Q. Photochemically Reversible and Thermally Stable Axially Chiral Diarylethene Switches[J]. Organic Letters,2012.
    [285]Ogawa H, Takagi K, Ubukata T, et al. Bisarylindenols: fixation of conformation leads to exceptional properties of photochromism based on 6[small pi]-electrocyclization[J]. Chemical Communications,2012,48(97):11838-11840.
    [286]Fukagawa M, Kawamura I, Ubukata T, et al. Enantioselective Photochromism of Diarylethenes in Human Serum Albumin[J]. Chemistry-A European Journal,2013:n/a-n/a.
    [287]Wang Y, Li Q. Light-Driven Chiral Molecular Switches or Motors in Liquid Crystals[J]. Advanced Materials,2012,24(15):1926-1945.
    [288]Hirose T, Matsuda K. Photoswitching of chiral supramolecular environments and photoinduced lower critical solution temperature transitions in aqueous media following a supramolecular approach[J]. Organic & Biomolecular Chemistry,2013,11(6):873-880.
    [289]Matsuda K, Irie M. Photochromism of diarylethenes having nitronyl nitroxides[J]. Tetrahedron Letters,2000,41(15):2577-2580.
    [290]Matsuda K, Irie M. A Diarylethene with Two Nitronyl Nitroxides: Photoswitching of Intramolecular Magnetic Interaction[J]. Journal of the American Chemical Society,2000,122(30): 7195-7201.
    [291]Matsuda K, Irie M. Photoswitching of Intramolecular Magnetic Interaction Using a Photochromic Spin Coupler: An ESR Study[J]. Journal of the American Chemical Society,2000, 122(34):8309-8310.
    [292]Matsuda K, Irie M. Photoswitching of Intramolecular Magnetic Interaction: A Diarylethene Photochromic Spin Coupler[J]. Chemistry Letters,2000,29(1):16-17.
    [293]Benard S, Leaustic A, Riviere E, et al. Interplay between Magnetism and Photochromism in Spiropyran-MnPS3 Intercalation Compounds[J]. Chemistry of Materials,2001,13(10): 3709-3716.
    [294]Matsuda K, Irie M. Photoswitching of Intramolecular Magnetic Interaction Using a Diarylethene Dimer[J]. Journal of the American Chemical Society,2001,123(40):9896-9897.
    [295]Matsuda K, Matsuo M, Irie M. Photoswitching of Intramolecular Magnetic Interaction Using Diarylethene with Oligothiophene π-Conjugated Chain[J]. The Journal of Organic Chemistry, 2001,66(26):8799-8803.
    [296]Murguly E, Norsten T B, Branda N R. Nondestructive Data Processing Based on Chiroptical 1,2-Dithienylethene Photochromes[J]. Angewandte Chemie International Edition,2001,40(9): 1752-1755.
    [297]Matsuda K, Matsuo M, Mizoguti S, et al. Reversed Photoswitching of Intramolecular Magnetic Interaction Using A Photochromic Bis(2-thienyl)ethene Spin Coupler[J]. The Journal of Physical Chemistry B,2002,106(43):11218-11225.
    [298]Takayama K, Matsuda K, Irie M. Photoswitching of the Magnetic Interaction between a Copper(Ⅱ) Ion and a Nitroxide Radical by Using a Photochromic Spin Coupler[J]. Chemistry-A European Journal,2003,9(22):5605-5609.
    [299]Tanifuji N, Irie M, Matsuda K. New Photoswitching Unit for Magnetic Interaction: Diarylethene with 2,5-Bis(arylethynyl)-3-thienyl Group[J]. Journal of the American Chemical Society,2005,127(38):13344-13353.
    [300]Shimizu H, Okubo M, Nakamoto A, et al. Enhancement of the Curie Temperature by Isomerization of Diarylethene (DAE) for an Organic-Inorganic Hybrid System: Co4(OH)7(DAE)0.5·3H2O[J]. Inorganic Chemistry,2006,45(25):10240-10247.
    [301]Min Yeo K, Ji Gao C, Ahn K-H, et al. Superparamagnetic iron oxide nanoparticles with photoswitchable fluorescence[J]. Chemical Communications,2008, (38):4622-4624.
    [302]Morimoto M, Miyasaka H, Yamashita M, et al. Coordination Assemblies of [Mn4] Single-Molecule Magnets Linked by Photochromic Ligands: Photochemical Control of the Magnetic Properties[J]. Journal of the American Chemical Society,2009,131(28):9823-9835.
    [303]Garcia Y, Ksenofontov V, Lapouyade R, et al. Synthesis and magnetic properties of an iron 1,2-bisthienyl perfluorocyclopentene photochromic coordination compound[J]. Optical Materials, 2011,33(6):942-948.
    [304]Yokojima S, Kobayashi T, Shinoda K, et al. π-Conjugation of Two Nitronyl Nitroxides-Attached Diarylethenes[J]. The Journal of Physical Chemistry B,2011,115(18): 5685-5692.
    [305]Nakatsuji S i. Recent progress toward the exploitation of organic radical compounds with photo-responsive magnetic properties[J]. Chemical Society Reviews,2004,33(6):348-353.
    [306]Matsuda K, Irie M. Effective photoswitching of intramolecular magnetic interaction by diarylethene: Backgrounds and applications[J]. Polyhedron,2005,24(16-17):2477-2483.
    [307]S.M A. Heading to photoswitchable magnets[J]. Journal of Photochemistry and Photobiology A:Chemistry,2008,200(1):19-33.
    [308]Ratera I, Veciana J. Playing with organic radicals as building blocks for functional molecular materials[J]. Chemical Society Reviews,2012,41(1):303-349.
    [309]Wigglesworth T J, Myles A J, Branda N R. High-Content Photochromic Polymers Based on Dithienylethenes[J]. European Journal of Organic Chemistry,2005,2005(7):1233-1238.
    [310]Harvey C P, Tovar J D. Main-chain photochromic conducting polymers[J]. Polymer Chemistry,2011,2(12):2699-2706.
    [311]Luo Q, Cheng H, Tian H. Recent progress on photochromic diarylethene polymers[J]. Polymer Chemistry,2011,2(11):2435-2443.
    [312]Bertarelli C, Gallazzi M C, Stellacci F, et al. Ultrafast photoinduced ring-closure dynamics of a diarylethene polymer[J]. Chemical Physics Letters,2002,359(3-4):278-282.
    [313]Kawai T, Nakashima Y, Irie M. A Novel Photoresponsive π-Conjugated Polymer Based on Diarylethene and its Photoswitching Effect in Electrical Conductivity[J]. Advanced Materials, 2005,17(3):309-314.
    [314]Kawai T, Nakashima Y, Kunitake T, et al. Photon-mode modulation of fluorescence and electrical current with a photochromic conducting polymer[J]. Current Applied Physics,2005,5(2): 139-142.
    [315]Lim S-J, An B-K, Park S Y. Bistable Photoswitching in the Film of Fluorescent Photochromic Polymer: Enhanced Fluorescence Emission and Its High Contrast Switching[J]. Macromolecules,2005,38(15):6236-6239.
    [316]Feng Y, Yan Y, Wang S, et al. Photochromic thiophene oligomers based on bisthienylethene: syntheses, photochromic and two-photon properties[J]. Journal of Materials Chemistry,2006, 16(37):3685-3692.
    [317]Jeong Y-C, Park D G, Kim E, et al. Polymerization of a Photochromic Diarylethene by Friedel-Crafts Alkylation[J]. Macromolecules,2006,39(9):3106-3109.
    [318]Tian H, Tu H Y. Synthesis and Photochromic Properties of New Bisthienylethene Derivatives and a Copolymer[J]. Advanced Materials,2000,12(21):1597-1600.
    [319]Myles A J, Branda N R. Novel Photochromic Homopolymers Based on 1,2-Bis(3-thienyl)cyclopentenes[J]. Macromolecules,2003,36(2):298-303.
    [320]Wang S, Li X, Chen B, et al. Photochromic Copolymers Containing Bisthienylethene Units[J]. Macromolecular Chemistry and Physics,2004,205(11):1497-1507.
    [321]Li X, Tian H. High-Content Pendant Photochromic Copolymer with Dithienylethene/Fluorene 2:1 Mole Ratio[J]. Macromolecular Chemistry and Physics,2005, 206(17):1769-1777.
