配置体外CFRP预应力筋混凝土梁的受力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
配置体外碳纤维(CFRP)预应力筋混凝土薄壁梁将成为新建桥梁结构修建和现有桥梁结构加固的一种较好的结构形式,而目前国内外尚缺乏有关该方面的设计规范,关于体外预应力筋应力增量的计算多用经验公式,或是借用体内无粘结预应力混凝梁预应力增量的计算公式,存在适用性差和准确性低的问题,关于配置体外CFRP预应力筋混凝土梁的受力性能和计算方法有待更全面和系统的研究。本文对体外CFRP预应力筋混凝土T梁和箱梁的弯曲受力性能进行了系统的试验研究和理论分析,以探求其受力性能和适用计算方法,完成了以下主要工作:
     (1)通过配置体外CFRP预应力筋混凝土梁的抗弯性能的破坏试验研究,对其受力过程、承载力、延性性能和破坏模式等进行了描述。从试验结果得知:配置体外CFRP预应力筋可以大幅度提高混凝土梁的承载力;期望在受压区混凝土压碎之前体外CFRP预应力筋不被拉断;梁体内非预应力钢筋可以明显改善配置体外CFRP预应力筋混凝土梁的裂缝分布和延性,就本文试件而言,配置体外CFRP预应力筋部分预应力混凝土梁的延性指标可达2.5左右;张拉体外预应力筋时是否持荷以及持荷大小对梁的抗弯性能影响很小,可以忽略。
     (2)编制了体外预应力混凝土梁的非线性分析程序。本程序可以对任意截面型式的预应力(体外预应力筋、体内无粘结预应力筋、体内有粘结预应力筋)混凝土梁和普通钢筋混凝土梁进行非线性全过程数值分析计算,程序可以就转向块的布置方式、体外预应力筋纵断面形状、体外筋有效预应力的大小及材性、张拉预应力筋时梁的持荷状态等因素对体外预应力混凝土梁在外荷载作用下的强度、变形特征、破坏模式等的影响进行分析研究。
     (3)以体内非预应力钢筋配筋率、体外预应力筋配筋率、体外预应力筋布置形式、预应力度、跨高比、荷载形式等为参数,用非线性分析程序对体预应力筋混凝土梁进行了参数分析,依据分析结果提出了以综合配筋指标和预应力度为参数的等效变形区长度的计算公式,进而提出了基于等效变形区长度的极限挠度计算公式;体内非预应力钢筋屈服前的挠度计算采用常用的部分预应力混凝土梁挠度计算公式;依据试验和非线性数值计算结果,将不同转向块布置形式的体外预应力混凝土梁简化为跨中一个转向块的体外预应力混凝土梁,推导了基于跨中挠度的体外预应力筋应力增量的简化计算公式。
     (4)通过配置体外CFRP预应力筋混凝土薄壁箱梁的短期均布荷载试验、长期持荷试验以及长期持荷后的破坏试验,研究了体外CFRP预应力筋的预应力损失、截面应力分布、变形性能及裂缝开展和分布,得到以下结论:混凝土开裂、长期持荷、体内非预应力受拉钢筋屈服等因素使翼缘有效宽度计算系数略有增加(小于8%);持续1001 d引起的CFRP筋预应力损失仅为1.47%,卸载后比卸载前仅减小1.27%;持荷1001d时L/2跨的长期挠曲变形实测值为初始变形的2.32~2.42倍,卸载20d后不可恢复变形为1001d变形的41%;持荷1001d受拉钢筋应变较初始值增加约65%,卸载后基本无残余应变;持荷1001d受压钢筋应变较初始值增加225%~268%,卸载并恢复20d后不可恢复应变为其1001d应变的53%;持续荷载作用顶板混凝土表面压应变前期发展较快,持荷2年左右基本上趋于稳定,持荷1001d压应变较初始值增加164%~224%;持续荷载作用下初始裂缝宽度随时间增加而增大,持荷2年左右裂缝宽度与长度基本上趋于稳定,持荷1001d实测裂缝宽度为初始值的1.59~2.69倍,卸载并恢复20d后变为不可见裂缝;箱梁底板横向裂缝一般自底板中部开展,并且在各试验阶段底板裂缝宽度沿横向分布均呈现中间宽两端窄;各试验阶段箱梁截面腹板处应变沿高度分布基本符合平截面假定。最后,针对配置体外CFRP预应力筋混凝土梁的受力特性,对各规范和规程中的裂缝计算公式进行了相应的修正,建立了适用于配置体外CFRP预应力筋混凝土箱梁和T梁短期和长期裂缝宽度的计算公式。
     (5)以Mindlin-Reissener中厚板理论为基础,以U.L列式法建立平板型壳元的几何非线性有限元基本方程,并将龙驭球提出的厚薄板通用无剪切闭锁板单元和具有平面内旋转自由度的任意四边形膜单元组合成板壳单元,然后引入分层法建立了几何材料双重非线性板壳有限元模型,并建立了无粘结预应力筋和双弹簧单元的几何非线性有限元基本方程,用双弹簧单元模拟无粘结预应力筋和混凝土之间的相互作用。以此为理论基础,编制了大型非线性板壳有限元计算程序,程序可以对体内、体外无粘结预应力混凝土板壳结构和普通钢筋混凝土板壳结构进行线弹性及双重非线性计算,可以分级加载来模拟结构从张拉预应力筋到受力破坏的全过程受力反应。
     (6)用有限元程序对配置体外CFRP预应力筋混凝土箱梁的抗弯性能进行参数分析,结果表明:梁的承载能力和刚度随混凝土强度的发展而提高;长期持荷会使已开裂梁的初始缺陷增大、承载能力和刚度降低;配置体外CFRP预应力筋的箱梁与配置体外预应力钢绞线的箱梁开裂荷载基本相等,箱梁开裂后配置体外CFRP预应力筋的箱梁刚度、屈服荷载和极限承载力略低。
     (7)用有限元程序对配置体外CFRP预应力筋混凝土箱梁的剪力滞效应进行分析,结果表明:体外预应力混凝土箱梁在线弹性阶段的受力适用叠加原理;体外预应力混凝土箱梁在外荷载作用下的翼缘有效宽度计算系数ρf与普通钢筋混凝土箱梁基本相同;箱梁在体外预应力筋作用下的ρf与箱梁体在体外预应力筋等效荷载作用下的ρf基本相同;不设转向块直线布置的体外预应力筋张拉力作用下,跨中附近梁段基本不存在剪力现象。
     (8)依据试验和分析结果,对配置体外CFRP预应力筋混凝土箱梁的有效宽度计算系数适当简化,并对配置体外CFRP预应力筋混凝土梁的张拉控制应力、体内非预应力受拉钢筋配筋率、相对受压区高度、极限承载能力计算、正常使用阶段验算等内容进行了系统建议和总结。
The thin-walled concrete beams prestressed with external CFRP tendons would become more popular both in new construction and in strengthening of existing structures. But there is no the design code for it so far at home and abroad. The prestress increment in external prestressed tendons is always analyzed with emprical formulas or analytical model for the analysis of the unbonded prestressed tendons, which is not inapplicable or inaccuracy sometimes. So the fomula for the external prestresse increment and the behaviors of concrete beam prestressed with external CFRP tendons need to be studied better. The flexural behaviors of the concrete T/box beam prestressed with external tendons were studied experimentally and theoretically, and the following works have been done:
     (1) Tests were carried out on 5 beams under four-point load, of which four beams were reinforced with hybrid both external CFRP tendons and internal reinforcement and another one only reinforced with internal ordinary steel bar. The beams’bearing capacity, deformation, ductility index, cracking pattern and failure mode were studied. It was showed that the the bearing capacity of the concrete beam can ben improved effectively by external prestressed tendons. The expected failure mode is the concrete crushing rather than the externally prestressed CFRP tendons rupturing. Non-prestressing internal reinforcement can improve the flexural behaviors of beams prestressed with external CFRP tendons effectively since it can lead to a more rational crack distribution and better ductility, and the ductility index of beams prestressed with external CFRP tendons in this paper can reach about 2.5. The initial loading state on the beam before tendon jacking has no significant influence on the ultimate capacity and deflection.
