微型飞行器姿态的智能控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微型飞行器(MicroAircraft Vehicle-MAV)具有研制及生产成本低、携带便捷、噪声小、重量轻、隐蔽性强、后期维护比较容易等诸多优点。本文主要以姿态稳定控制、位置导航控制内外双回路中的内回路(姿态稳定控制回路)为研究对象。由于MAV姿态控制系统受到各种外界扰动及参数变化、建模误差等原因引起的不确定性等因素的影响,本文以自适应控制技术、滑模控制技术以及模糊神经网络等作为理论研究工具,设计稳定性好、鲁棒性强的MAV飞行姿态控制系统。主要做了如下几方面的工作:
     本文首先分析了MAV的惯性特性,研究了MAV在飞行过程中机体动力与动力矩以及MAV质心的线运动与机体绕质心旋转的运动方程,得出MAV的动力学模型,给出用于姿态控制的基础数学模型。
     其次,研究了区间二型模糊神经网络的网络结构及学习算法,通过对动态系统辨识的仿真表明其相对于一型模糊神经网络更高的辨识精度。因此,本文基于区间二型模糊神经网络理论,依据对MAV姿态模型的认知程度不同,针对MAV姿态控制系统受到各种外界扰动及参数变化、建模误差等原因引起的不确定性等因素的影响,研究了三种控制器:
     第一种:微型飞行器姿态的区间二型模糊神经网络鲁棒自适应控制器。该控制器由传统的PD控制器与区间二型模糊神经网络控制器两部分构成。其中,区间二型模糊神经网络控制器由两个区间二型模糊神经网络组成,其一用来在线学习微型飞行器姿态的逆模型,而另一个是前一个的复制,用来在线学习,实时补偿跟踪误差。
     第二种:微型飞行器姿态的区间二型模糊神经网络滑模自适应控制器。该控制器协调了MAV姿态的自身结构知识及控制知识,采用一个加权因子来结合间接模糊神经网络控制器和直接模糊神经网络控制器,通过输出反馈控制律和自适应律对其进行在线调整网络参数。
     第三种:微型飞行器姿态的区间二型模糊神经网络间接自适应控制器。该控制器充分利用微型飞行器姿态的标称模型,利用区间二型模糊神经网络用来在线逼近系统不确定性,鲁棒补偿器用来实时补偿区间二型模糊神经网络的逼近误差以及外界扰动。
     最后,对三种控制器进行仿真对比分析。无论是否考虑不确定性及外界扰动的存在,三种控制器均满足微型飞行器姿态控制的性能要求。然而,从控制精度、响应速度两个方面出发,得出区间二型模糊神经网络间接自适应控制器相对于其它两个控制器来说,是控制MAV飞行姿态的最佳控制方案。
MAV (Micro Aircraft Vehicle) has the advantages of low cost, convenient,lightness, small noise, strong concealment, easier maintenance, and so on. MAVcontrol system was divided into two parts: inner loop and outer loop usually, theinner loop represents the attitude stable control; the outer loop represents the positionnavigation control. This paper focuses on the inner control loop (attitude stablecontrol) of MAV control system, that is to say, this paper takes MAV attitude controlsystem as the research object. But, the MAV attitude control system is influenced byvarious kinds of outside interference and uncertainty, which is caused by variousparameters change, modeling error and other factors. So this paper takes adaptivecontrol technology, the sliding mode control technology, and fuzzy neural networktheory as a research tool to design stable and robust attitude control system of MAV.The main works in this dissertation are arranged as follows:
     Firstly, the inertial characteristics were analysized, the effects of dynamic forcesand moments on airframe, the dynamical and kinematical equations of centroidmovement and encircling the centroid movement of MAV were also studied, themathematical model of MAV attitude was presented for control.
