岩浆岩侵入对瓦斯赋存的控制作用及突出灾害防治技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淮北矿区受燕山期岩浆活动影响,煤与瓦斯突出灾害严重。国内外对岩浆岩对瓦斯赋存规律的控制作用、岩浆岩侵入和突出之间关系的研究相对较少,现有的对岩浆岩侵入煤层瓦斯赋存规律的认识与瓦斯治理技术措施尚不能保证矿区的安全高效生产。本文以岩浆岩侵入严重的卧龙湖和海孜井田为研究对象,运用构造地质学、瓦斯地质学、岩相学、地球化学、吸附科学、绿色开采等多学科理论,采用理论分析、实验室实验和工程实践相结合的研究方法,系统的开展了淮北煤田区域岩浆活动时空演化过程、井田岩浆岩产状和分布规律、岩浆岩侵入对煤的多元物性参数和吸附解吸性能的影响、岩浆岩的热演化和圈闭作用对瓦斯赋存的控制作用、岩浆岩侵入矿井敏感指标体系、分区治理技术及工程实践等方面的研究,取得一定的创新成果。本文主要研究结论如下:
     靠近环形岩床,卧龙湖煤的镜质组反射率(Ro)由2.74%增加到5.03%。岩浆岩热演化范围为60m左右。根据Ro的变化规律,发现了卧龙湖井田10煤层自然形成的三个区域:岩浆覆盖区(接触变质区,距离岩床0~5m),热演化区(距离岩床5~60m)和正常区(岩床边界60m以外);靠近120m左右巨厚岩床,海孜煤样Ro由2.30%增大到2.78%,岩床热演化范围为160m左右。发现巨厚岩床下伏7、8、9、10煤层自然形成的两个区域:岩浆岩热演化区(岩床下60~160m)和正常区(岩床下160m以外)。
     获得了卧龙湖和海孜井田岩浆岩侵入区附近煤层(群)瓦斯赋存规律。接触变质作用降低了卧龙湖井田(距离岩床0~5m)煤的吸附瓦斯能力,热演化作用提高了(距离岩床5~60m)煤的吸附能力。海孜井田巨厚岩床的热演化作用提高了下伏煤层群(距离岩床60~160m)的吸附瓦斯能力;卧龙湖岩床圈闭区10煤层出现异常高压现象,实测最大压力为4.30MPa,含量26.30m3/t,发生过两次突出;海孜岩床覆盖区煤层中CH4含量和组分均高于未覆盖区煤层,热演化区发生了11次突出。现场数据和突出验证了上述结论。
     系统研究了岩浆侵入矿井突出煤层敏感指标及临界值确定的方法和程序。根据卧龙湖井田10煤层瓦斯含量与压力的关系,考虑10煤层为高变质无烟煤,残存瓦斯含量较高,认为采用瓦斯含量作为区域敏感指标较为安全合理,临界值定为9.50m3/t;现场测10煤层钻屑指标发现,K1值敏感性高于h2,钻屑量S不具有敏感性。通过实验室瓦斯压力与实际解吸量拟合得到幂指数关系方程,确定了局部敏感指标临界值。
     根据岩浆岩对煤层的不同自然分区的瓦斯吸附能力评价,获得了卧龙湖10煤层瓦斯赋存规律。根据区划结果,采取了瓦斯分区治理技术,突出危险区采用底板岩巷穿层钻孔与顺层钻孔相结合的瓦斯抽采模式。区域预抽后,采用敏感指标临界值进行区域验证,确定消除了突出危险。工程实践验证了敏感指标临界值和分区治理技术的有效性。
Huaibei Coalfield was influenced by the Cretaceous Yanshanian magmaticmetamorphism, where coal and gas outburst disasters seriously. This paper takes coal samplesfrom the Wolonghu Mine and Haizi Mine at various distances from sills as the main studyobject, systematically carrying out study of various aspects on the spatial-temporal evolutionof regional magmatism process, influences of igneous intrusions on coal rank, microporecharacteristics and adsorption capacity, the control effect of the thermal evolution and trapeffects of the sill intrusions on the gas occurrence and outburst, the partition controltechnology and engineering practice. The main conclusions are as follows:
     Approaching the sill in the Wolonghu Mine, vitrinite reflectance (Ro) levels increasedfrom2.74%to5.03%, and the thermal aureole of the sill~60m. Three zones of the No.10coal seam along this gradient were identified as corresponding to: contact metamorphic zone(0-5m from sill), thermal evolution zone (5-60m from sill), and unaltered zone. Approachingthe~120m extremely thick sill,Ro increased from2.30%to2.78%, and the thermal aureoleof the sill~160m. Two zones along this gradient were identified as corresponding to: thermalevolution zone (60-160m from sill) and unaltered zone (160m away from sill).