    [322]Wigglesworth T J, Branda N R. A Family of Multiaddressable, Multicolored Photoresponsive Copolymers Prepared by Ring-Opening Metathesis Polymerization [J]. Chemistry of Materials,2005,17(22):5473-5480.
    [323]Diaz S A, Menendez G O, Etchehon M H, et al. Photoswitchable Water-Soluble Quantum Dots: pcFRET Based on Amphiphilic Photochromic Polymer Coating[J]. ACS Nano,2011,5(4): 2795-2805.
    [324]Lim S-J, Carling C-J, Warford C C, et al. Multifunctional photo-and thermo-responsive copolymer nanoparticles[J]. Dyes and Pigments,2011,89(3):230-235.
    [325]Nishi H, Namari T, Kobatake S. Photochromic polymers bearing various diarylethene chromophores as the pendant: synthesis, optical properties, and multicolor photochromism[J]. Journal of Materials Chemistry,2011,21(43):17249-17258.
    [326]Nishi H, Asahi T, Kobatake S. Plasmonic enhancement of gold nanoparticles on photocycloreversion reaction of diarylethene derivatives depending on particle size, distance from the particle surface, and irradiation wavelength[J]. Physical Chemistry Chemical Physics,2012, 14(14):4898-4905.
    [327]Nakashima H, Irie M. Synthesis of silsesquioxanes having photochromic dithienylethene pendant groups[J]. Macromolecular Chemistry and Physics,1999,200(4):683-692.
    [328]Kaieda T, Kobatake S, Miyasaka H, et al. Efficient Photocyclization of Dithienylethene Dimer, Trimer, and Tetramer: Quantum Yield and Reaction Dynamics[J]. Journal of the American Chemical Society,2002,124(9):2015-2024.
    [329]Kobatake S, Irie M. Synthesis and photochromic reactivity of a diarylethene dimer linked by a phenyl group[J]. Tetrahedron,2003,59(42):8359-8364.
    [330]Kobatake S, Kuma S, Irie M. Single-crystalline photochromism of diarylethene dimers bridged by a spiro structure[J]. Journal of Physical Organic Chemistry,2007,20(11):960-967.
    [331]Arai R, Uemura S, Irie M, et al. Reversible Photoinduced Change in Molecular Ordering of Diarylethene Derivatives at a Solution-HOPG Interface[J]. Journal of the American Chemical Society,2008,130(29):9371-9379.
    [332]Yin J, Lin Y, Cao X, et al. Novel photochromic macrocycles composed of thiophene and ethylene building blocks: synthesis, structure, and photochromic property[J]. Tetrahedron Letters, 2008,49(10):1582-1585.
    [333]Aubert V, Ishow E, Ibersiene F, et al. A "reverse interrupter": the novel molecular design of a fluorescent photochromic DTE-based bipyridine[J]. New Journal of Chemistry,2009,33(6): 1320-1323.
    [334]Milder M T W, Herek J L, Areephong J, et al. Tunable Aggregation and Luminescence of Bis(diarylethene)sexithiophenes[J]. The Journal of Physical Chemistry A,2009,113(27): 7717-7724.
    [335]Shen L, Ma C, Pu S, et al. Synthesis and properties of novel photochromic poly(methyl methacrylate-co-diarylethene)s[J]. New Journal of Chemistry,2009,33(4):825-830.
    [336]Wong H-L, Ko C-C, Lam W H, et al. Design and Synthesis of a New Class of Photochromic Diarylethene-Containing Dithieno[3,2-b:2',3'-d]pyrroles and Their Switchable Luminescence Properties[J]. Chemistry-A European Journal,2009,15(39):10005-10009.
    [337]Areephong J, Logtenberg H, Browne W R, et al. Symmetric Six-Fold Arrays of Photo- and Electrochromic Dithienylethene Switches[J]. Organic Letters,2010,12(9):2132-2135.
    [338]Jacquemin D, Perpete E A, Maurel F o, et al. Doubly Closing or Not? Theoretical Analysis for Coupled Photochromes[J]. The Journal of Physical Chemistry C,2010,114(20):9489-9497.
    [339]Cipolloni M, Heynderickx A, Maurel F, et al. Multiswitchable Acidichromic and Photochromic Bisdiarylethene. An Experimental and Theoretical Study[J]. The Journal of Physical Chemistry C,2011,115(46):23096-23106.
    [340]Perrier A 1, Maurel F o, Jacquemin D. Interplay Between Electronic and Steric Effects in Multiphotochromic Diarylethenes[J]. The Journal of Physical Chemistry C,2011,115(18): 9193-9203.
    [341]Staykov A, Areephong J, R. Browne W, et al. Electrochemical and Photochemical Cyclization and Cycloreversion of Diarylethenes and Diarylethene-Capped Sexithiophene Wires[J]. ACS Nano,2011,5(2):1165-1178.
    [342]Frey J, Kodis G, Straight S D, et al. Photonic Modulation of Electron Transfer with Switchable Phase Inversion[J]. The Journal of Physical Chemistry A,2012.
    [343]Wang H, Xu W, Zhu D. Synthesis and photochromic reactivity of a new class of photochromic diarylethene dimer-containing dithieno[3,2-b:2'3'-d]thiophene[J]. Tetrahedron, 2012,68(42):8719-8723.
    [344]Perrier A, Maurel F, Jacquemin D. Single Molecule Multiphotochromism with Diarylethenes[J]. Accounts of Chemical Research,2012,45(8):1173-1182.
    [345]Yamaguchi T, Inagawa T, Nakazumi H, et al. Photoswitching of Helical Twisting Power of a Chiral Diarylethene Dopant':Pitch Change in a Chiral Nematic Liquid Crystal[J]. Chemistry of Materials,2000,12(4):869-871.
    [346]Maly K E, Wand M D, Lemieux R P. Bistable Ferroelectric Liquid Crystal Photoswitch Triggered by a Dithienylethene Dopant[J]. Journal of the American Chemical Society,2002, 124(27):7898-7899.
    [347]Chen S H, Chen H M P, Geng Y, et al. Novel Glassy Nematic Liquid Crystals for Non-destructive Rewritable Optical Memory and Photonic Switching[J]. Advanced Materials, 2003,15(13):1061-1065.
    [348]Frigoli M, Mehl Georg H. Room Temperature Nematic Photoswitchable Liquid Crystals-Molecular Modularisation of Functional Elements[J]. European Journal of Organic Chemistry, 2004,2004(3):636-642.
    [349]Maly K E, Zhang P, Wand M D, et al. Reversible photocyclization of achiral dithienylperfluorocyclopentene dopants in a ferroelectric liquid crystal: bistable SSFLC photoswitching[J]. Journal of Materials Chemistry,2004,14(18):2806-2812.
    [350]Rameshbabu K, Urbas A, Li Q. Synthesis and Characterization of Thermally Irreversible Photochromic Cholesteric Liquid Crystals[J]. The Journal of Physical Chemistry B,2011,115(13): 3409-3415.
    [351]van Leeuwen T, Pijper T C, Areephong J, et al. Reversible photochemical control of cholesteric liquid crystals with a diamine-based diarylethene chiroptical switch[J]. Journal of Materials Chemistry,2011,21(9):3142-3146.
    [352]Katsonis N, Kudernac T, Walko M, et al. Reversible Conductance Switching of Single Diarylethenes on a Gold Surface[J]. Advanced Materials,2006,18(11):1397-1400.
    [353]Ikeda M, Tanifuji N, Yamaguchi H, et al. Photoswitching of conductance of diarylethene-Au nanoparticle network[J]. Chemical Communications,2007, (13):1355-1357.
    [354]Kronemeijer A J, Akkerman H B, Kudernac T, et al. Reversible Conductance Switching in Molecular Devices[J]. Advanced Materials,2008,20(8):1467-1473.
    [355]Matsuda K, Yamaguchi H, Sakano T, et al. Conductance Photoswitching of Diarylethene-Gold Nanoparticle Network Induced by Photochromic Reaction[J]. The Journal of Physical Chemistry C,2008,112(43):17005-17010.