     Secondly, the structure and learning algorithms of Interval Type II Fuzzy NeuralNetwork were studied, which has higher precision than Type I Fuzzy NeuralNetwork for dynamic system identification. So, this paper based on the Type II Fuzzy Neural Network theory and MAV attitude model cognitive degree, threecontrollers are studied here for ensuring the robustness and stability of MAV attitudecontrol system:
     The first kind of controller:robust adaptive controller based on Interval Type IIFuzzy Neural Network. This controller was composed of traditional PD controllerand Interval Type II Fuzzy Neural Network controller, which was constituted by twoInterval Type II Fuzzy Neural Networks, one of Interval Type II Fuzzy NeuralNetworks was used to study the inverse model of MAV attitude, the other one wasthe copy of the first one, tuned online and used to compensate tracking error in thereal-time.
     The second kind of controller:adaptive sliding mode controller based onInterval Type II Fuzzy Neural Network. A weighting factor, which can be adjustedbased on the trade-off between plant knowledge and control knowledge, wasincluded when combining the control efforts of the indirect adaptive Interval Type IIFuzzy Neural Network controller and the direct adaptive Interval Type II FuzzyNeural Network controller. The free parameters of which can be tuned on-line by anoutput feedback control law and adaptive laws
     The third kind of controller:Indirect adaptive controller based on Interval TypeII Fuzzy Neural Network. This controller makes full use of the nominal model ofMAV attitude. The uncertainties of system were approached by Interval Type IIFuzzy Neural Network online, the approximation error of Interval Type II FuzzyNeural Network and external interference were compensated by robust compensator.
     Finally, the performances of three controllers were compared and analyzed inthe simulation. The performances of three controllers could meet the performancerequirements of the MAV attitude control nomatter whether under the considerationof system uncertainties and external interferences. However, the indirect adaptivecontroller based on Interval Type II Fuzzy Neural Network is the optimal controlscheme relative to the other two controllers from control accuracy aspect andresponse speed aspect.
引文
[1]肖永利,张探.微型飞行器的研究现状与关键技术[J].宇航学报,2001,22(5):26-32
    [2]陈国栋,贾培发,刘艳.微型飞行器的研究与发展[J].机器人技术与应用,2006,2:34-44
    [3]黄信安,翁梓华,陈智敏等.微型飞行器的研究进展[J].机电技术,2003,B09:63-65
    [4]梁秋憧,程维明,蒋蔡等.微型飞行器的研究与发展[J].机床与液压,2003,49(3):13-15
    [5]李占科,宋笔锋,宋海龙.微型飞行器的研究现状及其关键技术[J].飞行力学,2003,21(4):1-4
    [6]白越,孙强,李也凡.六转子飞行器[P].中国专利,101704412A.2010-05-12
    [7]白越,孙强,李也凡.具有滚转功能的六转子飞行器[P].中国专利,101704413A.2010-05-12
    [8]白越,高庆嘉,孙强等.六旋翼飞行器[P].中国专利,101973394A.2011-02-12
    [9]白越,高庆嘉,孙强等.一种可折叠的六轴多旋翼飞行器[P].中国专利,101992854A.2011-03-30