     The gas occurrence of coalseams near magmatic intrusion in the Wolonghu and HaiziMines was obtained. It is concluded that the contact-metamorphism decreased the adsorptioncapacity of Wolonghu coal in the contact metamorphic zone, and the thermal evolution of sillincreased it of the thermal evolution zone. The thermal evolution of the extremely thick sill inHazi Mine increased the adsorption capacity of the thermal evolution zone (60-160m fromsill). Two and eleven outbursts have occuured in sill thermal evolution zone of the Wolonghuand Haizi Mine. There was abnormally high formation pressure in the No.10coal seam of thering-sill trap zone in the Wolonghu Mine. The CH4content and composition of sill coveredcoal were higher than those without sill coverage coal in the Haizi Mine.
     Study on a method and procedures to determine the sensitive indicators and critical valueof coal seam with outburst dangerous in igneous intrusion mine. According to the relationshipbetween gas contents and pressures of the No.10coal seam in the Wolonghu Mine.Considered the factor that of the No.10coal seam was high rank anthracite and with highresidual gas content, showed the gas content as the region sensitive indicator is more safer andreasonable, with the critical value of9.50m3/t. Field test the cuttings indicators of the No.10coal seam found thatK1is more sensitive than h2, and the drilling cuttings amount S is notsensitive.
     The gas deposit law of the No.10coal seam in Wolonghu Mine wae obtained. In outburst danger zone of the No.10coal seam, where surrounding rock lane borehole wearseam drilling, along the coal seam drilling and infill drilling in the thermal evolution zone gasextraction mode was implemented. After the region methane pre-pumping, the measuredmaximum gas content of the coal face108was7.82m3/t, less than the critical value of theregional sensitive indicator9.50m3/t. The outburst dangerous of coal face108has beeneliminated. Engineering practice verified the effectiveness of the partition control methanetechnology and sensitive indicator threshold.
引文
[1] Beamish, B.B. Crosdale, P.J. Instantaneous outbursts in underground coal mines: an overview andassociation with coal type[J]. International Journal of Coal Geology,1998,35(1-4):27–55.
    [2] Lama, R.D. Bodziony, J. Management of outburst in underground coal mines[J].International Journal ofCoal Geology,1998,35(1-4):83–115.
    [3]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [4]王以峰,王彬章,赵雪兵.岩浆岩侵入对下部煤层瓦斯赋存的影响[J].煤炭技术,2007(3):84-85.
    [5]乔康存,赵玉明.安林煤矿岩浆岩侵入对煤层瓦斯赋存的影响[J].煤矿安全,2003,34(10):4-6.
    [6]王亮,程元平,蒋静宇等.巨厚火成岩下采动裂隙场与瓦斯流动场耦合规律研究[J].煤炭学报,2010,35(8):1287-1291.
    [7]国家煤矿安全监察局.防治煤与瓦斯突出规定[M].北京:煤炭工业出版社,2009.
    [8]邱家骧.岩浆岩岩石学[M].北京:地质出版社,1985.
    [9]李捷.岩浆岩与变质岩简明教程[M].北京:石油工业出版社,2008.
    [10] Mathieu, L.Vanwykdevries, B. Holohan, E. P. et al. Dykes, Cups, saucers and sills: Analogueexperiments on magma intrusion into brittle rocks[J]. Earth and Planetary Science Letters,2008,271(1/4):1–13.
