清肺消炎丸抗炎、平喘活性物质筛选及其作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哮喘和慢性阻塞性肺疾病是气道炎症的主要表现形式,是多种刺激因素、多种细胞、多种炎症介质、多种靶点和通路共同参与构成的复杂炎症网络。目前这类疾病困扰着世界上3亿人口,位于疾病死亡率的第四位。中药对哮喘有较多的治疗经验,中药复方集中体现了中医方剂理论和组方原则,其防病治病的有效性已被几千年的临床实践所证实。而中药具有多成分、多靶点的多样性特点,是一个十分复杂的系统,大部分中药复方的药效物质基础和药理机制尚不清晰,本研究选取治疗呼吸道炎症的中药复方-清肺消炎丸作为研究对象,对其多组分协同作用的治愈效果及分子作用机理进行了研究。
     在本研究中,首先采用UPLC/Q-TOF分析技术,对清肺消炎丸的整体化学物质基础进行研究,共鉴定出了55种化学成分,对鉴定出的物质利用Molinspiration、PharmMapper和KEGG等生物信息学手段对其进行吸收、靶点及作用通路的预测分析,预测结果有27种成分可能被吸收,其中19种成分可能通过HRAS、PDPK1等11个靶点起到抗炎作用,主要为硫炔类、木脂内酯类、酚酸类和类固醇类化合物。
     建立了铜绿假单胞菌PAK菌株诱导的小鼠急性肺炎模型和TNF-a诱导人支气管上皮BEAS-2B的细胞炎症模型,在体内、外(in vivo和in vitro)对清肺消炎丸的抗炎效果进行研究。高、中剂量(18或6g/k曲的清肺消炎丸预给药1周后,能显著提高小鼠的存活率,降低TNF-α、IL-6、IL-8和RANTES等炎症因子的表达,减少肺部细胞因子及免疫细胞的浸润,改善肺部组织的水肿、坏死脱落;2.5或0.5mg/mL的清肺消炎丸干预能显著地抑制BEAS-2B细胞中TNF-α诱导的IL-6和IL-8的增高,NF-κB荧光活性及Western blot分析显示,清肺消炎丸通过抑制IκB的降解和NF-κB的激活进而起到抗炎的作用。
     建立了一种简便、快速的UPLC/Q-TOF-MS结合双荧光素酶报告基因系统的筛选NF-κB抑制剂的分析方法,对清肺消炎丸中的抗炎成分进行筛选鉴定,共筛选出4种结构类型的NF-κB抑制剂,分别为:牛蒡子苷元类(络石苷、牛蒡子苷元)、胆酸类(甘氨胆酸、胆酸、脱氧胆酸、脱氧甘氨胆酸)、芥子酸和绿原酸;采用EILISA法对筛选获得的单体化合物的抗炎活性进行了验证,结果表明,牛蒡子苷元类、胆酸、绿原酸和芥子酸能显著地降低BEAS-2B细胞中TNF-a诱导的IL-6和IL-8的表达,进一步确证了清肺消炎丸中NF-κB抑制剂的抗炎效果。
     采用TNF-a刺激的人支气管上皮细胞BEAS-2B炎症模型,研究了清肺消炎丸中4种抗炎成分的协同作用关系及作用机理。NF-κB荧光素酶分析结果显示,牛蒡子苷元与胆酸、绿原酸和芥子酸等两两配伍合用时,比各自单独使用有更强的NF-κB抑制效果;进一步以牛蒡子苷元为例,利用real-time PCR技术,检测炎症反应相关通路中关键基因的表达,来研究协同抗炎的作用机理。结果显示,牛蒡子苷元除了影响p38、JNK, ERK1、FAK等基因外,还能显著影响炎症网络较上游的JAK和PKC的表达,而且ELISA检测结果显示,牛蒡子苷元的配伍协同作用主要通过抑制p38、JNK和ERK等蛋白的表达而起到协同增效作用,而且不同的配伍所干预的抑制MAPK的途径也不同,牛蒡子苷元与绿原酸和芥子酸配伍主要干预JNK途径,而牛蒡子苷元与胆酸配伍侧偏重干预ERK途径。
     在本研究中,我们建立了一种UPLC/Q-TOF-MS结合双荧光素酶报告基因系统的筛选β2-AR激动剂的筛选方法,对清肺消炎丸中的平喘相关成分进行筛选鉴定,共筛选出1个β-AR激动剂麻黄碱和牛蒡子苷、牛蒡子苷元、南葶苈子苷和南葶苈内酯B等4种牛蒡子苷元结构类型的协同麻黄碱增效的成分。采用豚鼠离体平滑肌实验对牛蒡子苷元与麻黄碱协同平喘效果进行确认,结果显示,牛蒡子苷元和麻黄碱各自均能较好地抑制乙酰胆碱(ACh)诱导的气管平滑肌的收缩,两者联用时,平喘效果显著增强,β-AR拮抗剂普萘洛尔(Pro)能阻断麻黄碱与牛蒡子苷元的协同增强作用。利用双荧光素酶报告基因的β2AR活性评价系统,研究了特异性β2AR阻断剂ICI118551、通透细胞膜的AC激活剂forskolin对牛蒡子苷元协同作用的影响。ICI118551可阻断牛蒡子苷元与麻黄碱的协同作用,10-5mol/L的牛蒡子苷元能显著增强forskolin的激动效应,结果表明,牛蒡子苷元的协同作用建立在p2-AR通路信号激活的基础之上,但并不是β2-AR依赖性的,其作用位点应位于细胞内AC信号的下游。
     综上所述,我们基本确定了清肺消炎丸中的抗炎、平喘的有效化学成分,初步阐释了清肺消炎丸有效成分之间的协同增效关系及其作用机理,揭示了中医清肺消炎多成分、多靶点、多途径的网络作用特点,对于诠释中医治肺理论有一定的借鉴意义。
Airway inflammation is a central problem in allergic asthma and chronic obstructive pulmonary disease (COPD). Airway inflammation is a consequence of complex interactions between multiple cell types, cytokines, and mediators in an inflammatory network. A single-target approach is unlikely to be effective for the treatment of inflammatory lung diseases. Multiple-drug therapy, which maintains efficacy and diminishes the risk of toxicity from individual drugs, has become widely recognized in recent years. Traditional Chinese medicine (TCM) preparations have been used as an effective multi-target strategy for the treatment of complex diseases; however, their bioactive constituents are difficult to identify and the mechanisms are undefined.
     In this study, the global chemome of Qingfei Xiaoyan Wan (QFXY) was illustrated by using the ultra-performance liquid chromatography/quadrupole time-of-flight (UPLC/Q-TOF) mass spectrum, and55compounds were identified. Chemical constituents of QFXY were submit to Molinspiration, PharmMapper and KEGG bioinformatics softwares for predicting their absorption parameters, target proteins and related pathways, respectively. The predicted results showed that19of the27absorbable constituents, which are sulfur alkynes, lignan lactones, phenolic acids and steroid compounds, may be involved in inflammation through11protein targets such as HRAS and PDPK1.