    [10]白越,孙强,李迪,高庆嘉,续志军,陈向坚.具有滚动功能的十二转子飞行器[P].中国专利,101823555A.2010-09-08
    [11]白越,孙强,李迪,高庆嘉,续志军,陈向坚.共轴反转双转子十二旋翼飞行器[P].中国专利,101823556A.2010-09-08
    [12] Xiaoli Ma and Gang Tao. Adaptive Actuator Compensation Control withFeedback Linearization [J]. IEEE Transactions on Automatic Control,2000,45(9):1705-1710
    [13] Alexander V Roup and Dennis S. Bernstein. Adaptive Stabilization of a Class ofNonlinear Systems with Nonparametric Uncertainty [J]. IEEE Transactions onAutomatic Control.2001,46(11):1821-1825
    [14] Jee-Hwan Ryu, Jinil Song and Dong-Soo Kwon. A Nonlinear FrictionCompensation Method Using Adaptive Control and Its Practical Application to anIn-parallel Actuated6-DOF Manipulator [J]. Control Engineering Practice,2001,9(2):159-167
    [15] N. V Q. Hung, H. D. Tuan and T. Narikiyo. Adaptive Controls for NonlinearlyParameterized Uncertainties in Robot Manipulators [C]. Proceedings of the41St IEEEConference on Decision and Control, Las Vegas, Nevada USA,2002:1727-1732
    [16] C.C. Cheah, C. Liu and J. J. E. Slotine. Approximate Jacobian Adaptive Controlfor Robot Manipulators [C]. Proceedings of the2004IEEE International Conferenceon Robotics and Automation, New Orleans, LA,2004:3075-3080
    [17] X. T. Zhang, D. M. Dawson and M. S. de Queiroz. Adaptive Control for a Classof MIMO Nonlinear Systems with Non-symmetric Input Matrix [C]. Proceedings ofthe2004IEEE International Conference on Control Applications, Taipei, Taiwan,2004:1324-1329
    [18] E. Tatlicioglu, M. McIntyre and D. Dawson. Adaptive Nonlinear TrackingControl of Kinematically Redundant Robot Manipulators with Sub-Task Extensions[C]. Proceedings of the44th IEEE Conference on Decision and Control, and theEuropean Control Conference2005, Seville, Spain,2005:4373-4378
    [19] Chunling Wei, Qiangde Wang and Yuqing Wu. Adaptive Control of NonlinearSystems with Unknown Control Directions [C]. Proceedings of the6th WorldCongress on Intelligent Control and Automation, Dalian, China,2006:1994-1998
    [20] Zhihua Qu, Richard A. Hull and Jing Wang. Globally Stabilizing AdaptiveControl Design for Nonlinearly-Parameterized Systems [J]. IEEE Transactions onAutomatic Control,2006,51(6):1073-1079
    [21] Zheng mao Ye, Pradeep Bhattacharya and Habib Mohamadian. EquationalDynamic Modeling and Adaptive Control of UAV [C]. Proceedings of the2006IEEE/SMC International Conference on System of Systems Engineering, LosAngeles,CA, USA,2006:339-343
    [22] Guoyuan Qi, Zengqiang Chen and Zhuzhi Yuan. Adaptive High OrderDifferential Feedback Control for Affine Nonlinear System [J]. Chaos Solitons andFractals,2006,28(1):1-8
    [23] J H Chen, Y Z Yea. Neural network model Predictive control for nonlinearMIMO Processes with unmeasured dist Urbanees [J]. Chemical Engineering,2002.35(2):150-159.