    [11] Cooper, J. Crelling, J. Rimmer, S. et al. Coal metamorphism by igneous intrusion in the Raton Basin,CO and NM: Implications for generation of volatiles[J]. International Journal of Coal Geology,2007,71(1):15–27.
    [12] Cooper, J. Igneous intrusions and thermal evolution in the raton basin, co-nm: contactetamorphismand coal-bed methane generation[D]. University of Missouri-Columbia,2006.
    [13] Gurba, L.W. Ward, C. R. Vitrinite reflectance anomalies in the high-volatile bituminous coals of theGunnedah Basin, New South Wales, Australia[J]. International Journal of Coal Geology,1998,36(1-2):111-140.
    [14] Golab, A. Carr, P. Palamara, D. Influence of localised igneous activity on cleat dawsonite formation inLate Permian coal measures, Upper Hunter Valley, Australia. International Journal of Coal Geology[J],2006,66(4):296-304.
    [15] Sarana, S. Kar, R. Effect of igneous intrusive on coal microconstituents: Study from an IndianGondwana coalfield[J]. International Journal of Coal Geology,2011,85(1):161–167.
    [16] Li, W. Cheng, Y.P. Wang, L. The origin and formation of CO2gas pools in the coal seam of theYaojie coalfield in China[J]. International Journal of Coal Geology,2011,85(2):227–236.
    [17] Wang, D.Y. Lu, X.C. Xu, S.J. et al. Comment on “Influence of a basic intrusion on the vitrinitereflectance and chemistry of the Springfield (No.5) coal, Harrisburg, Illinois” by Stewart et al.(2005)International Journal of Coal Geology,2008,73(2):196-199.
    [18] Valentim, B. Guedes, A. Rodrigues, S. et al. Case study of igneous intrusion effects on coal nitrogenfunctionalities[J]. International Journal of Coal Geology,2011,86(2-3):291–294.
    [19] Barker, C.E. Goldstein, R.H. Fluid inclusion techniques for determining maximum temperature incalcite and its comparison to vitrinite reflectance geothermometer[J]. Geology,1990,18(10):1003–1006.
    [20] Barker, C.E. Bone, Y. Lewan, M.D. Fluid inclusion and vitrinite-reflectance geothermometrycompared to heat-flow models of maximum paleotemperature next to dikes, western onshore GippslandBasin, Australia[J]. International Journal of Coal Geology,1998,37(1-2):73–111.
    [21] Rimmer, S.M. Yoksoulian, L.E. Hower, J.C. et al. Anatomy of an intruded coal, I: Effect of contactmetamorphism on whole-coal geochemistry, Springfield (No.5)(Pennsylvanian) coal, Illinois Basin[J].International Journal of Coal Geology,2009,79(3):74–82.
    [22] Mastalerz, M. Drobniak, A. Schimmelmann, A. Changes in optical properties, chemistry, andmicropore and mesopore characteristics of bituminous coal at the contact with dikes in the Illinoisbasin[J]. International Journal of Coal Geology,2009,77(3-4):310-319.
    [23] Golab, A.N. Carr, P.F. Changes in geochemistry and mineralogy of thermally altered coal, UpperHunter Valley, Australia[J]. International Journal of Coal Geology,2004,57(3-4):197–210.
    [24] Dai, S.F. Li, D.H. Ren, D.Y. et al. Geochemistry of the late Permian No.30coal seam, Zhijin Coalfieldof Southwest China: influence of a siliceous low-temperature hydrothermal fluid[J]. AppliedGeochemistry.2004.19(8):1315-1330.
    [25] Dai, S.F. Ren, D.Y. Effects of magmatic intrusion on mineralogy and geochemistry of coals from theFengfeng-Handan coalfield, Hebei, China[J]. Energy&Fuels,2007,21(3):1663-1673.
    [26] Dai, S.F. Tian, L.W. Chou, C.L.et al. Mineralogical and compositional characteristics of Late Permiancoals from an area of high lung cancer rate in Xuan Wei, Yunnan, China: Occurrence and origin ofquartz and chamosite[J]. International Journal of Coal Geology,2008,76(4):318-327.