     We investigate anti-inflammatory effects of QFXY in vivo and in vitro. QFXY was administered orally to KM mice twice per day for one week, followed by challenge with an intratracheal Pseudomonas aeruginosa suspension. Mortality, lung histological features, and inflammatory cytokines were evaluated" Cytokines were also evaluated in TNF-a stimulated bronchial epithelial cells (BEAS-2B) incubated with QFXY, and NF-κB activation was evaluated using luciferase assay and Western blot. QFXY treatment significantly reduced Pseudomonas aeruginosa-induced mortality and also reduced cytokine production in lung tissue and plasma (TNF-a, IL-6, IL-8, and RANTES) and in TNF-a stimulated BEAS-2B cells (IL-6and IL-8). Moreover, in bronchial epithelial cells, an NF-κB luciferase assay and Western blot analysis demonstrated that QFXY inhibited NF-κB activation and IκB-α degradation.
     A simple method based on UPLC/Q-TOF MS combined NF-κB dual-luciferase reporter assay systems was developed for the rapid determination of anti-inflammatory compounds of TCM preparations.8potential NF-κB inhibitors were characterized and they could be classified into four types according to their chemical structures:arctigenin derivatives (tracheloside and arctigenin), cholic acid derivatives (cholic acid, glycocholic acid, deoxycholic acid, and deoxyglycocholic acid), chlorogenic acid, and sinapic acid. Tracheloside was considered a new NF-κB inhibitor. Further cytokine and chemokine (IL-6and IL-8) detection confirmed the anti-inflammatory effects of the potential NF-κB inhibitors.
     TNF-a induced inflammation model in human bronchial epithelial cells BEAS-2B was used to investigate synergistic anti-inflammatory effects and mechanisms of the four NF-κB inhibitors in QFXY. NF-κB luciferase analysis revealed that paired combination with arctigenin showing stronger inhibition effect than the single use. Real-time PCR was used to detect the expression of key inflammatory genes for the study of synergistic anti-inflammatory mechanism of arctigenin. The results showed that paired combination with arctigenin not only affect the expression of p38, JNK, ERK1, FAK, but also significantly affect the expression of JAK and PKC. The results of ELISA test showed that synergistic anti-inflammatory mechanism of paired combination with arctigenin mainly focused on the intervention of the levels of p38, JNK and ERK proteins.
     We developed a simple method based on UPLC/Q-TOF MS combined β2-adrenergic receptor (β2-AR) dual-luciferase reporter assay systems for the rapid determination of spasmolytic constituents in TCM preparations. One β2-AR agonist ephedrine and four synergistic constituents (arctiin, arctigenin, descurainoside and descurainolide B) were characterized. The four synergistic compounds could be classified into one type according to their chemical structures:arctigenin derivatives. Ephedrine and arctigenin combination strongerly relax the isolated guinea pig trachea strip precontraction with acetylcholine (ACh) than the single use, and the β-AR antagonist propranolol (Pro) could block the synergistic effect. From the β2-AR dual luciferase reporter gene activity analysis, specific the β2-AR blocking agent ICI118551blocked the synergistic effect of ephedrine and arctigenin combination, and10-5mol/L of arctigenin can significantly enhance the effects of the AC activator forskolin. These results indicated that β2-AR signal is necessary for the synergistic effect, and it is not β2-AR dependent.
     In this study, we demonstrate the anti-inflammatory and anti-asthmatic ingredients, the synergistic effects of active compounds and their mechanism of action. These results reveal multiple active components, multiple targets and synergistic effects in the mechanism of action of a TCM.
引文
[1]E. Bateman, S. Hurd, P. Barnes, et al. Global strategy for asthma management and prevention:GINA executive summary [J]. European Respiratory Journal, 2008,31(1):143-178.
    [2]S. S. Braman. The global burden of asthma [J]. CHEST Journal,2006, 130(1_suppl):4S-12S.
    [3]W. O. Cookson, R. Young, A. Sandford, et al. Maternal inheritance of atopic IgE responsiveness on chromosome 11 q [J]. The Lancet,1992,340(8816): 381-384.
    [4]M. J. Abramson, R. M. Puy, J. M. Weiner. Allergen immunotherapy for asthma [J]. The Cochrane Library,2005.
    [5]L. Cox. Allergy and Asthma Proceedings [M]. OceanSide Publications, Inc, 2008, pp.580-589.
    [6]S. E. Pedersen, S. S. Hurd, R. F. Lemanske, et al. Global strategy for the diagnosis and management of asthma in children 5 years and younger [J]. Pediatric pulmonology,2011,46(1):1-17.
    [7]M. E. Wechsler, E. Israel, in Seminars in respiratory and critical care medicine [M]. Thieme Medical Publishers, Inc., USA.2002, pp.331-338.
    [8]S. T. Holgate. Asthma:a dynamic disease of inflammation and repair [J]. The rising trends in asthma,2008,786:5.
    [9]M. Saetta, G Turato. Airway pathology in asthma [J]. European Respiratory Journal,2001,18(34 suppl):18s-23s.
    [10]Y. Riffo-Vasquez, D. Spina. Role of cytokines and chemokines in bronchial hyperresponsiveness and airway inflammation [J]. Pharmacology & Therapeutics,2002,94(3):185-211.
    [11]K. Nakagome, M. Nagata. Pathogenesis of airway inflammation in bronchial asthma [J]. Auris Nasus Larynx,2011,38(5):555-563.
    [12]J. Pease. Targeting chemokine receptors in allergic disease [J]. Biochem. J, 2011,434:11-24.
    [13]P. Bradding, A. F. Walls, S. T. Holgate. The role of the mast cell in the pathophysiology of asthma [J]. Journal of Allergy and Clinical Immunology, 2006,117(6):1277-1284.
    [14]T. C. Theoharides, S. Enakuaa, N. Sismanopoulos, et al. Contribution of stress to asthma worsening through mast cell activation [J]. Annals of Allergy, Asthma & Immunology,2012.
    [15]Z. J. Amini-Vaughan, M. Martinez-Moczygemba, D. P. Huston. Therapeutic Strategies for Harnessing Human Eosinophils in Allergic Inflammation, Hypereosinophilic Disorders, and Cancer [J]. Current allergy and asthma reports,2012,12(5):402-412.
    [16]M. J. Tobin. Asthma, airway biology, and nasal disorders in AJRCCM 2003 [J]. American Journal of Respiratory and Critical Care Medicine,2004,169(2): 265-276.
    [17]I. V. Yang, D. A. Schwartz. Epigenetic mechanisms and the development of asthma [J]. Journal of Allergy and Clinical Immunology,2012.
    [18]B. N. Lambrecht, H. Hammad. The airway epithelium in asthma [J]. Nature Medicine,2012,18(5):684-692.