    [24] Sunan N. Huang, K. K. Tan and T. H. Lee. Further Results on Adaptive Controlfor a Class of Nonlinear Systems Using Neural Networks [J]. IEEE Transactions onNeural Network,2003,14(3):719-722
    [25] Chuan-Kai Lin. Adaptive Critic Control of Autonomous Underwater VehiclesUsing Neural Networks [C]. Proceedings of the Sixth International Conference onIntelligent Systems Design and Applications(ISDA'06),2006:238-243
    [26] B M Akesson, H T Toivonen. A new network model Predictive controller [J].Joumal of Control,2006,16(9):937-94
    [27] Amoghna Das, I. N. Kar and S. Chaudhury. Simple Neuron-Based AdaptiveController for a Nonholonomic Mobile Robot Including Actuator Dynamics [J].Neurocomputing,2006,69(16-18):2140-2151
    [28] Chun-Han Hong, Kwang-Chan Choi, and Byoung-Soo Kim. Applications ofAdaptive Neural Network Control to an Unmanned Airship [J]. International Journalof Control, Automation, and Systems,2009,7(6):911-917
    [29] Dan Wang, Jialiang Huang, Weiyao Lan, Xiaoqiang Li. Neural network-basedrobust adaptive control of nonlinear systems with unmodeled dynamics [J].Mathematics and Computers in Simulation,2009,79(5):1745-1753
    [30]于凤仙,连华,张力军.模糊神经网络控制器在飞行器姿态控制中的应用[J].航天控制,1999,1:43-48
    [31] Nikola K. Kasabov. On-line learning, reasoning, rule extraction and aggregationin locally optimized evolving fuzzy neural networks [J]. Neurocomputing,2001,41(1-4):25-45
    [32] F. J. Lin, H. J. Shieh, P. H. Shieh, and P. H. Shen. An adaptiverecurrent-neural-network motion controller for X–Y table in CNC machine [J]. IEEETrans. Syst., Man, Cybern. B, Cybern,2006,36(2):286-299
    [33] F. J. Lin and P. H. Shen. Adaptive fuzzy-neural-network control for a DSP-basedpermanent magnet linear synchronous motor servo drive [J]. IEEE Trans. Fuzzy Syst,2006,14(4):481-495
    [34] Cheng-Jian Lin, Cheng-Hung Chen. A compensation-based recurrent fuzzyneural network for dynamic system identification [J]. European Journal of OperationalResearch,2006,172(2):696-715
    [35] Chi-Huang Lu, Ching-Chih Tsai. Generalized predictive control using recurrentfuzzy neural networks for industrial processes [J]. Journal of Process Control,2007,17(1):83-92
    [36]孙强,程明.基于模糊神经网络的双凸极永磁电机非线性建模[J].控制理论与应用,2007,27(4):601-605.
    [37] Kuo-Hsiang Cheng. Auto-structuring fuzzy neural system for intelligent control[J]. Journal of the Franklin Institute,2009,346(3):267-288
    [38] Chia-Feng Juang, Yang-Yin Lin, Chiu-Chuan Tu. A recurrent self-evolvingfuzzy neural network with local feedbacks and its application to dynamic systemprocessing [J]. Fuzzy Sets and Systems,2010,161(19):2552-2568
    [39] Napolitano M.R., Kincheloe M. On-line Learning Neural Network Controllersfor Autopilot System [J]. Journal of Guidance Control and Dynamics,1995,18(6):1008-1015.
    [40] Y. Li, N. Sundararajan, P. Saratchandran. Neuro-controller design for nonlinearfighter aircraft maneuver using fully tuned RBF networks [J]. Automatica,2001,37(8):1293-1301