     (2) A program was developed to predict the behaviors of those beams prestressed with externally prestressed tendons. The flexural capacity, deformation and failure modes of beams with different parameters can be analyzed using the program, such as types of plan and prestressed tendons(extrenal prestessed tendons, internal unbonded prestressed tendons, internal bonded prestressed tendons), jacking and effective stress in external prestressed tendons, configuration of the deviators, properties of tendon, ratio of span to effective depth of the beam and load pattern, initial loading state at tendon jacking, etc.
     (3) Nonlinear behaviors of the concrete beam prestressed with external or internal unbonded tendons were studied by the program developed. Such parameters as the percentage of ordinary reinforcment, amounts and configuration of unbonded prestressed tendons, the ratio of span to depth and the loading patterns were considered. Based on the results, the fomula for the eqivalent length of deformation zone on the beams at ultimate were developed. A simple formula was developed for the ultimate mid-span deflection of concrete beams with concept of equivalent length of deformation zone, and the deformation of beam before internal reinforcement yielding was predicted by the traditional formula for the deformation of partically prestressed concrete beam. Then an analytical model was deduced for analyzing the ultimate stress increment in those concrete beams prestressed with external or internal unbonded tendons based on the mid-span deflection.
     (4) Testes were carried out on a thin-walled concrete box beam presressed with external CFRP tendons to study its short-term performances under uniform load, long-term behaviors under uniform load, and full-time performance under four-point load in turn. Prestressing loss of CFRP, stress/strain distribution in flange, deformation and crack distribution were studied. The results indicated that: effective width coefficient of compression top flange increased by less than 8% due to concrete cracking, long-term loading, and ordinary tension reinforcement yielding; the test value of deflection at mid-span at 1001 day was 2.32~2.42 times of the initial deflection, plastic deformation at 20 days after unloading was 41% of 1001 day’s; the strain of tensile reinforcement had a 65% increase than that of its initial value, and residual strain after unloading was about zero; the strain of compressed reinforcing steel bar had a 225%~268% increase than that of its initial value, and residual strain at 20 days after unloading was 53% of 1001 day’s; compression strain on top plate of the box girder under long-term load increased quickly in the early stage and became stable after 2 years, and it had a 164%~224% increase than that of its initial value at 1001 day; the crack width increased as time increased under long-term load, then it became stable after more or less 2 years, and it was 1.59~2.69 times than that of its initial value at 1001 day; most of the cracks in the bottom plate of box girder developed from middle of bottom plate, and they were wider in the middle of the bottom plate than at the bottom ends of the webs; the strain distributed over the section depth of web agreed well with plane assumption. Based on the behaviors of concrete beams prestressed with external CFRP tendons, the comformable formulars for predicting crack width of concrete box/T girder prestressed with external CFRP tendons were proposed by modifying traditional formulas in design codes for predicting the crack with of ordinary prestressed concrete beams.