    [19]S. G. Royce, V. Cheng, C. S. Samuel, et al. The regulation of fibrosis in airway
    remodeling in asthma [J]. Mol Cell Endocrinol,2012,351(2):167-175.
    [20]A. Albu, D. Fodor, L. Poanta, et al. Markers of systemic involvement in
    chronic obstructive pulmonary disease [J]. Rom J Intern Med,2012,50(2): 129-134.
    [21]J. Vestbo, S. S. Hurd, A. G. Agusti, et al. Global Strategy for the Diagnosis,
    Management, and Prevention of Chronic Obstructive Pulmonary Disease
    GOLD Executive Summary [J]. American Journal of Respiratory and Critical Care Medicine,2013,187(4):347-365.
    [22]C. J. Murray, A. D. Lopez. Alternative projections of mortality and disability
    by cause 1990-2020:Global Burden of Disease Study [J]. The Lancet,1997, 349(9064):1498-1504.
    [23]A. Papi, C. M. Bellettato, F. Braccioni, et al. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations [J]. Am J Respir Crit Care Med,2006,173(10):1114-1121.
    [24]W. MacNee. Oxidative stress and lung inflammation in airways disease [J].
    European journal of pharmacology,2001,429(1):195-207.
    [25]W. Q. Gan, S. F. Man, A. Senthilselvan, et al. Association between chronic obstructive pulmonary disease and systemic inflammation:a systematic review and a meta-analysis [J]. Thorax,2004,59(7):574-580.
    [26]P. Montuschi, J. V. Collins, G. Ciabattoni, et al. Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers [J]. Am J Respir Crit Care Med,2000,162(3 Pt 1):1175-1177.
    [27]Y. Qiu, J. Zhu, V. Bandi, et al. Biopsy neutrophilia, neutrophil chemokine and receptor gene expression in severe exacerbations of chronic obstructive pulmonary disease [J]. Am J Respir Crit Care Med,2003,168(8):968-975.
    [28]P. K. Jeffery. Remodeling in asthma and chronic obstructive lung disease [J]. American Journal of Respiratory and Critical Care Medicine,2001, 164(Supplement2):S28-S38.
    [29]G. Westergren-Thorsson, K. Larsen, K. Nihlberg, et al. Pathological airway remodelling in inflammation [J]. The Clinical Respiratory Journal,2010,4(s1): 1-8.
    [30]L. M. Salazar, A. M. Herrera. Fibrotic response of tissue remodeling in COPD [J]. Lung,2011,189(2):101-109.
    [31]O. Tliba, Y. Amrani, R. A. Panettieri. Is airway smooth muscle the "missing link" modulating airway inflammation in asthma? [J]. CHEST Journal,2008, 133(1):236-242.
    [32]W. Duan, W. F. Wong. Targeting mitogen-activated protein kinases for asthma [J]. Current drug targets,2006,7(6):691-698.
    [33]M. Roth, P. R. Johnson, J. J. Rudiger, et al. Interaction between glucocorticoids and β 2 agonists on bronchial airway smooth muscle cells through synchronised cellular signalling [J]. The Lancet,2002, 360(9342):1293-1299.
    [34]C.-M. Hai. Airway smooth muscle cell as therapeutic target of inflammation [J]. current medicinal chemistry,2007,14(1):67-76.
    [35]N. Mukaida, A. Harada, K. Matsushima. Interleukin-8 (IL-8) and monocyte chemotactic and activating factor, (MCAF/MCP-1), chemokines essentially involved in inflammatory and immune reactions [J]. Cytokine & growth factor reviews,1998,9(1):9-23.
    [36]C. Y. Fong, L. Pang, E. Holland, et al. TGF-betal stimulates IL-8 release, COX-2 expression, and PGE(2) release in human airway smooth muscle cells [J]. Am J Physiol Lung Cell Mol Physiol,2000,279(1):L201-207.
    [37]A. Graness, C. E. Chwieralski, D. Reinhold, et al. Protein kinase C and ERK activation are required for TFF-peptide-stimulated bronchial epithelial cell migration and tumor necrosis factor-a-induced interleukin-6 (IL-6) and IL-8 secretion [J]. Journal of Biological Chemistry,2002,277(21):18440-18446.
    [38]H. M. Marriott, K. A. Gascoyne, R. Gowda, et al. Interleukin-1β Regulates CXCL8 Release and Influences Disease Outcome in Response to Streptococcus pneumoniae, Defining Intercellular Cooperation between Pulmonary Epithelial Cells and Macrophages [J]. Infection and immunity, 2012,80(3):1140-1149.
    [39]M. Rahman, J. Yang, L. Y. Shan, et al. IL-17R activation of human airway smooth muscle cells induces CXCL-8 production via a transcriptional-dependent mechanism [J]. Clinical immunology,2005,115(3): 268-276.
    [40]J. C. Hedges, C. A. Singer, W. T. Gerthoffer. Mitogen-activated protein kinases regulate cytokine gene expression in human airway myocytes [J]. American Journal of Respiratory Cell and Molecular Biology,2000,23(1):86.
    [41]C. A. Singer, K. J. Baker, A. McCaffrey, et al. p38 MAPK and NF-κB mediate COX-2 expression in human airway myocytes [J]. American Journal of Physiology-Lung Cellular and Molecular Physiology,2003,285(5): L1087-L1098.
    [42]M. A. Carey, D. R. Germolec, R. Langenbach, et al. Cyclooxygenase enzymes in allergic inflammation and asthma [J]. Prostaglandins, leukotrienes and essential fatty acids,2003,69(2):157-162.
    [43]G Y. Park, J. W. Christman. Involvement of cyclooxygenase-2 and prostaglandins in the molecular pathogenesis of inflammatory lung diseases [J]. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2006,290(5):L797-L805.
    [44]J. G Chichorro, B. B. Lorenzetti, A. R. Zampronio. Involvement of bradykinin, cytokines, sympathetic amines and prostaglandins in formalin-induced orofacial nociception in rats [J]. British journal of pharmacology,2004,141(7): 1175-1184.
    [45]W. M. Abraham, M. Scuri, S. G. Farmer. Peptide and non-peptide bradykinin receptor antagonists:role in allergic airway disease [J]. European journal of pharmacology,2006,533(1):215-221.
    [46]A. J. Ammit, A. L. Lazaar, C. Irani, et al. Tumor necrosis factor-alpha-induced secretion of RANTES and interleukin-6 from human airway smooth muscle cells:modulation by glucocorticoids and beta-agonists [J]. American Journal of Respiratory Cell and Molecular Biology,2002,26(4):465.
    [47]L. Pang, A. J. Knox. Bradykinin stimulates IL-8 production in cultured human airway smooth muscle cells:role of cyclooxygenase products [J]. The Journal of Immunology,1998,161(5):2509-2515.
    [48]K. E. Belmonte. Cholinergic pathways in the lungs and anticholinergic therapy for chronic obstructive pulmonary disease [J]. Proceedings of the American Thoracic Society,2005,2(4):297-304.