    [41] Cafise A.J., Johnson E.N., Johnson M.D, etal. Applications of AdaptiveNeural-Network Control to Unmanned Aerial Vehicles[R]. AIAA/ICAS InternationalAir and Space Symposium and Exposition: The Next100Years, Dayton, OH, July2003.
    [42]扈宏杰.神经网络控制理论的研究及其在高精度仿真转台系统中的应用[D]:[博士学位论文].北京:北京航空航天大学,2001
    [43]尹江辉,刘艇,王立新.模糊神经网络在过失速机动飞行中的应用[J].飞行力学,2001,19(1):42-44
    [44]王源.不确定非线性系统的神经网络自适应重构控制[D]:[博士学位论文].南京:南京航空航天大学,2002
    [45] D. Schafroth, C. Bermes, S. Bouabdallah, R. Siegwart. Modeling, systemidentification and robust control of a coaxial micro helicopter [J]. Control EngineeringPractice,2010,18(7):700-711
    [46] Lorenzo Marconi, Roberto Naldi, Luca Gentili. Modelling and control of aflying robot interacting with the environment [J]. Automatica,2011,47(12):2571-2583
    [47]贾杰,荆泉.飞行器再入姿态双环滑模控制及其逻辑选择[J].航天控制,2006,3:25-28
    [48]刘智平,周凤岐,周军.具有参数不确定性的飞行器的变结构姿态控制[J].宇航学报,2007,28(1):42-48
    [49]段洪君.微型飞行器飞行姿态控制方法研究[D]:[博士学位论文].哈尔滨:哈尔滨工业大学,2007
    [50]熊柯,夏智勋,郭振云.基于自适应滑模控制的高超声速巡航飞行器攻角控制律设计[J].弹箭与制导学报,2010,6:35-38
    [51]刘洁,张华,王述一,刘子龙.一类单输入单输出的典型非线性系统神经网络滑模控制[J].自动化与仪表,2004,4:11-13
    [52]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,43(3):407-418
    [53]郁明,丛爽.基于径向基函数神经网络滑模控制的运动控制系统[J].系统仿真学报,2009,776-779
    [54]杨伟民,潘丽姣,陆华才.基于神经网络的永磁直线同步电机自适应滑模控制[J].电气自动化,2009,4:65-69
    [55]王俊生.四旋翼碟形飞行器控制系统设计及控制方法研究[D]:[硕士学位论文].北京:国防科学技术大学,2007
    [56]李彬,邵汉永,姜长生.空天飞行器姿态运动的模糊滑模鲁棒控制研究[J].电光与控制,2008,10:21-25
    [57]崔海涛.基于动态逆的质量矩拦截弹模糊滑模控制[J].哈尔滨工业大学学报,2008,5:673-677
    [58]汪伟,边信黔,王大海.AUV深度的模糊神经网络滑模控制[J].机器人,2003,3:209-213
    [59]王瑞明,蒋静坪.双模糊神经网络的滑模控制感应电动机伺服驱动研究[J].电工电能新技术,2008,2:26-29
    [60]王瑞明,刘青松,蒋静坪.感应电动机伺服系统模糊神经网络滑模控制[J].农业机械学报,2008,7:169-172
    [61] Faa-Jeng Lin, Rong-Jong Wai. Adaptive and fuzzy neural network sliding-modecontrollers for motor-quick-return servomechanism [J]. Mechatronics,2003,13(5):477-506
    [62] Chyi-Tsong Chen, Shih-Tien Peng. A nonlinear control scheme for impreciselyknown processes using the sliding mode and neural fuzzy techniques [J]. Journal ofProcess Control,2004,14(5):501-515
    [63] Shuanghe Yu, Xinghuo Yu, Zhihong Man. A fuzzy neural network approximatorwith fast terminal sliding mode and its applications [J]. Fuzzy Sets and Systems,2004,148(3):469-486
    [64] Miroslav Baric, Ivan Petrovic, Nedjeljko Peric. Neural network-based slidingmode control of electronic throttle [J]. Engineering Applications of ArtificialIntelligence,2005,18(8):951-961
    [65] Hyun-Sik Kim, Yong-Ku Shin. Expanded adaptive fuzzy sliding mode controllerusing expert knowledge and fuzzy basis function expansion for UFV depth control [J].Ocean Engineering,2007,34(8-9):1080-1088
    [66] Lon-Chen Hung, Hung-Yuan Chung. Decoupled sliding-mode with fuzzy-neuralnetwork controller for nonlinear systems [J]. International Journal of ApproximateReasoning,2007,46(1):74-97