    [356]van der Molen S J, Liao J, Kudernac T, et al. Light-Controlled Conductance Switching of Ordered Metal-Molecule-Metal Devices[J]. Nano Letters,2008,9(1):76-80.
    [357]Kudernac T, Katsonis N, Browne W R, et al. Nano-electronic switches:Light-induced switching of the conductance of molecular systems[J]. Journal of Materials Chemistry,2009, 19(39):7168-7177.
    [358]Tsuji Y, Staykov A, Yoshizawa K. Orbital Control of the Conductance Photoswitching in Diarylethene[J]. The Journal of Physical Chemistry C,2009,113(52):21477-21483.
    [359]Odell A, Delin A, Johansson B, et al. Investigation of the Conducting Properties of a Photoswitching Dithienylethene Molecule[J]. ACS Nano,2010,4(5):2635-2642.
    [360]Castagna R, Garbugli M, Bianco A, et al. Photochromic Electret:A New Tool for Light Energy Harvesting[J]. The Journal of Physical Chemistry Letters,2011,3(1):51-57.
    [361]Tam E S, Parks J J, Shum W W, et al. Single-Molecule Conductance of Pyridine-Terminated Dithienylethene Switch Molecules[J]. ACS Nano,2011,5(6):5115-5123.
    [362]Uchida K, Yamanoi Y, Yonezawa T, et al. Reversible On/Off Conductance Switching of Single Diarylethene Immobilized on a Silicon Surface[J]. Journal of the American Chemical Society,2011,133(24):9239-9241.
    [363]Kim Y, Hellmuth T J, Sysoiev D, et al. Charge Transport Characteristics of Diarylethene Photoswitching Single-Molecule Junctions[J]. Nano Letters,2012,12(7):3736-3742.
    [364]Logtenberg H, van der Velde J H M, de Mendoza P, et al. Electrochemical Switching of Conductance with Diarylethene-Based Redox-Active Polymers[J]. The Journal of Physical Chemistry C,2012,116(45):24136-24142.
    [365]Hirose T, Matsuda K, Irie M. Self-Assembly of Photochromic Diarylethenes with Amphiphilic Side Chains: Reversible Thermal and Photochemical Control[J]. The Journal of Organic Chemistry,2006,71(20):7499-7508.
    [366]Xiao S, Zou Y, Wu J, et al. Hydrogen bonding assisted switchable fluorescence in self-assembled complexes containing diarylethene: controllable fluorescent emission in the solid state[J]. Journal of Materials Chemistry,2007,17(24):2483-2489.
    [367]Browne W R. Photochemistry of immobilized photoactive compounds[J]. Coordination Chemistry Reviews,2008,252(23-24):2470-2479.
    [368]Yagai S, Kitamura A. Recent advances in photoresponsive supramolecular self-assemblies[J]. Chemical Society Reviews,2008,37(8):1520-1529.
    [369]Hirose T, Irie M, Matsuda K. Self-Assembly of Photochromic Diarylethenes with Amphiphilic Side Chains: Core-Chain Ratio Dependence on Supramolecular Structures[J]. Chemistry-An Asian Journal,2009,4(1):58-66.
    [370]Cao X, Zhou J, Zou Y, et al. Fluorescence and Morphology Modulation in a Photochromic Diarylethene Self-Assembly System[J]. Langmuir,2011,27(8):5090-5097.
    [371]Snegir S V, Marchenko A A, Yu P, et al. STM Observation of Open- and Closed-Ring Forms of Functionalized Diarylethene Molecules Self-Assembled on a Au(111) Surface[J]. The Journal of Physical Chemistry Letters,2011,2(19):2433-2436.
    [372]Chen S, Chen L-J, Yang H-B, et al. Light-Triggered Reversible Supramolecular Transformations of Multi-Bisthienylethene Hexagons[J]. Journal of the American Chemical Society,2012,134(33):13596-13599.
    [373]Iwasawa N, Takahagi H, Ono K, et al. Guest-induced self-assembly of a macrocyclic boronic ester containing diarylethene units: enhancement of photoresponsivity[J]. Chemical Communications,2012,48(60):7477-7479.
    [374]Karthaus O, Ijiro K, Shimomura M, et al. Monomolecular Layers of Diarylethene-Containing Dendrimers[J]. Langmuir,1996,12(26):6714-6716.
    [375]Fujimoto Y, Ubukata T, Yokoyama Y. Dendrimer diarylethenes: the memory effect of conformation in polymer matrices[J]. Chemical Communications,2008, (44):5755-5757.
    [376]Jukes R T F, Adamo V, Hartl F, et al. Electronic energy transfer in a dinuclear Ru/Os complex containing a photoresponsive dithienylethene derivative as bridging ligand[J]. Coordination Chemistry Reviews,2005,249(13-14):1327-1335.
    [377]Kume S, Nishihara H. Photochrome-coupled metal complexes: molecular processing of photon stimuli[J]. Dalton Transactions,2008, (25):3260-3271.
    [378]Guerchais V, Ordronneau L, Le Bozec H. Recent developments in the field of metal complexes containing photochromic ligands: Modulation of linear and nonlinear optical properties[J]. Coordination Chemistry Reviews,2010,254(21-22):2533-2545.
    [379]Hasegawa Y, Nakagawa T, Kawai T. Recent progress of luminescent metal complexes with photochromic units[J]. Coordination Chemistry Reviews,2010,254(21-22):2643-2651.
    [380]Ko C-C, Wing-Wah Yam V. Transition metal complexes with photochromic ligands-photosensitization and photoswitchable properties[J]. Journal of Materials Chemistry, 2010,20(11):2063-2070.
    [381]Akita M. Photochromic Organometallics, A Stimuli-Responsive System: An Approach to Smart Chemical Systems(?)[J]. Organometallics,2011,30(1):43-51.
    [382]Motoyama K, Li H, Koike T, et al. Photo- and electro-chromic organometallics with dithienylethene (DTE) linker, L2CpM-DTE-MCpL2: Dually stimuli-responsive molecular switch[J]. Dalton Transactions,2011,40(40):10643-10657.
    [383]Hervault Y-M. Complexes organome'talliques de ruthenium riches en carbone:synthese et etudes de fils et interrupteurs moleculaires. University Rennes 1,2012.
    [384]Wenger O S. Photoswitchable mixed valence[J]. Chemical Society Reviews,2012,41(10): 3772-3779.
    [385]Belser P, De Cola L, Hart1 F, et al. Photochromic Switches Incorporated in Bridging Ligands:A New Tool to Modulate Energy-Transfer Processes[J]. Advanced Functional Materials, 2006,16(2):195-208.
    [386]Maille G M O, Draper S M. Metal-based molecular switches generated from dithienyl ethene (DTE)[J]. Spectroscopic Properties of Inorganic and Organometallic Compounds: Techniques, Materials and Applications,2012,43:166-215.
    [387]Fernandez-Acebes A, Lehn J-M. Optical Switching and Fluorescence Modulation Properties of Photochromic Metal Complexes Derived from Dithienylethene Ligands[J]. Chemistry-A European Journal,1999,5(11):3285-3292.
    [388]Jukes R T F, Adamo V, Hartl F, et al. Photochromic Dithienylethene Derivatives Containing Ru(II) or Os(II) Metal Units. Sensitized Photocyclization from a Triplet State[J]. Inorganic Chemistry,2004,43(9):2779-2792.
    [389]Samachetty H D, Branda N R. Photomodulation of Lewis basicity in a pyridine-functionalized 1,2-dithienylcyclopentene[J]. Chemical Communications,2005, (22): 2840-2842.
    [390]Belser P, Kuhni J, Adamo V. Synthesis of an Unsymmetrically Substituted, Dithienylethene-Containing 1,10-Phenanthroline Ligand and its Ruthenium(II) Complex[J]. Synthesis,2006,2006(12):1946-1948.
    [391]Kuhni J, Adamo V, Belser P. Photochromic dithienylethene-phenanthroline ligands and their corresponding Ru (II) complexes[J]. CHIMIA,2006,60(4):207-211.
    [392]Zhong Y-W, Vila N, Henderson J C, et al. Dinuclear Transition-Metal Terpyridine Complexes with a Dithienylcyclo-pentene Bridge Directed toward Molecular Electronic Applications[J]. Inorganic Chemistry,2007,46(25):10470-10472.