    [49]F. R. Coulson, A. D. Fryer. Muscarinic acetylcholine receptors and airway diseases [J]. Pharmacology & Therapeutics,2003,98(1):59-69.
    [50]J. Kanefsky, M. Lenburg, C.-M. Hai. Cholinergic receptor and cyclic stretch-mediated inflammatory gene expression in intact ASM [J]. American Journal of Respiratory Cell and Molecular Biology,2006,34(4):417.
    [51]P. J. Bryce, C. B. Mathias, K. L. Harrison, et al. The H1 histamine receptor regulates allergic lung responses [J]. Journal of Clinical Investigation,2006, 116(6):1624-1632.
    [52]M. Matsubara, T. Tamura, K. Ohmori, et al. Histamine H1 receptor antagonist blocks histamine-induced proinflammatory cytokine production through inhibition of Ca< sup> 2+-dependent protein kinase C, Raf/MEK/ERK and IKK/IκB/NF-κB signal cascades [J]. Biochemical pharmacology,2005, 69(3):433-449.
    [53]S. McKay, M. M. G. Bromhaar, J. C. De Jongste, et al. Pro-inflammatory cytokines induce c-fos expression followed by IL-6 release in human airway smooth muscle cells [J]. Mediators of inflammation,2001,10(3):135-142.
    [54]A. N. von BETHMANN, F. BRASCH, R. NUSING, et al. Hyperventilation induces release of cytokines from perfused mouse lung [J]. American Journal of Respiratory and Critical Care Medicine,1998,157(1):263-272.
    [55]M. R. Wilson, S. Choudhury, M. E. Goddard, et al. High tidal volume upregulates intrapulmonary cytokines in an in vivo mouse model of ventilator-induced lung injury [J]. Journal of Applied Physiology,2003,95(4): 1385-1393.
    [56]F. Bregeon, A. Roch, S. Delpierre, et al. Conventional mechanical ventilation of healthy lungs induced pro-inflammatory cytokine gene transcription [J]. Respiratory Physiology & Neurobiology,2002,132(2):191-203.
    [57]M. R. Wilson, S. Choudhury, M. Takata. Pulmonary inflammation induced by high-stretch ventilation is mediated by tumor necrosis factor signaling in mice [J]. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2005,288(4):L599-L607.
    [58]C. A. Barlow, P. Rose, R. A. Pulver-Kaste, et al. Excitation-transcription coupling in smooth muscle [J]. The Journal of Physiology,2006,570(1): 59-64.
    [59]M. Johannessen, M. P. Delghandi, U. Moens. What turns CREB on? [J]. Cellular signalling,2004,16(11):1211.
    [60]G Pelaia, G. Cuda, A. Vatrella, et al. Mitogen-activated protein kinases and asthma [J]. Journal of cellular physiology,2005,202(3):642-653.
    [61]S.-F. Luo, W.-N. Lin, C.-M. Yang, et al. Induction of cytosolic phospholipase A2 by lipopolysaccharide in canine tracheal smooth muscle cells:involvement of MAPKs and NF-κB pathways [J]. Cellular signalling,2006,18(8): 1201-1211.
    [62]G L. Schieven. The biology of p38 kinase:a central role in inflammation [J]. Current topics in medicinal chemistry,2005,5(10):921-928.
    [63]Y. Amrani, A. J. Ammit, R. A. Panettieri. Tumor Necrosis Factor Receptor (TNFR) 1, but Not TNFR2, Mediates Tumor Necrosis Factor-a-Induced Interleukin-6 and RANTES in Human Airway Smooth Muscle Cells:Role of p38 and p42/44 Mitogen-Activated Protein Kinases [J]. Molecular pharmacology,2001,60(4):646-655.
    [64]N. Sohara, M. Trojanowska, A. Reuben. Oncostatin M stimulates tissue inhibitor of metalloproteinase-1 via a MEK-sensitive mechanism in human myofibroblasts [J]. Journal of hepatology,2002,36(2):191-199.
    [65]N. J. Van Wagoner, C. Choi, P. Repovic, et al. Oncostatin M Regulation of Interleukin-6 Expression in Astrocytes [J]. Journal of neurochemistry,2000, 75(2):563-575.
    [66]M. P. HALLSWORTH, L. M. MOIR, D. LAI, et al. Inhibitors of mitogen-activated protein kinases differentially regulate eosinophil-activating cytokine release from human airway smooth muscle [J]. American Journal of Respiratory and Critical Care Medicine,2001,164(4):688-697.
    [67]C. C. Chen, Y. T. Sun, J. J. Chen, et al. TNF-alpha-induced cyclooxygenase-2 expression in human lung epithelial cells:involvement of the phospholipase C-gamma 2, protein kinase C-alpha, tyrosine kinase, NF-kappa B-inducing kinase, and I-kappa B kinase 1/2 pathway [J]. J Immunol,2000,165(5): 2719-2728.
    [68]L. Pang, M. Nie, L. Corbett, et al. Cyclooxygenase-2 expression by nonsteroidal anti-inflammatory drugs in human airway smooth muscle cells: role of peroxisome proliferator-activated receptors [J]. The Journal of Immunology,2003,170(2):1043-1051.
    [69]A. Kumar, Y. Takada, A. M. Boriek, et al. Nuclear factor-icB:its role in health and disease [J]. Journal of Molecular Medicine,2004,82(7):434-448.
    [70]C. Nguyen, J.-L. Teo, A. Matsuda, et al. Chemogenomic identification of Ref-1/AP-1 as a therapeutic target for asthma [J]. Proceedings of the National Academy of Sciences,2003,100(3):1169-1173.
    [71]M. Chopra, J. S. Reuben, A. C. Sharma. Acute lung injury:apoptosis and signaling mechanisms [J]. Experimental Biology and Medicine,2009,234(4): 361-371.
    [72]R. Taha, Q. Hamid, L. Cameron, et al. T helper type 2 cytokine receptors and associated transcription factors GATA-3, c-MAF, and signal transducer and activator of transcription factor-6 in induced sputum of atopic asthmatic patients [J]. CHEST Journal,2003,123(6):2074-2082.
    [73]H.-Y. Cho, A. E. Jedlicka, S. P. Reddy, et al. Role of NRF2 in protection against hyperoxic lung injury in mice [J]. American Journal of Respiratory Cell and Molecular Biology,2002,26(2):175-182.
    [74]G. Woerly, K. Honda, M. Loyens, et al. Peroxisome Proliferator-activated Receptors a and y Down-regulate Allergic Inflammation and Eosinophil Activation [J]. The Journal of experimental medicine,2003,198(3):411-421.
    [75]A. B. Pernis, P. B. Rothman. JAK-STAT signaling in asthma [J]. Journal of Clinical Investigation,2002,109(10):1279-1283.
    [76]P. J. Barnes. Drugs for asthma [J]. British journal of pharmacology,2006, 147(S1):S297-S303.