     (5) Based on Mindlin-Reissener theories of thick plate, the fundamental geometric nonlinearity equations for flat-shell element were set up with U.L formulas. A flat-shell element was composed with the lock-free element for thick/thin plates(Yuqiu Long) and the four-nodded arbitrary quadrilateral finite element with in-plane rotational degree of freedom. Then the fundamental equations for plate/shell bi-nonlinear finite element model were set up with layered finite method. the fundamental geometric nonlinearity equations for the unbonded prestressed tendon and double spring element were proposed, and the double spring element was used to simulate the interaction of unbonded prestressed tendon and deviator. Based on these theories mentioned above, a finite element program for bi-nonlinear analysis of plate/shell concrete structure prestressed with external tendons was developed. Using this program, either linear elastic or bi-nonlinear anslysis can be conducted for both plate/shell concrete structures prestressed with external or internal unbonded tendons or ordinary reinforced concrete plate/shell structures. Further more, analysis for prestressed structure, where from the beginning of stretching prestressed tendons to failure at last, can be simulated with the method of incremental step loading.
     (6) Parametric studies on the flexural behaviors of the concrete box beam prestressed with external CFRP tendons were conducted using the finite element program. It’s concluded that the bearing capacity and the stiffness of the beam enhanced with the development of the concrete strength, the initial defect of the beam with crack increased and the bearing capacity and the stiffness reduced as time increased under the long-term load. The cracking load of the beam prestressed with external CFRP tendons was about same as that of beam prestressed with external stranded steel wire. The stiffness of the beam after the concrete cracking, yielding load and the ultimate bearing capacity of beam prestressed with external CFRP tendons were smaller than that prestressed with external stranded steel wire.
     (7) Shear-lag effect in flange of concrete box beam prestressed with external CFRP tendons was analyzed using the finite element program. The results indicated that the superposition principle can be used in the concrete box beam prestressed with external tendons in the linear elastic stage. Effective width coefficient of the flangeρf of box beam under the action of external prestressed force is the same as theρf of normal reinforced concrete box beam under the equivalent loads of external prestressed tendons. Theρf of the box girder under the action of the external prestressed tendon is basically the same as that of the reinforced concrete box girder under the action of the equivalent load of the external prestressed tendons. Basically there were no shear-lag effect existed in the elements beside the mid-span of the beam under the action of external prestressed tendons which lay out straightly with no deviator.
     (8) Based on the results of experimental and theoretical studies, the effective width coefficient of flange of box beam prestressed with external CFRP tendons was simplified appropriately, and design proposals of concrete beams prestressed with external CFRP tendons were put forward systematized, such as the stretching control stress of CFRP tendons, amount of the normal reinforcement, relative height of equivalent compression zone,method for ultimate bearing capacity and checking computations of the normal serviceability stage and so on.
引文
[1]冉一元.体外力筋预应力混凝土桥梁技术的发展.桥梁建设,1992,(4):40-46
    [2]林增官.预应力混凝土新结构在福州洪塘大桥上的应用. 92全国桥梁结构学术大会论文集.上海,1992,547~555
    [3] CORVEN A. Overview on External Prestressing in the World Application in South America. External Prestressing in Structures, 1993 : 55~62
    [4] Kreger M E, Fenves G L, EI-Habr K C. Finite Element Analysis of Externally Post-Tensioned Segmental Box Girder Construction. External Prestressing in Bridges. ACI Special Publication, 1990, 120(3): 389-408
    [5] Muller J, Gauthier Y. Ultimate Behavior of Precast Segmental Box Girders with External Tendons, External Prestressing in Bridges. ACI Special Publication, 1990, 120(3):355-373
    [6] Ramos G, Aparicio A C. Nonlinear Analysis of Externally Prestressed Structures for Ultimate Loads. AFPC External Prestressing in Structures, 1993: 175-184
    [7] Alkhairi F M. Analysis of Beam Pretressed with Unbounded Internal or External Tendons. Journal of Structural Engineering, 1993, 119 (9): 2680-2700
    [8] Tan K H, Naaman A E. Struct-and-tie Model for Extrenally Prestressed Beams. ACI Structural journal, 1993, 264(2): 683-691
    [9] Ramos G, Aparicio A C. Ultimate Behaveior of Externally Prestressed Concrete Bridges. Structural Engineering Internaltion, 1995, (3): 175-177