    [393]Uchida K, Inagaki A, Akita M. Preparation and Photochemical Behavior of Organoruthenium Derivatives of Photochromic Dithienylethene (DTE): DTE-(RRuLm)n (RRuLm= (η6-C6H5)Ru(η5-C5Me5), (η6-C6H5)RuC12(PPh3), (η5-C5Me4)Ru(CO)2; n= 1, 2)(?)[J]. Organometallics,2007,26(20):5030-5041.
    [394]Motoyama K, Koike T, Akita M. Remarkable switching behavior of bimodally stimuli-responsive photochromic dithienylethenes with redox-active organometallic attachments[J]. Chemical Communications,2008,0(44):5812-5814.
    [395]Indelli M T, Carli S, Ghirotti M, et al. Triplet Pathways in Diarylethene Photochromism: Photophysical and Computational Study of Dyads Containing Ruthenium(II) Polypyridine and 1,2-Bis(2-methylbenzothiophene-3-yl)maleimide Units[J]. Journal of the American Chemical Society,2008,130(23):7286-7299.
    [396]Liu Y, Lagrost C, Costuas K, et al. A multifunctional organometallic switch with carbon-rich ruthenium and diarylethene units[J]. Chemical Communications,2008, (46):6117-6119.
    [397]Dai F-R, Li B, Shi L-X, et al. Photochromic and electrochromic properties of oxo-centred triruthenium compounds with a dithienylethene bis(phosphine) ligand[J]. Dalton Transactions, 2009, (46):10244-10249.
    [398]Lin Y, Yuan J, Hu M, et al. Syntheses and Properties of Binuclear Ruthenium Vinyl Complexes with Dithienylethene Units as Multifunction Switches[J]. Organometallics,2009, 28(22):6402-6409.
    [399]Zhong Y-W, Vila N, Henderson J C, et al. Dithienylcyclopentenes-Containing Transition Metal Bisterpyridine Complexes Directed toward Molecular Electronic Applications[J]. Inorganic Chemistry,2009,48(3):991-999.
    [400]Zhong Y-W, Vila N, Henderson J C, et al. Transition-Metal Tris-Bipyridines Containing Three Dithienylcyclopentenes:Synthesis, Photochromic, and Electrochromic Properties[J]. Inorganic Chemistry,2009,48(15):7080-7085.
    [401]Duan Q Yam V W-W. Syntheses and Photophysical Properties of N-Pyridylimidazol-2-ylidene Tetracyanoruthenates(II) and Photochromic Studies of Their Dithienylethene-Containing Derivatives[J]. Chemistry-A European Journal,2010,16(42): 12642-12649.
    [402]Tanaka Y, Ishisaka T, Inagaki A, et al. Photochromic Organometallics with a Dithienylethene (DTE) Bridge, [Y C C DTE C C Y] (Y={MCp*(dppe)}): Photoswitchable Molecular Wire (M=Fe) versus Dual Photo- and Electrochromism (M=Ru)[J]. Chemistry-A European Journal,2010,16(16):4762-4776.
    [403]Wehmeier F, Mattay J. A perfluorocyclopentene based diarylethene bearing two terpyridine moieties-synthesis, photochemical properties and influence of transition metal ions[J]. Beilstein Journal of Organic Chemistry,2010,6(1):53.
    [404]Duan G, Wong W-T, Yam V W-W. Synthesis and photochromic studies of [small eta]6-mesitylene ruthenium(ii) complexes bearing N-heterocyclic carbene ligands with the dithienylethene moiety[J]. New Journal of Chemistry,2011,35(10):2267-2278.
    [405]He B, Wenger O S. Ruthenium-Phenothiazine Electron Transfer Dyad with a Photoswitchable Dithienylethene Bridge: Flash-Quench Studies with Methylviologen[J]. Inorganic Chemistry,2012,51(7):4335-4342.
    [406]Hervault Y-M, Ndiaye C M, Norel L, et al. Controlling the Stepwise Closing of Identical DTE Photochromic Units with Electrochemical and Optical Stimuli[J]. Organic Letters,2012, 14(17):4454-4457.
    [407]Ordronneau L, Nitadori H, Ledoux I, et al. Photochromic Metal Complexes:Photoregulation of both the Nonlinear Optical and Luminescent Properties[J]. Inorganic Chemistry,2012,51(10): 5627-5636.
    [408]Li B, Wang J-Y, Wen H-M, et al. Redox-Modulated Stepwise Photochromism in a Ruthenium Complex with Dual Dithienylethene-Acetylides[J]. Journal of the American Chemical Society,2012,134(38):16059-16067.
    [409]Wen H-M, Li B, Wang J-Y, et al. Multistate Photochromism in a Ruthenium Complex with Dithienylethene-Acetylide[J]. Organometallics,2013,32(6):1759-1765.
    [410]Jung I, Choi H, Kim E, et al. Synthesis and photochromic reactivity of macromolecules incorporating four dithienylethene units[J]. Tetrahedron,2005,61(52):12256-12263.
    [411]Lee J K-W, Ko C-C, Wong K M-C, et al. A Photochromic Platinum(II) Bis(alkynyl) Complex Containing a Versatile 5,6-Dithienyl-1,10-phenanthroline[J]. Organometallics,2006, 26(1):12-15.
    [412]Roberts M N, Nagle J K, Finden J G, et al. Linker-Dependent Metal-Sensitized Photoswitching of Dithienylethenes[J]. Inorganic Chemistry,2009,48(1):19-21.
    [413]Roberts M N, Carling C-J, Nagle J K, et al. Successful Bifunctional Photoswitching and Electronic Communication of Two Platinum(II) Acetylide Bridged Dithienylethenes[J]. Journal of the American Chemical Society,2009,131(46):16644-16645.
    [414]Wong H-L, Tao C-H, Zhu N, et al. Photochromic Alkynes as Versatile Building Blocks for Metal Alkynyl Systems:Design, Synthesis, and Photochromic Studies of Diarylethene-Containing Platinum(II) Phosphine Alkynyl Complexes[J]. Inorganic Chemistry,2011,50(2):471-481.
    [415]Chan J C-H, Lam W H, Wong H-L, et al. Diarylethene-Containing Cyclometalated Platinum(II) Complexes:Tunable Photochromism via Metal Coordination and Rational Ligand Design[J]. Journal of the American Chemical Society,2011,133(32):12690-12705.
    [416]Roberts M N, Nagle J K, Majewski M B, et al. Charge Transfer and Intraligand Excited State Interactions in Platinum-Sensitized Dithienylethenes[J]. Inorganic Chemistry,2011,50(11): 4956-4966.
    [417]Ko C-C, Kwok W-M, Yam V W-W, et al. Triplet MLCT Photosensitization of the Ring-Closing Reaction of Diarylethenes by Design and Synthesis of a Photochromic Rhenium(I) Complex of a Diarylethene-Containing 1,10-Phenanthroline Ligand[J]. Chemistry-A European Journal,2006,12(22):5840-5848.
    [418]Lee P H-M, Ko C-C, Zhu N, et al. Metal Coordination-Assisted Near-Infrared Photochromic Behavior: A Large Perturbation on Absorption Wavelength Properties of N,N-Donor Ligands Containing Diarylethene Derivatives by Coordination to the Rhenium(Ⅰ) Metal Center[J]. Journal of the American Chemical Society,2007,129(19):6058-6059.
    [419]Luo Q, Cheng S, Tian H. Synthesis and photochromism of a new binuclear porphyrazinato magnesium(Ⅱ)[J]. Tetrahedron Letters,2004,45(41):1131-1140.
    [420]Luo Q, Tian H, Chen B, et al. Effective non-destructive readout of photochromic bisthienylethene-phthalocyanine hybrid[J]. Dyes and Pigments,2007,73(1):118-120.
    [421]Qin B, Yao R, Zhao X, et al. Enhanced photochromism of 1,2-dithienylcyclopentene complexes with metal ion[J]. Organic & Biomolecular Chemistry,2003,1(12):2187-2191.
    [422]Tian H, Qin B, Yao R, et al. A Single Photochromic Molecular Switch with Four Optical Outputs Probing Four Inputs[J]. Advanced Materials,2003,15(24):2104-2107.