    [67] Ahmad Bagheri, Jalal Javadi Moghaddam. Simulation and tracking controlbased on neural-network strategy and sliding-mode control for underwater remotelyoperated vehicle [J]. Neurocomputing,2009,72(7-9):1934-1950
    [68] Takagi H, Hayashi I. Artificial-Neural-Network-Driven Fuzzy Reasoning [C].Proc. Int. Workshop Fuzzy System Application, Iizuka, Japan,1988,217-218
    [69] Takagi H. Fusion Technology of Fuzzy Theory and Neural Networks-Surveyand Future Directions [C]. Proc.Int.Conf.Fuzzy Logic and Neural Networks, Iizuka,Japan,1990,13-26
    [70] Takagi T, Sugeno M. NN-Dirven Fuzzy Reasoning [J]. Int. J. ApproximateReasoning,1991,5:191-212
    [71] Lee C C. Fuzzy Logic in Control Systems:Fuzzy Logic Controller [J].Part I,II,IEEE Trans. Syst. Man and Cybern,1990,20:404-436
    [72] Wang L X, Mendel J M. Back-Propagation Fuzzy System as Nonlinear DynamicSystem Identifiers[C]. Proc. IEEE Int. Conf. Fuzzy Systems, San Diego,1992:1409-1418
    [73] Jang J-S R. ANFIS: Adaptive-Network-Based Fuzzy Inference System [J]. IEEETrans. Syst, Man, Cybern,1993,23:665-681
    [74] Sun C. Rule-Based Structure Identification in an Adaptive-Network-BasedFuzzy Inference System [J]. IEEE Transaction on Fuzzy Systems,1994,2:64-73
    [75]张友旺.基于动态递归模糊神经网络的自适应电液位置跟踪系统[J].控制理论与应用,2005,22(4):551-555
    [76]俞建成,张艾群,王晓辉等.基于模糊神经网络水下机器人直接自适应控制[J].自动化学报,2007,33(8):840-847
    [77]吴成勇,王士同.分组区间二型模糊神经网络抗噪逼近器的研究[J].计算机工程与应用,2011,47(26):40-42
    [78] Tsung-Chih Lin. Hybrid adaptive interval type-2fuzzy sliding mode controllerfor chaos synchronization of uncertain chaotic systems [C],2010InternationalSymposium on Computer Communication Control and Automation,2010:598-601
    [79]李岩,王东风,韩璞.广义动态模糊神经网络及其在热工辨识中的应用[J].电力科学与工程,2009,25(7):38-42
    [80]张思扬,匡芳君,徐蔚鸿.广义动态模糊神经网络及在轴承故障诊断中的应用[J].煤矿机械,2010,31(10):251-255.
    [81]颜本伟,邓辉文.基于GD-FNN的药物注射系统辨识[J].科学技术与工程,2010,10(33):8151-8156.
    [82]王力,王永超,金勇.基于广义动态模糊神经网络的电液伺服系统控制[J].机床与液压,2011,39(5):27-30
    [83]张德丰,卢清华,周燕.一种新型的动态模糊神经网络算法[J].控制工程,2009,4:464-469
    [84]潘志毅,周宁.模糊神经网络在图像目标检测中的应用[J].微计算机信息,2010,5:42-43
    [85]潘志毅.模糊神经网络在图像微弱目标检测中的应用[D]:[硕士学位论文].北京:电子科技大学,2009
    [86]王永超,金勇,王力.基于模糊神经网络的电液伺服系统建模[J].计算机仿真,2011,5:184-187
    [87]王桂英,刘玥彤.动态模糊神经网络在DTC系统中的应用[J].沈阳农业大学学报,2010,2:244-246
    [88]邱敏敏.遗传算法和模糊神经网络自适应控制在梭式窑控制中的应用研究[D]:[博士学位论文].江西:景德镇陶瓷学院,2009
    [89]康科.基于动态模糊神经网络的信道盲均衡的研究[D]:[硕士学位论文].燕山:燕山大学,2009
    [90]左涛.永磁直线同步电机动态模糊神经网络速度控制器设计[D]:[硕士学位论文].辽宁:沈阳工业大学,2009
    [91]刘小艳.动态模糊神经网络在综合评判中的应用[D]:[硕士学位论文].西安:西安科技大学,2011
    [92]吕景秀.基于模糊神经网络的变频调速系统故障诊断的研究[D]:[硕士学位论文].河南:河南理工大学,2009
    [93]赵祝伟.基于神经网络的不确定非线性系统的自适应控制[D]:[硕士学位论文].南京:南京信息工程大学,2008
    [94]何烈堂,曾庆华.微型飞行器优化设计及气动特性分析[J].飞行力学,2003,21(2):31-33
    [95]罗东明,昂海松,周军,郑祥明.螺旋桨式微型飞行器飞行特性分析[J].航空计算技术,2003,3:35-38
    [96]McKerrow P. Modelling the Draganflyer four-rotor helicopter [C]. Proceedings ofthe IEEE International Conference on Robotics and Automation,2004:3596-3601.