    [10] Rao P S, Mathew G. Behavior of Externally Prestressed Concrete Beams with Multiple Deviators. ACI Structural Journal, 1996, 93(4): 387-396
    [11] Mutsuyoshi H. , Tsuchida K. Flexural Behavior and Proposal of Exernally Presstressed concrete Members. Concrete Library of JSCE, 1996, (12):65- 77
    [12] Tan K H, Ng C K. Effects of Diviators and Tendon Configuration on Behavior of Exernallyprestressed Beam. ACI Structure Journal, 1997, 13-22
    [13] Tan K H, Ng C K. Effect of Shear in Externally Prestressed Beams. ACI Structural Journal, 1998, 95(2): 116-128
    [14] Harajli M H, Mabsout M E, Al-Hajj J A. Response of Externally Post-Tensioned Continuous Members. ACI Structural Journal, 2002, 99(5): 671-680
    [15] Ng C K. Tendon Stress and Flexural Strength of Externally Prestressed Beams. ACI Structural Journal, 2003, 100(5): 644-653
    [16] Naaman A E, Alkhairi F M. Stress at ultimate in unbonded post-tensioning tendons:Part 2-Proposed methodology. ACI Structural Journal, 1991, 88(6): 683-692
    [17] Aravinthan T, Witchukreangkrai E, Mutsuyoshi H. Flexural Behavior of Two-Span Continuous Prestressed Concrete Girders with Highly Eccentric External Tendonsh. ACI Structural Journal,2005 102(3): 402-411
    [18]张晓漪.张拉体外预应力的钢筋混凝土梁的设计.建筑结构学报,1985,(3):44-57
    [19]杜进生,叶见曙,赖国麟.体外预应力筋加固梁桥的抗弯极限强度的计算.华东公路,1991,(4):25-29
    [20]牛斌.体外预应力混凝土梁弯曲性能分析.土木工程学报,1999,32(4):37-44
    [21]单成林.体外预应力简支梁的配筋极限强度和使用阶段应力计算.华东公路,1995,(4):46-50
    [22]单成林.体外配筋的简支梁计算.重庆交通学院学报,1996,15(4):34-37
    [23]黄乔,张树仁.桥梁预应力体外索加固设计方法.中国公路学报,1993,6(1):47-54
    [24]孙海,黄鼎业,王增春等.体外预应力简支梁受力性能研究与非线性分析.土木工程学报,2000,33(2):25-29
    [25]王宗林.体外预应力混凝土桥梁极限状态分析. [哈尔滨工业大学博士学位论文], 2001
    [26]李方元.体外预应力混合高强混凝土连续梁结构行为的研究:[西南交通大学博士学位论文],成都:西南交通大学,2001
    [27]王彤.体外预应力混凝土桥梁设计理论研究:[哈尔滨工业大学博士学位论文],哈尔滨:哈尔滨工业大学,2003
    [28]张耀庭.体外无粘结预应力混凝土梁设计方法的理论与实验研究:[华中科技大学博士学位论文] .武汉:华中科技大学,2003
    [29]沈殷.体外预应力混凝土桥梁抗剪承载力研究:[同济大学博士学位论文],上海:同济大学,2004
    [30]卢文良.节段预制体外预应力混凝土梁设计理论研究:[北京交通大学博士学位论文],北京:北京交通大学,2004
    [31]楼铁炯.无粘结预应力梁的有限元建模与性能分析研究:[浙江大学博士学位论文],浙江:浙江大学,2005
    [32]李国平,沈殷.体外预应力筋极限应力和有效高度计算方法.土木工程学报,2007,40(2):47-52
    [33]李国平,张国泉.体外预应力混凝土连续梁弯曲性能试验研究.土木工程学报,2007,40(2):53-57
    [34]李国平.体外预应力混凝土简支梁剪切性能试验研究.土木工程学报,2007,40(2):58-63
    [35]李国平,沈殷.体外预应力混凝土简支梁抗剪承载力计算方法.土木工程学报,2007,40(2):64-69
    [36]《公路体外预应力混凝土桥梁设计指南》编写组.公路体外预应力混凝土桥梁设计指南(送审稿),2007
    [37] Japan Society of Civil Engineers. Recommendation for Design and Construction of Concrete Structures Using Continuous Fiber Reinforcing Materials. Research Committee on Continuous Fiber Reinforcing Materials. Tokyo: Japan Society for Civil Engineers, 1997, 1-83.
    [38] Canadian Standards Association. Canadian Highway Bridge Design Code (S6-96). Toronto: Canadian Standards Association, 1996, 60-94
    [39] Canadian Highway Bridge Design Code (S6-00). Canadian Standards Association. Toronto: Canadian Standards Association, 2000, 73-110
    [40] Canadian Standards Association. Design and Construction of Building Components with Fiber Reinforced Polymers (S806-00). Toronto: Canadian Standards Association, 2000, 1-120.
    [41] American Concrete Institute. Guide for Prestressed Concrete Structure With FRP Tendons (ACI 440.1R-03). Michigan: Farmingtons Hills, 2003, 1-153.
    [42] Grace N F, Abdel-Sayed G. Behavior of Externally Draped CFRP Tendons in Prestressed Concrete Bridges. PCI Journal, 1998, 43(5): 88-101
    [43] Grace N F, Abdel-Sayed G. Ductility of Prestressed Bridges Using CFRP Strands. ACI Concrete International, 1998, 20(6): 25-30
    [44] Grace N F. Continuous CFRP Prestressed Concrete Bridges. ACI Concrete International, 1999, 21(10): 42-47
    [45] Grace N F, Abdel-Sayed G. Behavior of Carbon Fiber-Reinforced Prestressed Concrete Skew Bridge. ACI Structural Journal, 2000, 97(1): 26-34
    [46] Grace N F, Abdel-Sayed G, Wahba J, etal. Mathematical Solution for Carbon Fiber-Reinforced Polymer Prestressed Concrete Skew Bridges. ACI Structural Journal, 1999, 96(6): 981-987
    [47] Grace N F, Tsuyoshi Enomoto, Saju Sachidanandan, etal. Use of CFRP/CFCC Reinforcement in Prestressed Concrete Box-Beam Bridges. ACI Structural Journal, 2006, 103(1): 123-132
    [48] Tjandra R A, Tan K H. Strengthening of RC continuous beams with external CFRP tendons. In: Fifth International Conference on Fiber Reinforced Plastics forReinforced concrete. Cambridge (England), Advanced Materials & Composites Nes, 2001, 661-669
    [49] EI-Hacha R, Elbadry M. Strengthening concrete beams with externally prestressed carbon fiber composite cables. In: Fifth International Conference on Fiber Reinforced Plastics for Reinforced Concrete. Cambridge (England), Advanced Materials & Composites Nes, 2001, 699-708
    [50]中国工程建设标准化协会.《碳纤维片材加固混凝土结构技术规程》.北京:中国计划出版社,2003.