    [77]R. G. Clyde, J. L. Bown, T. R. Hupp, et al. The role of modelling in identifying drug targets for diseases of the cell cycle [J]. Journal of The Royal Society Interface,2006,3(10):617-627.
    [78]P. O. Sobande, C. M. Kercsmar. Inhaled corticosteroids in asthma management [J]. Respiratory care,2008,53(5):625-634.
    [79]B. January, A. Seibold, C. Allal, et al. Salmeterol-induced desensitization, internalization and phosphorylation of the human β2-adrenoceptor [J]. British journal of pharmacology,1998,123(4):701-711.
    [80]M. Johnson. Molecular mechanisms of P< sub> 2-adrenergic receptor function, response, and regulation [J]. Journal of Allergy and Clinical Immunology,2006,117(1):18-24.
    [81]W. H. Zhang, Y. Zhang, Y. Y. Cui, et al. Can β2-adrenoceptor agonists, anticholinergic drugs, and theophylline contribute to the control of pulmonary inflammation and emphysema in COPD? [J]. Fundamental & clinical pharmacology,2012,26(1):118-134.
    [82]P. Demoly, M. Mathieu, D. Curiel, et al. Gene therapy strategies for asthma [J]. Gene therapy,1997,4(6):507.
    [83]周兆山.呼吸病经方论治[M].人民卫生出版社,2007.
    [84]陈军,肖平.厚朴汤治疗顽固性哮喘30例[J].湖北中医杂志,1996,18(1):41-41.
    [85]刘成军.冷哮饮治疗支气管哮喘120例[J].中华临床医学研究杂志,2005,11(014):2025-2025.
    [86]邵长荣,陈凤鸣,唐忆星等.川芎平喘合剂防治支气管哮喘的临床及实验研究[J].中国中西医结合杂志,1994,14(8):465-465.
    [87]王强,孙增涛.祛风解痉法治疗咳嗽变异性哮喘[J].吉林中医药,2007,27(10):23-24.
    [88]邢萍.宣肺降气汤治疗咳喘.280例[J].河北中医,1993,15(1):9-9.
    [89]许得盛,沈自尹.宁喘冲剂对哮喘防和治双重作用观察[J].中国医药学报,1995,10(5):15-17.
    [90]朱永忠,郑开明,陈炼炼等.加减阳和汤治疗寒性哮喘30例[J].陕西中医,2000,21(10):449-449.
    [91]罗国安,梁琼麟,刘清飞等.整合化学物质组学的整体系统生物学——中药复方配伍和作用机理研究的整体方法论[J].世界科学技术:中医药现 代化,2007,9(1):10-15.
    [92]P. Csermely, V. Agoston, S. Pongor. The efficiency of multi-target drugs:the network approach might help drug design [J]. arXiv preprint q-bio/0412045, 2004.
    [93]N. Dessalew, W. Mikre. On the paradigm shift towards multitarget selective drug design [J]. Current Computer-Aided Drug Design,2008,4(2):76-90.
    [94]贾晓斌,陈彦,李霞等.中药复方物质基础研究新思路和方法[J].中华中医药杂志,2008,23(5):420-425.
    [95]聂惠民.泻心汤方证辨治挈要[J]. WORLD CHINESE MEDICINE,2008,3(2).
    [96]申保国,冯丽丽.略论方剂组方中的矛盾观[J].河北中医,2004,12:024.
    [97]邓家刚,秦华珍,秦海洗.中药药性效应及物质基础的文献研究[J].河南中医,2007,27(5).
    [98]罗国安,梁琼麟,王义明.中药指纹图谱:质量评价,质量控制与新药研发[M].化学工业出版社,2009.
    [99]张继稳,陈立兵,顾景凯等.多组分中药化合物组释放/溶出动力学理论研究[J].中国天然药物,2008,6(1):48-52.
    [100]D. A. Fidock, P. J. Rosenthal, S. L. Croft, et al. Antimalarial drug discovery: efficacy models for compound screening [J]. Nature Reviews Drug Discovery, 2004,3(6):509-520.
    [101]O. Potterat, M. Hamburger. Concepts and technologies for tracking bioactive compounds in natural product extracts:generation of libraries, and hyphenation of analytical processes with bioassays [J]. Natural Product Reports,2013.
    [102]M. Giera, F. Heus, L. Janssen, et al. Microfractionation revisited:a 1536 well high resolution screening assay [J]. Analytical chemistry,2009,81(13): 5460-5466.
    [103]马勇,徐暾海,徐海燕等.麻黄研究进展[J].吉林中医药,2008,28(10):777-779.
    [104]郑萍,戴贵东,李汉青等.麻黄碱及伪麻黄碱药理作用研究进展[J].生理学报,1984,36(4):367-373.
    [105]赖智捷,巩江,路锋等.石膏药学研究新进展[J].辽宁中医药大学学报,2011,3:017.
    [106]王道芳.浅述桃仁与苦杏仁的药理及临床应用[J].基层中药杂志,2002,16(6):61-62.
    [107]钟月平.牛蒡子的研究概况[J].中国现代药物应用,2009,(15):192-193.
    [108]刘成德,刘洋,旺建伟.牛黄的药理作用及临床应用概况[J].中医药信息,2006,23(6):14-15.
    [109]王妍,贡济宇.葶苈子的化学成分及药理作用研究[J].长春中医药大学学报,2008,24(1):39-40.
    [110]刘秀艳.地龙的药理研究[J].辽宁中医杂志,2008,35(1):106-107.
    [111]李淑莲,蒋蕾,赵文静.羚羊角的药理作用及临床应用研究进展[J].中 医药信息,2006,23(5):36-37.
    [112]M. Hall. Chronic obstructive pulmonary disease and asthma [J]. Home Healthc Nurse,2012,30(10):603-612; quiz 612-604.
    [113]Y. Tian, J. Shang, T. He, et al. [Study on material basis of Dracocephalum moldavica for protecting cardiomyocyte against hypoxia/reoxygenation injury by traditional Chinese medicine serum chemical and pharmacological methods] [J]. Zhongguo Zhong Yao Za Zhi,2012,37(5):620-624.
    [114]M. S. Lee, E. H. Kerns. LC/MS applications in drug development [J]. Mass Spectrom Rev,1999,18(3-4):187-279.
    [115]M. Maizels, W. L. Budde. Exact mass measurements for confirmation of pesticides and herbicides determined by liquid chromatography/time-of-flight mass spectrometry [J]. Anal Chem,2001,73(22):5436-5440.
    [116]P. Ertl, B. Rohde, P. Selzer. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties [J]. J Med Chem,2000,43(20):3714-3717.
    [117]X. Zheng, P. Shi, Y. Cheng, et al. Rapid analysis of a Chinese herbal prescription by liquid chromatography-time-of-flight tandem mass spectrometry [J]. Journal of Chromatography A,2008,1206(2):140-146.
    [118]C. A. Lipinski, F. Lombardo, B. W. Dominy, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings [J]. Advanced drug delivery reviews, 1997,23(1):3-25.