    [97]Mao Sun and Shi Long Lan. A Computational Study of the Aerodynamic ofDraganfly Hovering [J]. The Forces and Power Requirements Journal of ExperimentalBiology,2004,207(11):1887-1901
    [98]Jinhyun. Accurate modeling and robust hovering control for a Quad-rotor VTOLaircraft [J]. Intelligent Robot System,2004,57:9-26
    [99]李锋,石文,欧忠明等.微型飞行器气动特性与飞行控制[J].空气动力学学报,2005,23(1):84-87
    [100]翟彬.小型无人机飞控系统实时仿真技术研究[D]:[硕士学位论文].河南:郑州大学,2007
    [101] P. Pounds, R. Mahony, P. Corke. Modelling and control of a large quadrotorrobot [J]. Control Engineering Practice,2010,18(7):691-699.
    [102] Gabriel M. Hoffmann, Haomiao Huang, Steven L. Waslander, Claire J.Tomlin. Precision flight control for a multi-vehicle quadrotor helicopter tested [J].Control Engineering Practice,2011,19(9):1023-1036
    [103]杨轻.无人机自主起飞、着陆控制系统设计[D]:[硕士学位论文].南京:南京航空航天大学,2011
    [104] Wu S Q, Er M J. Dynamic fuzzy neural networks-a novel approach tofunction approximation [J]. IEEE Transactions on Systems, Man, and Cybernetics,Part B,2000,30(2):358-364
    [105] Wu S Q, Er M J, Gao Y. A fast approach for automatic generation of fuzzyrules by generalized dynamic fuzzy neural networks [J]. IEEE Transactions on FuzzySystems,001,19(4):578-594
    [106] Wang J S, Lee C S G. Self-adaptive recurrent neuro-fuzzy control of anautonomous underwater vehicle [J]. IEEE Transactions on Robotics and Automation,2004,19(2):283-295
    [107] Gao Y, Er M J, Yang S. Adaptive control of robot manipulators using fuzzyneural networks [J]. IEEE Transactions on Industrial Electronics,2001,48(6):1274-1278
    [108] C. Lee, J. Hong, Y. Lin, andW. Lai. Type-2fuzzy neural network systems andlearning [J]. Int. J. Computation and Cognition,2003,1:79~90
    [109] M. Singh, S. Srivastava, J. R. P. Gupta, and M. Hanmandlu, A type-2fuzzyneural model based control of a nonlinear system [C] In Proc. IEEE Int. Conf. Cybern.Intell. Syst,2004,2:1352-1356.
    [110] M. Karakose and E. Akin. Type-2fuzzy activation function for multi-layerfeedforward neural networks [C]. In Proc. IEEE Int. Conf. Syst., ManCybern,2004,4:3762-3767.