    [51]方志,杨剑.预应力CFRP筋混凝土T梁受力性能试验研究.建筑结构学报,2005,26(5):66-73
    [52]方志,梁栋,蒋田勇.不同粘结介质中CFRP筋锚固性能的试验研究.土木工程学报,2006,39(6):47-51
    [53]曹国辉,方志.体外CFRP筋预应力混凝土箱梁长期受力性能试验研究.土木工程学报,2006,28(1):18-24
    [54]吕志涛. CFRP斜拉索的静力特性分析.中国公路学报,2004,17(2):43-47
    [55]王鹏、丁汉山、吕志涛、张义贵、张睿、朗冬梅.碳绞线体外预应力在桥梁中的应用.东南大学学报(自然科学版),2007,37(6):1061-1065
    [56]王彤,张亚军,张辉,等. FRP材料在体外预应力桥梁中的应用研究.玻璃钢/复合材料,2003(2):3-6
    [57]朱虹,张继文,吕志涛.体外预应力AFRP筋RC梁的试验研究与设计方法.第二届全国公路科技创新高层论坛文集. 2004,261-268
    [58] Ghallab A,BeebyA W. Behaviour of PSC beams strengthened by unbonded parafil ropes. Fift International Conference on Fiber Reinforced Plastics for Reinforced Concrete. 2001:671-680
    [59]高宏,张继文. AFRP筋体外预应力混凝土梁的自振频率分析.山西建筑,2005,31(24):56-57
    [60] Baker A L. Plastic theory of design for ordinary reinforced and prestressed concrete inducting moment redistribution in continuous members. Magazine of concrete research, 1949, 1(2): 57-66
    [61] Giford F. W. Design of simply supported prestressed concrete beams for ultimate loads. Proceedings, Institution of Civil Engineers, 1954, 3 (1): 125-143
    [62] Janney J R, Hognestad E, Mchenry D. Ultimate flexural streng of prestressed and conventionally reinforced concrete beams. ACI Structural Journal, 1956, 52(6): 601-620
    [63] Naaman A E, Alkhairi F M. Stress at ultimate in unbonded post-tensioning tendons: Part 1-Evaluation of the state-of-the-art. ACI Structural Journal, 1991, 88(5): 641-651
    [64]房贞政,宗周红.无粘结预应力筋极限应力的变形协调系数法.土木工程学报,1995,28(1):55-64
    [65] Aparicio A C, Ramos G. Flexural strength of externally prestressed concrete bridges. ACI Structural Journal, 1996, 93(5): 512-513
    [66] Panell F N. Ultimate Moment of Resistance of Unbonded Prestressed Concrete Beams. Magazine of Concrete Research, 1969, 21(66): 43-54
    [67] Tam A, Pannell F. The Ultimate Moment of Resistance of Unbonded Prestressed Partressed Reinforced Concrete Beams. Magazine of Concrete Research, 1976, 28(97): 203-208
    [68] Harajli M H, Hijazi S A. Evaluation of the Ultimate Steel Stress in Partially Prestressed Concrete Members. PCI Journal, 1991, 36(1): 62-82
    [69] Harajli M H. On the Stress in Unbonede Tendons at Ultimate: Critical Assessment and Proposed Changes. ACI Journal, 2006, 103(6): 803-812
    [70] Tam A, Panell F. N. Ultimate Moment of Resistance of Unbonded Partially Prestressed Reinforced Reinforced Concrete Beams. Magazine of Concrete Research, 1976, 28(97): 203-20
    [71] British Standards Institution. Structural use of concrete(Bs8110). London: British Standards Institution, 1985
    [72] Canadian Standards Association. Design of concrete structures(A23). Rexdale: Canada Canadian Standards Association, 1994, 3-94
    [73] Harajli M H. Efect of span-depth ratio on the ultimate steel stress in unbonded prestressed concrete members. ACI Structural Journal, 1990, 87(3): 305-312
    [74]杜进生,刘西拉.体外即无粘结预应力筋极限应力研究进展.公路交通科技,2000,17(6):37-40
    [75]中华人民共和国行业标准.无粘结预应力混凝土结构技术规程(JGJ92-2004).北京:中国建筑工业出版社,2005,16-44
    [76]方德平.考虑P-△效应的体外预应力梁的M-φ分析法.工程力学,2002,19(4):113-117
    [77] Burns N H, Charney F A, Vines W R. Tests of One-Way Psot-Tedsioned Slabs With Unbonded Tendons. PCI Journal, 1978, 23(5): 66-83
    [78]杜进生,刘西拉.基于结构变形的无粘结预应力筋应力变化研究.土木工程学报,2003,36(8):12-19
    [79]王景全,刘钊,吕志涛.基于挠度的体外与体内无粘结预应力筋应力增量.东南大学学报(自然科学版),2005,35(6):915-919
    [80]王彤,王宗林,张树仁.能量变分法求解体外索在外荷载作用下的应力增量.东北公路,2001,24(2):72-74
    [81]杜进生,赖国磷.无粘结部分预应力混凝土受弯构件正截面抗弯强度计算方法的研究.梁桥建设,1997,(3):13-15
    [82] Ament J, Chakrbard P R, Putcha C S. Comparative statistical study for the ultimate stress in unbonded post tensioning. ACI structural Journal, 1997, 94(2): 211-217
    [83] Chakrabarti P R. Ultimate stress of unbonded tendons in partially prestressed beams. ACI Structural Journal, 1995, 92(6): 689-697
    [84] Allouche E N, Campbell T I, Green M. F. et al. Tendon stress in continuous unbonded prestressed concrete members-Part 2: parametric study. PCI Journal, 1999, 44(1): 60-73