    [423]Matsuda K, Takayama K, Irie M. Photochromism of Metal Complexes Composed of Diarylethene Ligands and Zn(Ⅱ), Mn(Ⅱ), and Cu(Ⅱ) Hexafluoroacetylacetonates[J]. Inorganic Chemistry,2004,43(2):482-489.
    [424]Qin B, Yao R, Tian H. One-dimensional structure of a photochromic coordination polymer composed of 1,2-bis[2-methyl-5-(4-pyridyl)-3-thienyl]cyclopentene and Zn(Ⅱ) chloride[J]. Inorganica ChimicaActa,2004,357(11):3382-3384.
    [425]Han J, Maekawa M, Suenaga Y, et al. Photochromism of Novel Metal Coordination Polymers with 1,2-Bis(2'-methyl-5'-(carboxylic acid)-3'-thienyl)perfluorocyclopentene in the Crystalline Phase[J]. Inorganic Chemistry,2007,46(8):3313-3321.
    [426]Hu H, Zhu M, Meng X, et al. Optical switching and fluorescence modulation properties of photochromic dithienylethene derivatives[J]. Journal of Photochemistry and Photobiology A: Chemistry,2007,189(2-3):307-313.
    [427]Ngan T-W, Ko C-C, Zhu N, et al. Syntheses, Luminescence Switching, and Electrochemical Studies of Photochromic Dithienyl-1,10-phenanthroline Zinc(Ⅱ) Bis(thiolate) Complexes[J]. Inorganic Chemistry,2007,46(4):1144-1152.
    [428]Aubert V, Guerchais V, Ishow E, et al. Efficient Photoswitching of the Nonlinear Optical Properties of Dipolar Photochromic Zinc(Ⅱ) Complexes[J]. Angewandte Chemie International Edition,2008,47(3):577-580.
    [429]Zhao H, Al-Atar U, Pace T C S, et al. High-contrast fluorescence switching using a photoresponsive dithienylethene coordination compound[J]. Journal of Photochemistry and Photobiology A: Chemistry,2008,200(1):74-82.
    [430]Piao X, Zou Y, Wu J, et al. Multiresponsive Switchable Diarylethene and Its Application in Bioimaging[J]. Organic Letters,2009,11(17):3818-3821.
    [431]Erno Z, Yildiz I, Gorodetsky B, et al. Optical control of quantum dot luminescence via photoisomerization of a surface-coordinated, cationic dithienylethene[J]. Photochemical & Photobiological Sciences,2010,9(2):249-253.
    [432]Remy S, Shah S M, Martini C, et al. Functionalization of zinc oxide nanorods with diarylethene-based photochromic compounds[J]. Dyes and Pigments,2011,89(3):266-270.
    [433]Yi J, Chen Z, Xiang J, et al. Photocontrollable J-Aggregation of a Diarylethene-Phthalocyanine Hybrid and Its Aggregation-Stabilized Photochromic Behavior[J]. Langmuir,2011,27(13):8061-8066.
    [434]Zheng C, Wang T, Zeng H. Synthesis and Photochromic Properties of Diarylethene-Based Porphyrin Derivative and Its Metal Complexes[J]. Chinese Journal of Organic Chemistry,2012, 32(4):719.
    [435]Munakata M, Wu L P, Kuroda-Sowa T, et al. Reversible Photochromism of a Crystalline Dithienylethene Copper(Ⅰ) Polymer[J]. Journal of the American Chemical Society,1996,118(13): 3305-3306.
    [436]Giraud M, Leaustic A, Guillot R, et al. Dithiazolylethene-based molecular switches for nonlinear optical properties and fluorescence: synthesis, crystal structure and ligating properties[J]. Journal of Materials Chemistry,2007,17(41):4414-4425.
    [437]Munakata M, Han J, Maekawa M, et al. A MLCT-switched photochromic copper(II) coordination polymer with 1,2-bis(2'-methyl-5'-(4 "-pyridyl)-3'-thienyl)perfluorocyclopentene in crystalline phase[J]. Inorganica Chimica Acta,2007,360(8): 2792-2796.
    [438]Giraud M, Leaustic A, Guillot R, et al. Photo-controlled release and uptake of Cu(hfac)2 in solution for a binuclear copper complex with a photochromic dithiazolylethene bridging ligand[J]. New Journal of Chemistry,2009,33(6):1380-1385.
    [439]Liu H-h, Chen Y. A Bifunctional Metal Probe with Independent Signal Outputs and Regulable Detection Limits[J]. European Journal of Organic Chemistry,2009,2009(30): 5261-5265.
    [440]Cui S, Pu S, Liu W, et al. Synthesis and photochromic properties of a multiple responsive diarylethene and its selective binding affinity for copper(II) ion[J]. Dyes and Pigments,2011, 91(3):435-441.
    [441]Li Z, Lin Y, Xia J-L, et al. Synthesis of novel diarylethene compounds containing two imidazole bridge units and tuning of their optical properties[J]. Dyes and Pigments,2011,90(3): 245-252.
    [442]Liu H-H, Chen Y. Modulation of color change and photocyclization of diarylethene with metal complex[J]. Journal of Physical Organic Chemistry,2011,24(6):517-521.
    [443]Uehara S, Hiromoto Y, Minkovska S, et al. Photochromic behavior of a bisthienylethene bearing Cu(I)-1,10-phenanthroline complexes[J]. Dyes and Pigments,2012,92(2):861-867.
    [444]Yin J, Yu G-A, Tu H, et al. Novel photoswitching dithienylethenes with ferrocene units[J]. Applied Organometallic Chemistry,2006,20(12):869-873.
    [445]Li S, Li Z, Huang S, et al. Synthesis, Photochromism, and Effects of Metal Ions on Fluorescence of Dithienylethenes Containing Imidazo[2,1-a]isoquinoline[J]. Synthetic Communications,2012,43(11):1530-1537.
    [446]Wen H-M, Wang J-Y, Hu M-Q, et al. Photoswitchable electrochemical behaviour of a [FeFe] hydrogenase model with a dithienylethene derivative[J]. Dalton Transactions,2012,41(38): 11813-11819.
    [447]Zhang C, Chen Z, Jiang C, et al. Imidazole-Based Dithienylethenes: Synthesis, Photochromism, and Effects of Metal Ions[J]. Molecular Crystals and Liquid Crystals,2013, 575(1):1-7.
    [448]Konaka H, Wu L P, Munakata M, et al. Syntheses and Structures of Photochromic Silver(I) Coordination Polymers with cis-1,2-Dicyano-1,2-bis(2,4,5-trimethyl-3-thienyl)ethene[J]. Inorganic Chemistry,2003,42(6):1928-1934.
    [449]Sud D, McDonald R, Branda N R. Synthesis and Coordination Chemistry of a Photoswitchable Bis(phosphine) Ligand[J]. Inorganic Chemistry,2005,44(17):5960-5962.
    [450]Munakata M, Han J, Nabei A, et al. Reversible photochromism of novel silver(Ⅰ) coordination complexes with 1,2-bis(2'-methyl-5'-(2 "-pyridyl)-3'-thienyl)perfluorocyclopentene in crystalline phase[J]. Inorganica Chimica Acta,2006,359(13): 4281-4288.
    [451]Yamaguchi H, Matsuda K, Irie M. Excited-State Behavior of a Fluorescent and Photochromic Diarylethene on Silver Nanoparticles[J]. The Journal of Physical Chemistry C,2007, 111(10):3853-3862.
    [452]Kim H J, Jang J H, Choi H, et al. Photoregulated Fluorescence Switching in Axially Coordinated Tin(IV) Porphyrinic Dithienylethene[J]. Inorganic Chemistry,2008,47(7): 2411-2415.
    [453]Tan W, Zhang Q, Zhang J, et al. Near-Infrared Photochromic Diarylethene Iridium (III) Complex[J]. Organic Letters,2008,11(1):161-164.
    [454]Staykov A, Yoshizawa K. Photochemical Reversibility of Ring-Closing and Ring-Opening Reactions in Diarylperfluorocyclopentenes[J]. The Journal of Physical Chemistry C,2009,113(9): 3826-3834.
    [455]Tan W, Zhang Q, Zhang J, et al. Near-Infrared Photochromic Diarylethene Iridium (III) Complex[J], Organic Letters,2009,11(1):161-164.