    [119]张生芳,李娟.药物渗透与吸收评价方法的研究进展[J]. Asia-Pacific Traditional Medicine,2010,6(5).
    [120]A. D. Baxevanis. The importance of biological databases in biological discovery [J]. Current Protocols in Bioinformatics,2006:1.1.1-1.1.6.
    [121]L. Wang, F. Zhao, K. Liu. Advances in studies on pharmacological effect of arctiin and arctigenin [J]. Chinese Traditional and Herbal Drugs,2008,39(3): 467.
    [122]K. J. Yun, D. J. Koh, S. H. Kim, et al. Anti-inflammatory effects of sinapic acid through the suppression of inducible nitric oxide synthase, cyclooxygase-2, and proinflammatory cytokines expressions via nuclear factor-kappaB inactivation [J]. J Agric Food Chem,2008,56(21): 10265-10272.
    [123]S. A. Shah, Y. Volkov, Q. Arfin, et al. Ursodeoxycholic acid inhibits interleukin 1 beta [corrected] and deoxycholic acid-induced activation of NF-kappaB and AP-1 in human colon cancer cells [J]. Int J Cancer,2006, 118(3):532-539.
    [124]J. Sun, R. Mustafi, S. Cerda, et al. Lithocholic acid down-regulation of NF-kappaB activity through vitamin D receptor in colonic cancer cells [J]. J Steroid Biochem Mol Biol,2008,111(1-2):37-40.
    [125]J. Bousquet, P. K. Jeffery, W. W. Busse, et al. Asthma. From bronchoconstriction to airways inflammation and remodeling [J]. Am J Respir Crit Care Med,2000,161(5):1720-1745.
    [126]M. Volkova, Y. Zhang, A. C. Shaw, et al. The role of Toll-like receptors in age-associated lung diseases [J]. J Gerontol A Biol Sci Med Sci,2012,67(3): 247-253.
    [127]S. R. Naik, S. M. Wala. Inflammation, allergy and asthma, complex immune origin diseases:mechanisms and therapeutic agents [J]. Recent Pat Inflamm Allergy Drug Discov,2013,7(1):62-95.
    [128]Y. Kim, Y. S. Lee, J. H. Hahn, et al. Hyaluronic acid targets CD44 and inhibits FcepsilonRI signaling involving PKCdelta, Racl, ROS, and MAPK to exert anti-allergic effect [J]. Mol Immunol,2008,45(9):2537-2547.
    [129]M. D. Schaller. Biochemical signals and biological responses elicited by the focal adhesion kinase [J]. Biochim Biophys Acta,2001,1540(1):1-21.
    [130]W. Duan, W. S. Wong. Targeting mitogen-activated protein kinases for asthma [J]. Curr Drug Targets,2006,7(6):691-698.
    [131]H. Kanazawa. Role of vascular endothelial growth factor in the pathogenesis of chronic obstructive pulmonary disease [J]. Med Sci Monit,2007,13(11): RA189-195.
    [132]M. Hoshino, Y. Nakamura, Q. A. Hamid. Gene expression of vascular endothelial growth factor and its receptors and angiogenesis in bronchial asthma [J]. J Allergy Clin Immunol,2001,107(6):1034-1038.
    [133]X. Gao, Y. Huang, Y. Han, et al. The protective effects of Ambroxol in Pseudomonas aeruginosa-induced pneumonia in rats [J]. Archives of Medical Science,2011,7(3):405-413.
    [134]W. Y. Wang, J. H. Lim, J. D. Li. Synergistic and feedback signaling mechanisms in the regulation of inflammation in respiratory infections [J]. Cellular & Molecular Immunology,2012,9(2):131-135.
    [135]L. Berra, J. Sampson, J. Wiener-Kronish. Pseudomonas aeruginosa:acute lung injury or ventilator-associated pneumonia? [J]. Minerva Anestesiologica,2010, 76(10):824-832.
    [136]R. T. Sadikot, T. S. Blackwell, J. W. Christman, et al. Pathogen-host interactions in Pseudomonas aeruginosa pneumonia [J]. American Journal of Respiratory and Critical Care Medicine,2005,171(11):1209-1223.
    [137]G. U. Meduri. Clinical review:a paradigm shift:the bidirectional effect of inflammation on bacterial growth. Clinical implications for patients with acute respiratory distress syndrome [J]. Critical Care,2002,6(1):24-29.
    [138]J. Pena, Z. Fu, C. Schwarzer, et al. Pseudomonas aeruginosa Inhibition of Flagellin-activated NF-kappaB and interleukin-8 by human airway epithelial cells [J]. Infect Immun,2009,77(7):2857-2865.
    [139]M. R. Edwards, N. W. Bartlett, D. Clarke, et al. Targeting the NF-kappaB pathway in asthma and chronic obstructive pulmonary disease [J]. Pharmacology & Therapeutics,2009,121(1):1-13.
    [140]T. Joseph, D. Look, T. Ferkol. NF-kappaB activation and sustained IL-8 gene expression in primary cultures of cystic fibrosis airway epithelial cells stimulated with Pseudomonas aeruginosa [J]. Am J Physiol Lung Cell Mol Physiol,2005,288(3):L471-479.
    [141]F. Bai, H. Xu, Q. Zhang, et al. Functional characterization of pfm in protein secretion and lung infection of Pseudomonas aeruginosa [J]. Canadian Journal of Microbiology,2011,57(10):829-837.
    [142]H. Grassme, J. Jin, B. Wilker, et al. Regulation of pulmonary Pseudomonas aeruginosa infection by the transcriptional repressor Gfil [J]. Cell Microbiology,2006,8(7):1096-1105.
    [143]M. D. Parkins, J. C. Rendall, J. S. Elborn. Incidence and risk factors for pulmonary exacerbation treatment failures in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa [J]. Chest,2012,141(2): 485-493.
    [144]R. Southard, S. Ghosh, J. Hilliard, et al. Pulmonary contusion is associated with toll-like receptor 4 upregulation and decreased susceptibility to pseudomonas pneumonia in a mouse model [J]. Shock,2012,37(6):629-633.
    [145]S. D. Wang, L. J. Lin, C. L. Chen, et al. Xiao-Qing-Long-Tang attenuates allergic airway inflammation and remodeling in repetitive Dermatogoides pteronyssinus challenged chronic asthmatic mice model [J]. Journal of Ethnopharmacology,2012,142(2):531-538.
    [146]P. J. Barnes. Pathophysiology of allergic inflammation [J]. Immunological Reviews,2011,242(1):31-50.
    [147]K. F. Chung. Cytokines in chronic obstructive pulmonary disease [J]. The European Respiratory Journal. Supplement.,2001,34:50s-59s.
    [148]K. Van Reeth. Cytokines in the pathogenesis of influenza [J]. Veterinary Microbiology,2000,74(1-2):109-116.
    [149]E. L. Thacker. Lung inflammatory responses [J]. Veterinary Research,2006, 37(3):469-486.