    [85]岑松,龙志飞.有限元法新论—原理·程序·进展.第一版.北京:中国水利水电出版社,2001,55-184
    [86] Dalen V, Narasimham S V. Shear lag in shallow wide-flanged box girders. Journal of the Structural Division, ASCE, 1976, 102(10): 1969-1979
    [87]张士铎,邓小华,王文州.箱形薄壁梁剪力滞效应.第一版.北京:人民交通出版社,1998, 1-11
    [88]房贞政,张士铎.悬臂箱梁的负剪力滞效应.湖南大学学报,1986,13(2):54-62
    [89] Malcolm D J, Rewood R G. Shear lag in stiffened box girders. Journal of the Structural Division, ASCE, 1970, 96(7): 1403-1419
    [90] Defries S A, Scordelis A C. Direct stiffens solution for folded plates. Journal of the Structural Division, ASCE, 1964, 90(4): 15-47
    [91] Chu K H, Pinjarkar S G. Multiple folded plate structures. Journal of the Structural Division, ASCE, 1966, 92(2): 297-321
    [92] Song Q G, Scordelis A C. Shear Lag Analysis of T-, I-, and Box Beams. Journal of the Structural Division, ASCE, 1990, 116(5): 1290-1305
    [93] Evans H R, Taherian A R. The prediction of the shear lag effect in box girders. Proc. Instn Civ. Engrs, Part2, 1977(5): 69-92
    [94] Taherian A R, Evans H R. The bar simulation method for the calculation of shear lag in multicell continuous box girders. Proc. Instn Civ. Engrs, Part2, 1977(12): 881-897
    [95]程翔云,汤康恩.计算箱形梁桥剪力滞效应的比拟杆法.中南公路工程,1984(1): 65-73
    [96] Foutch D A, Chang P C. A shear lag anomaly. Journal of Structural Engineering, ASCE, 1982, 108(7): 1653-1658
    [97]郭金琼,房贞政,罗孝登.箱形梁桥剪滞效应分析.土木工程学报,1983,16(1): 1-13
    [98] Chang S T, Ding Y. Shear lag effect in box girder with varying depth. Journal of Structural Engineering, ASCE, 1988, 114(10): 2280-2292
    [99]张士铎,王文州等.荷载横向作用位置对箱梁剪力滞效应的影响.湖南大学学报,1995,22(2): 109-115
    [100]魏丽娜,方放等.变截面箱形梁桥剪力滞效应的近似计算方法.土木工程学报. 1997,30(1): 64-71
    [101]项海帆.高等桥梁结构理论.北京:人民交通出版社,2001, 50-72
    [102]杨允表,黄剑源.变截面箱梁桥剪滞效应的有限差分法和有限元法.见:全国桥梁结构学术大会论文集,上海:同济大学出版社,1992, 823-828
    [103]罗旗帜.薄壁箱形梁剪力滞计算的梁段有限元法.湖南大学学报,1991,18(2): 33-38
    [104] Chang S T. Prestress influence on shear-lag effect in continuous box-girder bridge. Journal of the Structural Division, ASCE, 1992, 118(11): 3113-3121
    [105]经柏林.变截面长悬臂宽箱梁桥翼缘有效宽度研究. [湖南大学硕士学位论文].长沙:湖南大学土木工程学院,1998, 27-67
    [106] Prokic A. New finite element or analysis of shear-lag. Computers and Structures, 2002, 80(11): 1011-1024
    [107]彭大文,颜海.曲线脊骨箱梁的剪力滞效应分析.铁道学报,2001, 23(4):76-80
    [108] Wu Y P, Lai Y M, Zhu Y L, etal. Analysis of shear lag deformation effects in laminated composite box beams under bending loads. Composite structures, 2002, 55(2): 147-156
    [109] Wang Q F, Li W Y. Lateral bucking of thin-walled members with shear lag using spline finite member element method. Computers and Structures. 2000, 75(1): 81-91
    [110]韦成龙,曾庆元,刘小燕.薄壁箱梁的多参数翘曲位移函数及其有限元法.铁道学报,2000,22(5):60-64
    [111]李艳.钢筋混凝土薄壁箱梁的非线性受力性能分析:[湖南大学硕士学位论文],长沙:湖南大学,2003,76-99
    [112]曹国辉,方志,周先雁等.影响薄壁箱梁剪力滞系数的几何参数分析.中外公路,2003, 16(3): 39-41
    [113]刘永健,周绪红.单边索斜塔钢-混凝土组合梁斜拉桥塔梁根部应力分析.中国公路学报,2003,16(2): 65-69
    [114]何畏,强士中.板桁组合结构中混凝土桥面板有效宽度计算分析.中国铁道科学,2002,23(4): 55-61
    [115]程翔云,罗旗帜.箱梁在压弯荷载共同作用下的剪力滞.土木工程学报. 1991,24(1): 52-63
    [116] Luigino D, Fabrizio G, Graziano L. Time-dependment analysis of shear-lag effect in composite beams. Journal of Engineering Mechanics, ASCE, 2001, 127(1): 71-79
    [117]程海根,强士中.变截面悬臂箱梁剪滞效应分析.公路,2003(3): 54-56
    [118] Luo Q Z, Li Q S. Shear lag of thin-walled curved box girder bridge. Journal of Engineering Mechanics, ASCE, 2000, 126(1): 1111-1114
    [119] Scordelis A C, Bouwkamp J G, Wasti S T. Ultimate strength of a concrete box girder bridge. Journal of the Structural Division, ASCE, 1974, 100(1): 31-49
    [120] Scordelis A C, Bouwkamp J G, Seible F. Ultimate strength of skew RC box girder bridge. Journal of the Structural Division, ASCE, 1982, 108(1): 105-121
    [121] Scordelis A C, Larsen P K, Elfgren L G. Ultimate strength of curved RC box girder bridge. Journal of the Structural Division, ASCE, 1977, 103(8): 1525-1541