    [456]Yam V W-W, Lee J K-W, Ko C-C, et al. Photochromic Diarylethene-Containing Ionic Liquids and N-Heterocyclic Carbenes[J]. Journal of the American Chemical Society,2009,131(3): 912-913.
    [457]Li X, Zhang Q, Tu Y, et al. Modulation of iridium(iii) phosphorescence via photochromic ligands: a density functional theory study[J]. Physical Chemistry Chemical Physics,2010,12(41): 13730-13736.
    [458]Lin Y, Yin J, Yuan J, et al. Synthesis, Characterization, and Properties of Binuclear Gold(I) Phosphine Alkynyl Complexes[J]. Organometallics,2010,29(12):2808-2814.
    [459]Song H, Reed M A, Lee T. Single Molecule Electronic Devices[J]. Advanced Materials, 2011,23(14):1583-1608.
    [460]Li B, Wu Y-H, Wen H-M, et al. Gold(I)-Coordination Triggered Multistep and Multiple Photochromic Reactions in Multi-Dithienylethene (DTE) Systems[J]. Inorganic Chemistry,2012, 51(3):1933-1942.
    [461]Monaco S, Semeraro M, Tan W, et al. Multifunctional switching of a photo- and electro-chemiluminescent iridium-dithienylethene complex[J]. Chemical Communications,2012, 48(69):8652-8654.
    [462]Chen S, Guo Z, Zhu S, et al. A Multiaddressable Photochromic Bisthienylethene with Sequence-Dependent Responses: Construction of an INHIBIT Logic Gate and a Keypad Lock[J]. ACS Applied Materials & Interfaces,2013.
    [463]Nakagawa T, Atsumi K, Nakashima T, et al. Reversible Luminescence Modulation in Photochromic Europium(III) Complex Having Triangle Terthiazole Ligands[J]. Chemistry Letters, 2007,36(3):372-373.
    [464]Nakagawa T, Hasegawa Y, Kawai T. Photoresponsive Europium(III) Complex Based on Photochromic Reaction[J]. The Journal of Physical Chemistry A,2008,112(23):5096-5103.
    [465]Zhou Z, Hu H, Yang H, et al. Up-conversion luminescent switch based on photochromic diarylethene and rare-earth nanophosphors[J]. Chemical Communications,2008, (39):4786-4788.
    [466]Boyer J-C, Carling C-J, Gates B D, et al. Two-Way Photoswitching Using One Type of Near-Infrared Light, Upconverting Nanoparticles, and Changing Only the Light Intensity[J]. Journal of the American Chemical Society,2010,132(44):15766-15772.
    [467]Shiga T, Miyasaka H, Yamashita M, et al. Copper(ii)-terbium(iii) Single-Molecule Magnets linked by photochromic ligands[J]. Dalton Transactions,2011,40(10):2275-2282.
    [468]Cheng H-B, Zhang H-Y, Liu Y. Dual-Stimulus Luminescent Lanthanide Molecular Switch Based on an Unsymmetrical Diarylperfluorocyclopentene[J]. Journal of the American Chemical Society,2013,135(28):10190-10193.
    [469]Xie N, Chen Y. Two addressable fluorescent switches based on a photochromic diarylethene[J]. Journal of Materials Chemistry,2006,16(10):982-985.
    [470]Duan G, Yam V W-W. Syntheses and Photophysical Properties of N-Pyridylimidazol-2-ylidene Tetracyanoruthenates(II) and Photochromic Studies of Their Dithienylethene-Containing Derivatives[J]. Chemistry - A European Journal,2010,16(42): 12642-12649.
    [471]Duan G, Zhu N, Yam V W-W. Syntheses and Photochromic Studies of Dithienylethene-Containing Imidazolium Derivatives and Their Reactivity towards Nucleophiles[J]. Chemistry-A European Journal,2010,16(44):13199-13209.
    [472]Nakashima T, Goto M, Kawai S, et al. Photomodulation of Ionic Interaction and Reactivity: Reversible Photoconversion between Imidazolium and Imidazolinium[J]. Journal of the American Chemical Society,2008,130(44):14570-14575.
    [473]Liu H-h, Chen Y. The Photochromism and Fluorescence of Diarylethenes with a Imidazole Bridge Unit: A Strategy for the Design of Turn-on Fluorescent Diarylethene System[J]. The Journal of Physical Chemistry A,2009,113(19):5550-5553.
    [474]Liu H-h, Chen Y. Selective photochromism and solvatochromism of a diarylethene with different bridge units[J]. Journal of Materials Chemistry,2011,21(4):1246-1249.
    [475]Liu H-h, Chen Y. Selective photoconversion of photochromic diarylethenes and their properties[J]. New Journal of Chemistry,2012,36(11):2223-2227.
    [476]Liu H-H, Chen Y. Synthesis and photophysical properties of thiolactone derivatives[J]. Tetrahedron,2013,69(7):1872-1876.
    [477]Neilson B M, Lynch V M, Bielawski C W. Photoswitchable N-Heterocyclic Carbenes: Using Light to Modulate Electron-Donating Properties[J]. Angewandte Chemie,2011,123(44): 10506-10510.
    [478]Li Z, Xia J, Liang J, et al. Synthesis of diarylethene derivatives containing various heterocycles and tuning of light-emitting properties in a turn-on fluorescent diarylethene system[J]. Dyes and Pigments,2011,90(3):290-296.
    [479]Huang S, Li Z, Li S, et al. Imidazole-based dithienylethenes as a selective chemosensors for iron(III) ions[J]. Dyes and Pigments,2012,92(3):961-966.
    [480]El Yahyaoui A, Felix G, Heynderickx A, et al. Convenient synthesis of photochromic symmetrical or unsymmetrical bis(heteroaryl)maleimides via the Suzuki-Miyaura cross-coupling reaction[J]. Tetrahedron,2007,63(38):9482-9487.
    [481]Lee Y-B, Shim H-K, Ko S-W. Silyl-Substituted Poly(thienylenevinylene) via Heteroaromatic Dehydrohalogenation Polymerization[J]. Macromolecular Rapid Communications,2003,24(8): 522-526.
    [482]Chiswell B, Lions F, Morris B S. Bidentate Chelate Compounds. III. Metal Complexes of Some Pyridyl-Imidazole Derivatives[J]. Inorganic Chemistry,1964,3(1):110-114.
    [483]He L, Qiao J, Duan L, et al. Toward Highly Efficient Solid-State White Light-Emitting Electrochemical Cells:Blue-Green to Red Emitting Cationic Iridium Complexes with Imidazole-Type Ancillary Ligands[J]. Advanced Functional Materials,2009,19(18):2950-2960.
    [484]Baldwin J J, Lumma P K, Novello F C, et al.2-Pyridylimidazoles as inhibitors of xanthine oxidase[J]. Journal of Medicinal Chemistry,1977,20(9):1189-1193.
    [485]Coulson D R, Satek L C, Grim S O, Tetrakis(Triphenylphosphine)Palladium(0). In Inorganic Syntheses, John Wiley & Sons, Inc.:2007; pp 107-109.
    [486]Miyaura N, Suzuki A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds[J]. Chemical Reviews,1995,95(7):2457-2483.
    [487]Suzuki A. Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles,1995-1998[J]. Journal of Organometallic Chemistry,1999,576(1-2): 147-168.
    [488]Grabowski Z R, Rotkiewicz K, Rettig W. Structural Changes Accompanying Intramolecular Electron Transfer: Focus on Twisted Intramolecular Charge-Transfer States and Structures[J]. Chemical Reviews,2003,103(10):3899-4032.
    [489]Kido J, Okamoto Y. Organo Lanthanide Metal Complexes for Electroluminescent Materials[J]. Chemical Reviews,2002,102(6):2357-2368.
    [490]Vigato P A, Peruzzo V, Tamburini S. The evolution of β-diketone or β-diketophenol ligands and related complexes[J]. Coordination Chemistry Reviews,2009,253(7-8):1099-1201.
    [491]Browne W R, de Jong J J D, Kudernac T, et al. Oxidative Electrochemical Switching in Dithienylcyclopentenes, Part 2:Effect of Substitution and Asymmetry on the Efficiency and Direction of Molecular Switching and Redox Stability[J]. Chemistry-A European Journal,2005, 11(21):6430-6441.