    [150]W. T. Gerthoffer, C. A. Singer. MAPK regulation of gene expression in airway smooth muscle [J]. Respiratory Physiology & Neurobiology,2003,137(2-3): 237-250.
    [151]K. Chmura, X. Bai, M. Nakamura, et al. Induction of IL-8 by Mycoplasma pneumoniae membrane in BEAS-2B cells [J]. American Journal of Physiology-Lung Cellular and Molecular Physiology,2008,295(1): L220-230.
    [152]M. Lampinen, M. Carlson, L. D. Hakansson, et al. Cytokine-regulated accumulation of eosinophils in inflammatory disease [J]. Allergy,2004,59(8): 793-805.
    [153]J. M. Fox, E. Letellier, C. J. Oliphant, et al. TLR2-dependent pathway of heterologous down-modulation for the CC chemokine receptors 1,2, and 5 in human blood monocytes [J]. Blood,2011,117(6):1851-1860.
    [154]S. Matsuzaki, T. Ishizuka, T. Hisada, et al. Lysophosphatidic acid inhibits CC chemok;ne ligand 5/RANTES production by blocking IRF-1-mediated gene transcription in human bronchial epithelial cells [J]. Journal of Immunology, 2010,185(8):4863-4872.
    [155]J. L. Devalia, R. J. Davies. Airway epithelial cells and mediators of inflammation [J]. Respiratory Medicine,1993,87(6):405-408.
    [156]I. Inoshima, N. Inoshima, G. A. Wilke, et al. A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM 10 to cause lethal infection in mice [J]. Nature Medicine,2011,17(10):1310-1314.
    [157]A. S. Baldwin, Jr. Series introduction:the transcription factor NF-kappaB and human disease [J]. Journal of Clinical Investigation,2001,107(1):3-6.
    [158]M. H. Cohen, L. Sandler, A. Hrbek, et al. Policies pertaining to complementary and alternative medical therapies in a random sample of 39 academic health centers [J]. Altern Ther Health Med,2005,11(1):36-40.
    [159]X. Zheng, P. Shi, Y. Cheng, et al. Rapid analysis of a Chinese herbal prescription by liquid chromatography-time-of-flight tandem mass spectrometry [J]. J Chromatogr A,2008,1206(2):140-146.
    [160]M. A. Cooper, L. Mayr, Label-free technologies for drug discovery, John Wiley & Sons, Chichester, West Sussex, U.K.,2011.
    [161]J. A. Frearson, I. T. Collie. HTS and hit finding in academia--from chemical genomics to drug discovery [J]. Drug Discov Today,2009,14(23-24): 1150-1158.
    [162]C. C. Warzecha, R. Hovhannisyan, R. P. Carstens. Dynamic fluorescent and luminescent reporters for cell-based splicing screens [J]. Methods Mol Biol, 2012,867:273-287.
    [163]Y. Liang, P. Xie, F. Chau. Chromatographic fingerprinting and related chemometric techniques for quality control of traditional Chinese medicines [J]. J Sep Sci,2010,33(3):410-421.
    [164]L. Jiao, S. Gao, F. Zhang, et al. Quantification of components in overlapping peaks from capillary electrophoresis by using continues wavelet transform method [J]. Talanta,2008,75(4):1061-1067.
    [165]J. Zeng, X. Zhang, Z. Guo, et al. Separation and identification of flavonoids from complex samples using off-line two-dimensional liquid chromatography tandem mass spectrometry [J]. J Chromatogr A,2012,1220:50-56.
    [166]J. L. Zhou, G. Z. Xin, Z. Q. Shi, et al. Characterization and identification of steroidal alkaloids in Fritillaria species using liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry [J]. J Chromatogr A,2010,1217(45):7109-7122.
    [167]J. Sykora, P. Bernasek, M. Zarevucka, et al. High-performance liquid chromatography with nuclear magnetic resonance detection--A method for quantification of alpha-and gamma-linolenic acids in their mixtures with free fatty acids [J]. J Chromatogr A,2007,1139(1):152-155.
    [168]D. Normile. Asian medicine. The new face of traditional Chinese medicine [J]. Science,2003,299(5604):188-190.
    [169]X. Zhang, L. W. Qi, L. Yi, et al. Screening and identification of potential bioactive components in a combined prescription of Danggui Buxue decoction using cell extraction coupled with high performance liquid chromatography [J]. Biomed Chromatogr,2008,22(2):157-163.
    [170]S. L. Li, P. Li, L. H. Sheng, et al. Live cell extraction and HPLC-MS analysis for predicting bioactive components of traditional Chinese medicines [J]. J Pharm Biomed Anal,2006,41(2):576-581.
    [171]M. J. Liang, L. C. He, G. D. Yang. Screening, analysis and in vitro vasodilatation of effective components from Ligusticum Chuanxiong [J]. Life Sci,2005,78(2):128-133.
    [172]L. W. Qi, P. Li, S. L. Li, et al. Screening and identification of permeable components in a combined prescription of Danggui Buxue decoction using a liposome equilibrium dialysis system followed by HPLC and LC-MS [J]. J Sep Sci,2006,29(14):2211-2220.
    [173]X. Su, L. Kong, X. Li, et al. Screening and analysis of bioactive compounds with biofingerprinting chromatogram analysis of traditional Chinese medicines targeting DNA by microdialysis/HPLC [J]. J Chromatogr A,2005, 1076(1-2):118-126.
    [174]P. J. Barnes, I. M. Adcock. Transcription factors and asthma [J]. Eur Respir J, 1998,12(1):221-234.
    [175]P. J. Barnes, M. Karin. Nuclear factor-kappaB:a pivotal transcription factor in chronic inflammatory diseases [J]. N Engl J Med,1997,336(15):1066-1071.
    [176]N. Charokopos, N. Apostolopoulos, M. Kalapodi, et al. Bronchial asthma, chronic obstructive pulmonary disease and NF-kappaB [J]. Curr Med Chem, 2009,16(7):867-883.
    [177]T. C. Kent, K. S. Thompson, L. H. Naylor. Development of a generic dual-reporter gene assay for screening G-protein-coupled receptors [J]. J Biomol Screen,2005,10(5):437-446.
    [178]D. S. McNabb, R. Reed, R. A. Marciniak. Dual luciferase assay system for rapid assessment of gene expression in Saccharomyces cerevisiae [J]. Eukaryot Cell,2005,4(9):1539-1549.
    [179]K. Higai, S. Ishihara, K. Matsumoto. NFkappaB-p65 dependent transcriptional regulation of glycosyltransferases in human colon adenocarcinoma HT-29 by stimulation with tumor necrosis factor alpha [J]. Biol Pharm Bull,2006,29(12):2372-2377.
    [180]N. A. Lewis, T. D. Williams, J. K. Chipman. Functional analysis of a metal response element in the regulatory region of flounder cytochrome P450 1A and implications for environmental monitoring of pollutants [J]. Toxicol Sci, 2006,92(2):387-393.