    [111] C. H. Wang, C. S. Cheng, and T. T. Lee. Dynamical optimal training forinterval type-2fuzzy neural network (T2FNN)[J] IEEE Trans. Syst., Man, Cybern. B,Cybern,2004,34(3):1462-1477
    [112] Juan R. Castro, Oscar Castillo, Patricia Melin, Antonio Rodríguez-Díaz.Ahybrid learning algorithm for a class of interval type-2fuzzy neural networks [J].Information Sciences,2009,179(13):2175-2193
    [113] Faa-Jeng Lin, Syuan-Yi Chen, Po-Huan Chou, Po-Huang Shieh. Intervaltype-2fuzzy neural network control for X–Y–Theta motion control stage using linearultrasonic motors [J]. Neurocomputing,2009,72(4-6):1138-1151
    [114] Rahime Ceylan, Yüksel zbay, Bekir Karlik.A novel approach forclassification of ECG arrhythmias: Type-2fuzzy clustering neural network [J]. ExpertSystems with Applications,2009,36(3):6721-6726
    [115] Olivia Mendoza, Patricia Melín, Oscar Castillo. Inverse Control ofCable-driven Parallel Mechanism Using Type-2Fuzzy Neural Network [J]. ActaAutomatica Sinica,2010,36(3):459-464
    [116] Tsung-Chih Lin. Based on interval type-2fuzzy-neural network directadaptive sliding mode control for SISO nonlinear systems [J]. Communications inNonlinear Science and Numerical Simulation,2010,15(12):4084-4099
    [117] Erdal Kayacan, Yesim Oniz, Ayse Cisel Aras, Okyay Kaynak, Rahib Abiyev.A servo system control with time-varying and nonlinear load conditions using type-2TSK fuzzy neural system [J]. Applied Soft Computing,2011,11(8):5735-5744
    [118]张友旺.电液伺服系统的动态递归模糊神经网络辨识与鲁棒控制研究[D]:[博士学位论文].长沙:中南大学,2006
    [119]张友旺.基于动态递归模糊神经网络的动态系统辨识[J].中南工业大学学报(自然科学版),2003,277-280
    [120]张友旺,桂卫华,赵泉明.基于动态递归模糊神经网络的自适应电液位置跟踪系统[J].控制理论与应用,2005,4:551-556
    [121]张友旺.间接自适应动态递归模糊神经网络控制器设计[J].中南大学学报(自然科学版),2004,35(2):254-259
    [122]张朝霞,海振宏,王华奎.基于动态递归模糊神经网络盲均衡算法的研究[J].系统仿真学报,2008,2:539-541
    [123]黄元峰,刘源,胡波.动态递归模糊神经网络及其BP学习算法[J].武汉化工学院学报,2004,4:65-68
    [124]陈向坚,白越,续志军等.基于自结构动态递归模糊神经网络的无人机姿态控制[J].计算机应用研究,2011,9:124-129
    [125]张思扬,匡芳君,徐蔚鸿.广义动态模糊神经网络及在轴承故障诊断中的应用[J].煤矿机械,2010:251-254
    [126]赵敏,颜文俊,郑军.基于广义动态模糊神经网络的电厂锅炉燃烧优化建模[J].热力发电,2010,3:19-22
    [127]马莉,张德丰.基于广义动态模糊神经网络的算法研究[J].计算机工程与设计,2009,20:4727-4730
    [128] Chen Xiangjian, Li Di, Bai Yue, Xu Zhijun. Modeling and Neuro-Fuzzyadaptive attitude control for Eight-Rotor MAV [J]. International journal of control,automation and systems,2011,9(6):1154-1163
    [129] Xiangjian Chen, Di Li, Zhijun Xu, Yue Bai. Robust control of quadrotorMAV using self-organizing interval type-II fuzzy neural networks (SOIT-IIFNNs)controller [J]. International Journal of Intelligent Computing and Cybernetics,2011,4(3):397-412
    [130]陈向坚,李迪,白越等.模糊神经网络在自适应双轴运动控制系统中的应用[J].光学精密工程.2011,19(7):1644-1650.
    [131] Nie J, Linkens D. Fuzzy-Neural Control: Principles, Algorithms andApplications. Upper Saddle River, NJ: Prentice-Hall,1995
    [132] Cannon M R, Slotine J-J E. Space-Frequency Localized Basis FunctionNetworks for Nonlinear System Estimation and Control [J]. Neurocomputing,1995,9:293-342
    [133] Meng Joo Er, Chang Boon Low, Khuan Holm Nah, eat. Real-timeimplementation of a dynamic fuzzy neural networks controller for a SCARA [J].Microprocessors and Microsystems,2002,26(9-10):449-461

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700