    [492]Chen Y, Zeng D X, Xie N, et al. Study on Photochromism of Diarylethenes with a 2,5-Dihydropyrrole Bridging Unit: A Convenient Preparation of 3,4-Diarylpyrroles from 3,4-Diaryl-2,5-dihydropyrroles[J]. The Journal of Organic Chemistry,2005,70(13):5001-5005.
    [493]Guirado G, Coudret C, Hliwa M, et al. Understanding Electrochromic Processes Initiated by Dithienylcyclopentene Cation-Radicals[J]. The Journal of Physical Chemistry B,2005,109(37): 17445-17459.
    [494]Areephong J, Browne W R, Katsonis N, et al. Photo- and electro-chromism of diarylethene modified ITO electrodes-towards molecular based read-write-erase information storage[J]. Chemical Communications,2006, (37):3930-3932.
    [495]Wesenhagen P, Areephong J, Fernandez Landaluce T, et al. Photochromism and Electrochemistry of a Dithienylcyclopentene Electroactive Polymer[J]. Langmuir,2008,24(12): 6334-6342.
    [496]Sevez G, Gan J, Delbaere S, et al. Photochromic performance of a dithienylethene-indolinooxazolidine hybrid[J]. Photochemical & Photobiological Sciences,2010, 9(2):131-135.
    [497]Sevez G, Pozzo J-L. Toward multi-addressable molecular systems: Efficient synthesis and photochromic performance of unsymmetrical bisthienylethenes[J]. Dyes and Pigments,2011, 89(3):246-253.
    [498]Zhang H, Kou X-X, Zhang Q, et al. Altering intercomponent interactions in a photochromic multi-state [2]rotaxane[J]. Organic & Biomolecular Chemistry,2011,9(11):4051-4056.
    [499]Zou Q, Jin J, Xu B, et al. New photochromic chemosensors for Hg2+ and F-[J]. Tetrahedron, 2011,67(5):915-921.
    [500]Chen Y-Z, Wang D-H, Chen B, et al. Visible Light-Induced Synthesis of 3,4-Diarylthiophenes from 3,4-Diaryl-2,5-dihydrothiophenes[J]. The Journal of Organic Chemistry,2012,77(16):6773-6777.
    [501]G6stl R, Kobin B, Grubert L, et al. Sterically Crowding the Bridge of Dithienylcyclopentenes for Enhanced Photoswitching Performance[J]. Chemistry-A European Journal,2012,18(45):14282-14285.
    [502]Jin J, Zhang J, Zou L, et al. Near-infrared photochromic behavior in a donor-acceptor type diarylethene modulated by the cyanide anion[J]. Analyst,2013,138(6):1641-1644.
    [503]Li C, Gong W-L, Hu Z, et al. Photoswitchable aggregation-induced emission of a dithienylethene-tetraphenylethene conjugate for optical memory and super-resolution imaging[J]. RSC Advances,2013,3(23):8967-8972.
    [504]Shirinian V Z, Lonshakov D, Lvov A, et al. Diarylethene type fluorescent photochromes: synthesis and properties[J]. Russian Chemical Reviews,2013,82(6):511-537.
    [505]Koziar J C, Cowan D O. Photochemical heavy-atom effects[J]. Accounts of Chemical Research,1978,11(9):334-341.
    [506]Yokoyama Y, Goto T, Inoue T, et al. Fulgides as efficient photochromic compounds. Role of the substituent on furylalkylidene moiety of furylfulgides in the photoreaction[J]. Chemistry Letters,1988,63(6):1049-1052.
    [507]Yokoyama Y, Kurita Y. Synthesis and Photoreaction of Photochromic Fulgides[J]. Journal of Synthetic Organic Chemistry, Japan,1991,49(5):364-372.
    [508]Eaton D F. Reference materials for fluorescence measurement[J]. Pure Appl. Chem,1988, 60(7):1107-1114.
    [509]Crosby G A, Demas J N. Measurement of photoluminescence quantum yields. Review[J]. The Journal of Physical Chemistry,1971,75(8):991-1024.
    [510]Kobatake S, Yamada M, Yamada T, et al. Photochromism of 1,2-Bis(2-methyl-6-nitro-1-benzothiophen-3-yl)perfluorocyclopentene in a Single-Crystalline Phase: Dichroism of the Closed-Ring Form Isomer[J]. Journal of the American Chemical Society,1999,121(37):8450-8456.
    [511]Takeshita M, Irie M. Photoreversible circular dichroism change of 1,2-bis(1-benzothiophen-3-yl)perfluorocyclopentene modified cyclodextrin[J]. Tetrahedron Letters, 1999,40(7):1345-1348.
    [512]Uchida K, Guillaumont D, Tsuchida E, et al. Theoretical study of an intermediate, a factor determining the quantum yield in photochromism of diarylethene derivatives[J]. Journal of Molecular Structure:THEOCHEM,2002,579(1-3):115-120.
    [513]Kawai T, Kim M-S, Sasaki T, et al. Fluorescence switching of photochromic diarylethenes[J]. Optical Materials,2003,21(1-3):275-278.
    [514]Morimitsu K, Kobatake S, Irie M. Large geometrical structure changes of photochromic diarylethenes upon photoirradiation[J]. Tetrahedron Letters,2004,45(6):1155-1158.
    [515]Yamaguchi T, Fujita Y, Nakazumi H, et al. Photochromic properties of diarylethene derivatives having chryso[b]thiophene rings[J]. Tetrahedron,2004,60(44):9863-9869.
    [516]Yarovenko V, Es'kov A, Semenov S, et al. Photochromic 1,2-dihetarylethenes with perfluorocyclopentene bridge: Synthesis and spectral and kinetic study[J]. Russian Chemical Bulletin,2005,54(12):2790-2793.
    [517]Jeong Y-C, Park D G, Kim E, et al. Fatigue-resistant photochromic dithienylethenes by controlling the oxidation state[J]. Chemical Communications,2006, (17):1881-1883.
    [518]Kim E, Kim M, Kim K. Diarylethenes with intramolecular donor-acceptor structures for photo-induced electrochemical change[J]. Tetrahedron,2006,62(29):6814-6821.
    [519]Lee J, Kwon T, Kim E. Electropolymerization of an EDOT-modified diarylethene[J]. Tetrahedron Letters,2007,48(2):249-254.
    [520]Bogacheva A M, Yarovenko V N, Levchenko K S, et al. A convenient method for the preparation of mono-and bis-substituted photochromic bis(benzothienyl)perfluorocyclopentenes via regioselective Friedel-Crafts acylation[J]. Tetrahedron Letters,2012,53(44):5948-5951.
    [521]Vazquez A, Nudelman N S. Photokinetics of two novel photochromic diarylethenes derived from benzothiophene[J]. International Journal of Chemical Kinetics,2012,44(11):736-744.
    [522]Vazquez A J, Nudelman N S. Ring opening/closure reactions of novel diheteroarylethenes derivatives. Solvent effects[J]. Journal of Physical Organic Chemistry,2012,25(11):925-932.
    [523]Berberich M, Wurthner F. Tuning the Redox Properties of Photochromic Diarylethenes by Introducing Electron-Withdrawing Substituents[J]. Asian Journal of Organic Chemistry,2013, 2(3):250-256.
    [524]Jeong Y-C, Han J P, Kim Y, et al. Characterization and photophysical properties of sulfur-oxidized diarylethenes[J]. Tetrahedron,2007,63(15):3173-3182.
    [525]Jeong Y-C, Park D G, Lee I S, et al. Highly fluorescent photochromic diarylethene with an excellent fatigue property[J]. Journal of Materials Chemistry,2009,19(1):97-103.
    [526]Reichardt C, Welton T. Solvents and Solvent Effects in Organic Chemistry 4rd Edition[M]. Germany: WILEY-VCH Verlag GmbH & Co. KGaA,Weinheim.2011.
    [527]Gutmann V. Solvent effects on the reactivities of organometallic compounds[J]. Coordination Chemistry Reviews,1976,18(2):225-255.
    [528]Jensen W B. The Lewis acid-base definitions:a status report[J]. Chemical Reviews,1978, 78(1):1-22.