    [181]X. L. Cheng, F. Wei, X. Y. Xiao, et al. Identification of five gelatins by ultra performance liquid chromatography/time-of-flight mass spectrometry (UPLC/Q-TOF-MS) using principal component analysis [J]. J Pharm Biomed Anal,2012,62:191-195.
    [182]J. Zhang, Y. Jin, J. Dong, et al. Systematic screening and characterization of tertiary and quaternary alkaloids from corydalis yanhusuo W.T. Wang using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry [J]. Talanta,2009,78(2):513-522.
    [183]J. Y. Lee, B. J. Cho, T. W.Park, et al. Dibenzylbutyrolactone lignans from Forsythia koreana fruits attenuate lipopolysaccharide-induced inducible nitric oxide synthetase and cyclooxygenase-2 expressions through activation of nuclear factor-kappab and mitogen-activated protein kinase in RAW264.7 cells [J]. Biological & Pharmaceutical Bulletin,2010,33(11):1847-1853.
    [184]F. Zhao, L. Wang, K. Liu. In vitro anti-inflammatory effects of arctigenin, a lignan from Arctium lappa L., through inhibition on iNOS pathway [J]. J Ethnopharmacol,2009,122(3):457-462.
    [185]H. H. Yoo, J. H. Park, S. W. Kwon. An anti-estrogenic lignan glycoside, tracheloside, from seeds of Carthamus tinctorius [J]. Biosci Biotechnol Biochem,2006,70(11):2783-2785.
    [186]J. Shan, J. Fu, Z. Zhao, et al. Chlorogenic acid inhibits lipopolysaccharide-induced cyclooxygenase-2 expression in RAW264.7 cells through suppressing NF-kappaB and JNK/AP-1 activation [J]. Int Immunopharmacol,2009,9(9):1042-1048.
    [187]F. Hirano, H. Tanada, Y. Makino, et al. Induction of the transcription factor AP-1 in cultured human colon adenocarcinoma cells following exposure to bile acids [J]. Carcinogenesis,1996,17(3):427-433.
    [188]S. P. Duggan, F. M. Behan, M. Kirca, et al. An integrative genomic approach in oesophageal cells identifies TRB3 as a bile acid responsive gene, downregulated in Barrett's oesophagus, which regulates NF-kappaB activation and cytokine levels [J]. Carcinogenesis,2010,31(5):936-945.
    [189]S. S. Joo, T. J. Won, D. I. Lee. Potential role of ursodeoxycholic acid in suppression of nuclear factor kappa B in microglial cell line (BV-2) [J]. Arch Pharm Res,2004,27(9):954-960.
    [190]P. J. Barnes. The cytokine network in chronic obstructive pulmonary disease [J]. Am J Respir Cell Mol Biol,2009,41(6):631-638.
    [191]Y. Xu, X. J. Li. [Multi-target therapeutics and new drug discovery] [J]. Yao Xue Xue Bao,2009,44(3):226-230.
    [192]J. M. Kyriakis, J. Avruch. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation [J]. Physiological Reviews,2001,81(2):807-869.
    [193]D. D. Schlaepfer, S. Hou, S. T. Lim, et al. Tumor necrosis factor-alpha stimulates focal adhesion kinase activity required for mitogen-activated kinase-associated interleukin 6 expression [J]. Journal of Biological Chemistry, 2007,282(24):17450-17459.
    [194]J. B. Bolen, J. S. Brugge. Leukocyte protein tyrosine kinases:potential targets for drug discovery [J]. Annu Rev Immunol,1997,15:371-404.
    [195]W. S. Wong, K. P. Leong. Tyrosine kinase inhibitors:a new approach for asthma [J]. Biochim Biophys Acta,2004,1697(1-2):53-69.
    [196]T. Y. Lee, K. C. Lee, S. Y. Chen, et al.6-Gingerol inhibits ROS and iNOS through the suppression of PKC-alpha and NF-kappaB pathways in lipopolysaccharide-stimulated mouse macrophages [J]. Biochem Biophys Res Commun,2009,382(1):134-139.
    [197]J. Amyot, M. Semache, M. Ferdaoussi, et al. Lipopolysaccharides impair insulin gene expression in isolated islets of Langerhans via Toll-Like Receptor-4 and NF-kappaB signalling [J]. PLoS One,2012,7(4):e36200t
    [198]Q. Y. Cao, F. Chen, J. Li, et al. A microarray analysis of early activated pathways in concanavalin A-induced hepatitis [J]. J Zhejiang Univ Sci B, 2010,11(5):366-377.
    [199]H. Y. Lan. Diverse roles of TGF-beta/Smads in renal fibrosis and inflammation [J]. Int J Biol Sci,2011,7(7):1056-1067.
    [200]B. Zingarelli, G. Piraino, P. W. Hake, et al. Peroxisome proliferator-activated receptor{delta} regulates inflammation via NF-{kappa}B signaling in polymicrobial sepsis [J]. Am J Pathol,2010,177(4):1834-1847.
    [201]W. W. Busse, R. F. Lemanske, Jr. Asthma [J]. N Engl J Med,2001,344(5): 350-362.
    [202]M. Cazzola, M. G Matera, J. Lotvall. Ultra long-acting beta 2-agonists in development for asthma and chronic obstructive pulmonary disease [J]. Expert Opin Investig Drugs,2005,14(7):775-783.
    [203]侯媛媛,李若洁,程彬峰等.清肺消炎丸对豚鼠的镇咳平喘作用研究[J].药物评价研究,2010,33(002):103-105.
    [204]E. Hashiba, T. Sato, K. Hirota, et al. The relaxant effect of propofol on guinea pig tracheal muscle is independent of airway epithelial function and beta-adrenoceptor activity [J]. Anesth Analg,1999,89(1):191-196.
    [205]C. K. Billington, R. B. Penn. Signaling and regulation of G protein-coupled receptors in airway smooth muscle [J]. Respir Res,2003,4:2.
    [206]G. Pelaia, L. Gallelli, A. Vatrella, et al. Potential role of potassium channel openers in the treatment of asthma and chronic obstructive pulmonary disease [J]. Life Sci,2002,70(9):977-990.
    [207]M. A. Giembycz, R. Newton. Beyond the dogma:novel beta2-adrenoceptor signalling in the airways [J]. Eur Respir J,2006,27(6):1286-1306.
    [208]S. S. Vansal, D. R. Feller. Direct effects of ephedrine isomers on human beta-adrenergic receptor subtypes [J]. Biochem Pharmacol,1999,58(5): 807-810.
    [209]V. R. Kee. Hemodynamic pharmacology of intravenous vasopressors [J]. Crit Care Nurse,2003,23(4):79-82.
    [210]Q. Shi, Y. Hou, J. Hou, et al. Glycyrrhetic acid synergistically enhances beta(2)-adrenergic receptor-Gs signaling by changing the location of Galphas in lipid rafts [J]. PLoS One,2012,7(9):e44921.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700