    [122] Evens H R, Ahmadm K H, Kristek V. Shear lag in composite box girders of complex cross section. Journal of Constructional Steel Research, 1993, 24(3): 183-204
    [123]方志,曹国辉,王济川.钢筋混凝土连续箱梁剪力滞效应试验研究.桥梁建设,2000,153(4): 1-3
    [124]曹国辉.钢筋混凝土箱梁剪力滞效应分析与试验研究: [湖南大学硕士学位论文].长沙:湖南大学土木工程学院,2000, 27-69
    [125]祝明桥.混凝土箱梁受力性能的试验研究与分析:[湖南大学博士学位论文].长沙:湖南大学,2005, 90-118
    [126]方淑君,戴公连,狄谨.梁板结构在轴力及弯矩作用下截面剪力滞效应的研究.长沙铁道学院学报,2001, 30(12): 45-48
    [127]李德建,戴公连,黄玉盈.混凝土斜拉桥肋板式主梁截面应力分布特性.华中科技大学学报,2002, 30(12): 107-110
    [128]吴文清,叶见曙.波纹钢腹板箱梁在对称荷载作用剪力滞效应的试验研究.中国公路学报,2003, 16(2): 48-51
    [129] SI Units. AASHTO LRFD Bridge Design Specifications. Washington: American Association of State Highway and Transportation Officials, 2004: 4-45-4-51
    [130]中华人民共和国行业标准.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004).北京:人民交通出版社,2004,60-139
    [131]华东预应力混凝土技术开发中心.后张预应力混凝土手册.南京:东南大学出版社.第一版,1990,242-245
    [132] GB50152-92.混凝土结构试验方法标准.北京:中华人民共和国原城乡建设环境保护部,1992,18-22
    [133] Mohamed H. Harajli. STRENGTHENING OF CONCRETE BEAMS BY EXTERNAL PRESTRESSING. PCI JOURNAL, 1993, 38(6): 76-89
    [134] Carin L. Roberts-Wollmann, Michael E, Kreger, D avid M. Rogowsky, and John E. Breen. Stresses in External Tendons at Ultimate. ACI Structural Journal, 2005, 102(2)
    [135]杜进生,刘西拉.基于结构变形的无粘结预应力筋变化研究.土木工程学报,2003,36(8):12-19
    [136]祝明桥,方志.混凝土箱梁体外预应力筋应力增量的全过程试验研究.桥梁建设,2003,6:8-14
    [137] Naaman A E, JEONG S M. Structural ductility of concrete beams prestressed with FRP tendons. In: Non-metallic (FRP) reinforcement for concretes structures, Proceeding of the 2th international RILEM symposium (FRPRCS-2), London: Taerwe, E& FN Spon, 1995, 379-386
    [138]方志,Campbell T I.不锈钢和CFRP混合配筋预应力混凝土梁的延性和变形性能.工程力学,2005,22(3):190-197
    [139] Pillai S U, Kirk D W, Erki M A. Reinforced Concrete Design (Third Edition), Toronto: McGraw-Hill Ryerson, 1999, 87-98.
    [140]杨剑,CFRP预应力筋超高性能混凝土梁受力性能研究:[湖南大学硕士学位论文].长沙:湖南大学土木工程学院,2007,62-70, 72-85
    [141] Kato T, Hayashida N. Flexural Characteristics of Prestressed Concrete Beams With CFRP Tendons. ACI SP-138, 1993, 419-440
    [142] Taniguchi H, Mutsuyoshi H, Kita T, et al. Ductile Behaviour of Beams Using FRP as Tendons and Transverse Reinforcement. ACI SP-138, 1993, 651-670
    [143] Kakizawa T, Ohno S, Yonezawa T. Flexural Behavior and Energy Absorption of Carbon FRP Reinforced Concrete Beams. ACI SP-138, 1993, 585-598
    [144] Jaeger I G, Tadros G, Muftim A A. Balanced Section, Ductility and Deformability in Concrete with FRP Reinforcement. Halifax: Technical University of Nova Scotia, 1995, 20~22
    [145] Mufti A A, Newhook J P, Tadros G. Deformability versus ductility in concrete beams with FRP reinforcement. In: Proc. 2nd int. Confon Advanced Composite Materials in Brides and Structures, Montreal, 1996, 198 -199
    [146] ISIS Canada. Reinforcing Concrete Structure With Fibre Reinforced Polymers (Draft). ISIS-M04-00, 2000, 36~93
    [147] Abdelrahman A A, Tadro G, Rizkalla S H. Test Model for the first Canadian Smart Highway Bridge. ACI Structure Journal, 1995, 92(4): 451-458
    [148] Zou P. Flexural behavior and deformability of Fiber reinforced Polymer Prestressed concrete beams. ASCE Journal of Composites for Construction, 2003, 7(4): 275-284
    [149] Dolan C W, Burke C R. Flexural strength and Design of FRP prestressed Beams. In: Proceedings of the second international conference on Advanced Composite materials in bridges and structures (ACMBS2), Quebec, 1996, 383-390
    [150]中华人民共和国国家标准.混凝土结构设计规范(GB 50010-2002).北京:中国建筑咨询网,2002,87-174
    [151]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性分析有限元理论与应用.第一版.上海:同济大学出版社,2002,13-138
    [152]朱伯龙,董振祥.钢筋混凝土非线性分析.第一版.上海:同济大学出版社,1986,50-167
    [153] Burns N H, Charney F A, Vines W R. Tests of One-Way Psot-Tensioned Slabs With Unbonded Tendons. PCI Journal, 1978, 23(5): 66-83.