    [529]Lippert E. Z. Naturforsch.,1955,10a:541-545.
    [530]Mataga N, Kaifu Y, Koizumi M. Solvent Effects upon Fluorescence Spectra and the Dipolemoments of Excited Molecules[J]. Bulletin of the Chemical Society of Japan,1956,29(4): 465-470.
    [531]Berkovic G, Krongauz V, Weiss V. Spiropyrans and Spirooxazines for Memories and Switches[J]. Chemical Reviews,2000,100(5):1741-1754.
    [532]Yokoyama Y. Fulgides for Memories and Switches[J]. Chemical Reviews,2000,100(5): 1717-1740.
    [533]Feringa B L, Browne W R. Molecular Switches[M]. John Wiley & Sons.2011.
    [534]Kobatake S, Terakawa Y. Acid-induced photochromic system switching of diarylethene derivatives between P- and T-types[J]. Chemical Communications,2007,0(17):1698-1700.
    [535]Shoji H, Kitagawa D, Kobatake S. Systematic study on the thermal cycloreversion reactivity of diarylethenes with alkoxy and alkyl groups at the reactive carbons[J]. Research on Chemical Intermediates,2013,39(1):279-289.
    [536]Crano J C, Flood T, Knowles D, et al. Photochromic compounds: Chemistry and application in ophthalmic lenses[J]. Pure and applied chemistry,1996,68(7):1395-1398.
    [537]Crano J C, Guglielmetti R J. Organic Photochromic and Thermochromic Compounds: Volume 2:Physicochemical Studies, Biological Applications, and Thermochromism[M]. Springer. 1999:Vol.2.
    [538]Kawai S, Nakashima T, Atsumi K, et al. Novel Photochromic Molecules Based on 4,5-Dithienyl Thiazole with Fast Thermal Bleaching Rate[J]. Chemistry of Materials,2007,19(14): 3479-3483.
    [539]Han S, Chen Y. Rapid fading of 3H-naphtho[2,1-b]pyrans with protonation of N,N-disubstituted group[J]. Journal of Materials Chemistry,2011,21(33):12402-12406.
    [540]Han S, Chen Y. Modification of a photochromic 3-aryl-3-([small alpha]-naphthalene)-3H-naphtho[2,1-b]pyran system with a fast fading speed in solution and in a rigid polymer matrix[J]. Journal of Materials Chemistry,2011,21(13):4961-4965.
    [541]Bechinger C, Ferrere S, Zaban A, et al. Photoelectrochromic windows and displays[J]. Nature,1996,383(6601):608-610.
    [542]Delaire J A, Nakatani K. Linear and Nonlinear Optical Properties of Photochromic Molecules and Materials[J]. Chemical Reviews,2000,100(5):1817-1846.
    [543]Irie M, Fukaminato T, Sasaki T, et al. Organic chemistry: A digital fluorescent molecular photoswitch[J]. Nature,2002,420(6917):759-760.
    [544]Ishibashi Y, Murakami M, Miyasaka H, et al. Laser Multiphoton-Gated Photochromic Reaction of a Fulgide Derivative[J]. The Journal of Physical Chemistry C,2007,111(6): 2730-2737.
    [545]Fukumoto S, Nakashima T, Kawai T. Intramolecular Hydrogen Bonding in a Triangular Dithiazolyl-Azaindole for Efficient Photoreactivity in Polar and Nonpolar Solvents[J]. European Journal of Organic Chemistry,2011,2011(26):5047-5053.
    [546]Pina F, Melo M J, Maestri M, et al. Photochromism of 4'-Methoxyflavylium Perchlorate. A "Write-Lock-Read-Unlock-Erase" Molecular Switching System[J]. Journal of the American Chemical Society,1997,119(24):5556-5561.
    [547]Dulic D, Kudernac T, Puzys A, et al. Temperature Gating of the Ring-Opening Process in Diarylethene Molecular Switches[J]. Advanced Materials,2007,19(19):2898-2902.
    [548]Zhang J, Tan W, Meng X, et al. Soft mimic gear-shift with a multi-stimulus modified diarylethene[J]. Journal of Materials Chemistry,2009,19(32):5726-5729.
    [549]Lemieux V, Branda N R. Reactivity-Gated Photochromism of 1,2-Dithienylethenes for Potential Use in Dosimetry Applications[J]. Organic Letters,2005,7(14):2969-2972.
    [550]Kuhni J, Belser P. Gated Photochromism of 1,2-Diarylethenes[J]. Organic Letters,2007, 9(10):1915-1918.
    [551]Huck N P, Feringa B L. Dual-mode photoswitching of luminescence[J]. Journal of the Chemical Society, Chemical Communications,1995, (11):1095-1096.
    [552]Kawai S H, Gilat S L, Lehn J-M. Photochemical pKa-Modulation and Gated Photochromic Properties of a Novel Diarylethene Switch[J]. European Journal of Organic Chemistry,1999, 1999(9):2359-2366.
    [553]Liu H-h, Zhang X, Gao Z, et al. Photoconversion of a Protonated Diarylethene Derivative[J]. The Journal of Physical Chemistry A,2012,116(40):9900-9903.
    [554]Tsujioka T, Kume M, Irie M. Optical density dependence of write/read characteristics in photon-mode photochromic memory[J]. Jpn. J. Appl. Phys,1996,35:4353-4360.
    [555]Tsujioka T, Kume M, Irie M. Coloring and Bleaching Reactions of Photochronric Molecules by using a Single GaN-based Light Emitting Diode[J]. Jpn. J. Appl. Phys,1996,35(0 Pt 2): L1532-L1534.
    [556]Odo Y, Matsuda K, Irie M. pKa Switching Induced by the Change in the π-Conjugated System Based on Photochromism[J]. Chemistry-A European Journal,2006,12(16):4283-4288.
    [557]Poon C-T, Lam W H, Wong H-L, et al. A Versatile Photochromic Dithienylethene-Containing β-Diketonate Ligand: Near-Infrared Photochromic Behavior and Photoswitchable Luminescence Properties upon Incorporation of a Boron(III) Center[J]. Journal of the American Chemical Society,2010,132(40):13992-13993.
    [558]Poon C-T, Lam W H, Yam V W-W. Synthesis, Photochromic, and Computational Studies of Dithienylethene-Containing β-Diketonate Derivatives and Their Near-Infrared Photochromic Behavior Upon Coordination of a Boron(Ⅲ) Center[J]. Chemistry-A European Journal,2013, 19(10):3467-3476.
    [559]Samanta S, Beharry A A, Sadovski O, et al. Photoswitching Azo Compounds in Vivo with Red Light[J]. Journal of the American Chemical Society,2013,135(26):9777-9784.
    [560]Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science,2006,313(5793):1642-1645.
    [561]Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods,2006,3(10):793-796.
    [562]Hell S W. Far-Field Optical Nanoscopy[J]. Science,2007,316(5828):1153-1158.
    [563]Fernandez-Suarez M, Ting A Y. Fluorescent probes for super-resolution imaging in living cells[J]. Nature Reviews Molecular Cell Biology,2008,9(12):929-943.
    [564]Hell S W. Microscopy and its focal switch[J]. Nature Methods,2009,6(1):24-32.
    [565]Tian Z, Wu W, Li A D Q. Photoswitchable Fluorescent Nanoparticles: Preparation, Properties and Applications[J]. ChemPhysChem,2009,10(15):2577-2591.
    [566]Belov V N, Wurm C A, Boyarskiy V P, et al. Rhodamines NN: a novel class of caged fluorescent dyes[J]. Angewandte Chemie International Edition,2010,49(20):3520-3523.
    [567]Huang B. Super-resolution optical microscopy: multiple choices[J]. Current opinion in chemical biology,2010,14(1):10-14.
    [568]Fan C, Hsiang J-C, Jablonski A E, et al. All-optical fluorescence image recovery using modulated stimulated emission depletion[J]. Chem. Sci.,2011,2(6):1080-1085.
    [569]Price J H, Williamson A N, Schramm R F, et al. Palladium(II) and platinum(II) alkyl sulfoxide complexes. Examples of sulfur-bonded, mixed sulfur- and oxygen-bonded, and totally oxygen-bonded complexes[J]. Inorganic Chemistry,1972,11(6):1280-1284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700