    [154] Compbell T I, Chouinard K L. Influence of Nonprestressed Reinforcement on the Strength of Unbonded Partially Prestressed Concrete Members. ACI Structural Journal, 1991, 88(5): 546-551
    [155]房贞政.预应力结构理论与应用.北京:中国建筑工业出版社,2005, 117-119.
    [156]沈蒲生.混凝土结构设计原理.北京:高等教育出版社,2002:217-223
    [157]杨春峰,郑文忠,于群.钢筋混凝土受弯构件塑性铰的试验研究.低温建筑技术,2003(1):38-40
    [158] Mattock A H. Rotational Capacity of Hinging Regions in Reinforced Concrete Beams. Proceedings of the International Symposium on Flexural Mechanics of Reinforced Concrete, Miami:ASCE-ACI, 1964:259-271
    [159]王传志,腾智明.钢筋混凝土结构理论.北京:中国建筑工业出版社,1985,366-392
    [160]王福明,曾建民,钢筋混凝士压弯构件塑性铰的试验研究.太原工业大学学报,1989,20(4):20-29
    [161] Du G C, Tao X K. Ultimate Stress of Unbonded Tendons in Partially Prestressed Concrete Beams. PCI journal, 1985, 30(6): 73-91
    [162] Campbell T I, Chouinard K L. Influence of Nonpressed Reinforcement on the Strength of Unbonded Partially Prestressed Concrete Members. ACI Structural Journal, 1991, 88(5): 546-551.
    [163]张仲先,张耀庭.体外预应力混凝梁体外筋应力增量的试验与研究.铁道工程学报,2003(4):75-80.
    [164]王绍义,狄蓓蕾,邓向辉.体外预应力小梁试验研究与分析.上海公路,1998(B12):197-206
    [165] Grace N F, Solman A K, Bdel-Sayed G A, et al. Behavior and Ductility of Simple and Continuous FRP Reinforced Beams. Journal of Composites for Construction, 1998, 2(4): 186~194.
    [166] American Concrete Institute440. Guide for the Design and Construction of concrete Reinforced with FRP Bars (ACI440. 1R-01). Michigan: Farmingtons Hills, 2001, 1-78.
    [167]丁大钧.钢筋构件抗裂度、裂缝和刚度.南京:南京工学院出版社,1986,32-56.
    [168] Dolan C W, Hamilton H R, Bakis C E, et al. Design Recommendations for Concrete Structures Prestressed with FRP Tendons (FHWA–DTFH61-96-C- 00019). Washington, Federal Highway Administration (FHWA), 2001, 1-193.
    [169]中华人民共和国行业标准.铁路桥涵钢筋混凝土和预应力混凝土结构设计规范(TB 10002. 3-2005).北京:中国铁道出版社,2005,63-108
    [170] Jofriet J C, McNeice G M.Finite Element Analysis of Reinforced concrete slabs.Journal of the Structural Division, ASCE, 1971, 97(3): 785-806
    [171] Polak M A, Vecchio F J.Nonlinear Analysis of Reinforced-Concrete Shells.Journal of the Structural Engineering, ASCE, 1993, 119(12): 3439-3462
    [172] Hu H, Schnobrich W C. Nonlinear Analysis of Cracked Reinforced Concrete.ACI Structural Journal , 1990, 87(2): 199-207
    [173] Hand F R, Pecknold D A, Schnobrich W C. Nonlinear Layered Analysis of RC Plates and Shells.Journal of the Structural Division, ASCE, 1973, 99(7): 1491-1505
    [174]Mindlin R D. Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates. Journal of Applied Mechanics, 1951,(18): 31-39
    [175] Reissner E. The effect of transverse shear deformation on the bending of elastic plates. Journal of Applied Mechanics, 1945, 12: 69
    [176]何君毅.工程结构非线性问题的数值解法.国防工业出版社, 1994,119-121,126, 119-131
    [177]蒋见鲸,钢筋混凝土结构非线性有限元分析,西安:陕西科学技术出版社出版,1994,57-62
    [178] Hinton E, Huang H C.A family of Quadrilateral MINDLIN Plate Elements with Substitute Shear Strain Fields. Computers and Structures, 1986, 23(3): 409-431
    [179] Wempner G A, Oden J T, Dross D A. Finite element analysis of shells. J. Engng. Mech. ,Div. ASCE, 1968, 94(EM6): 1273-1294
    [180] Zienkiewicz O C, Taylar R L, Papadopoulos P, etal. Plate Bending Elements with Discrete Constrains New Trianglar Elements. Computers and Structures, 1990, 48(3): 505-522
    [181]江见鲸,陆新征,叶列平.混凝土结构有限元分析,北京,清华大学出版社,2005,111-112
    [182]熊学玉.体外预应力结构设计.第一版.北京:中国建筑工业出版社,2005:17-18
    [183]朱伯芳.有限单元法原理与应用.第二版.北京:中国水利水电出版社,1998,292-293
    [184]朱虹,钱洋.工程结构用FRP筋的力学性能.建筑科学与工程学报. 2006, 23(3):26-31
    [185] ACI Committee 440. Guide for Test Methods for Fiber Reinforced Polymers (FRP) for Reinforcing and Strengthening Concrete Structures, (ACI 440. 3R-04). Michigan: Farmingtons Hills, 2004, 1-86

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700