    [27] Dai, S.F. Wang, X.B. Zhou, Y.P.et al. Chemical and mineralogical compositions of silicic, mafic, andalkali tonsteins in the late Permian coals from the Songzao Coalfield, Chongqing, Southwest China[J].Chemical Geology,2011,282(1-2):29-44.
    [28]代世峰,任德贻,张军营等.华北与黔西地区晚古生代煤层中铂族元素赋存状态及来源[J].地质评论,2003,19(4):439-444.
    [29]代世峰,任德贻,刘建荣等.河北峰峰矿区煤中微量有害元素的赋存与分布[J].中国大学学报,2003,32(4):358-362.
    [30]代世峰,任德贻,李生盛等.华北地台晚古生代煤中微量元素及As的分布[J].中国矿业大学学报,2003,32(2):111-114.
    [31]代世峰,任德贻,李生盛等.华北若干晚古生代煤中稀土元素赋存特征[J].地球学报,2003,24(3):273-278.
    [32] Yang, Q. Ren, D.Y. Pan, Z.G. The Preliminary Investigation on the Metamorphism of ChineseCoals[J], International Journal of Coal Geology,1982,2(1):31-48.
    [33]杨起,潘治贵,翁成敏等.华北石炭、二叠纪煤变质特征与地质因素探讨[M].北京:地质出版社,1988.
    [34]杨起,汤达祯.华北煤变质作用对煤含气量和渗透率的影响[J].地球科学,2000,25(3):273-277.
    [35]韩德鑫.中国煤田地质学[M].北京:煤炭工业出版社,1961.
    [36]韩德鑫.中国煤岩学[M].徐州:中国矿业大学出版社,1995:219-222.
    [37]韩德鑫,彭苏萍.我国煤矿高产高效矿井地质保障系统研究回顾及发展构想[J].中国煤炭,2002,28(2):5-10.
    [38]张子敏,张玉贵.瓦斯地质规律与瓦斯预测[M].北京:煤炭工业出版社,2005.
    [39]张子敏,林又岭,吕绍林.中国煤层瓦斯分布特征[M].北京:煤炭工业出版社,1998.
    [40]张子敏,高建良,张瑞林,等.关于中国煤层瓦斯区域分布的几点认识[J].地质科技情报,1999,18(4):67-70.
    [41]张子敏,张玉贵.瓦斯地质图与瓦斯治理[J].煤炭学报,2005,30(4):455-458.
    [42]张子敏,张玉贵.大平煤矿特大型煤与瓦斯突出瓦斯地质分析[J].煤炭学报,2005,30(2):137-140.
    [43]秦勇.中国高煤级煤的显微岩石学特征及结构演化[J].矿业世界,1994,(2):54-56.
    [44]秦勇.中国高煤级煤的显微岩石学特征及结构演化[M].徐州:中国矿业大学出版社,1994.
    [45]秦勇,傅雪海,叶建平等.中国煤储层岩石物理学因素控气特征及机理[J].中国矿业大学学报,1999,28(1):14-19.
    [46] Qin Yong. Mechanism of CO2enhanced CBM recovery in China: a review[J]. Journal of ChinaUniversity of Mining and Technology,2008,18(3):406-412.
    [47] Gao Di, Qin Yong, Yi Tong-sheng. CBM geology and exploring-developing stratagem in GuizhouProvince, China[J]. Procedia Earth and Planetary Science,2009,1(1):882-887.
    [48] Jianping Chen, Yong Qin, Bryan G. Huff. et at. Geochemical evidence for mudstone as the possiblemajor oil source rock in the Jurassic Turpan Basin, Northwest China[J]. Organic Geochemistry,2001,32(9):1103-1125.
    [49] Gurba, L.W. Weber, C.R. Effects of igneous intrusions on coalbed methane potential, Gunnedah Basin,Australia[J]. International Journal of Coal Geology,2001,46(2-4):113–131.
    [50] Yao, Y.B. Liu, D.M. Huang, W.H. Influences of igneous intrusions on coal rank, coal quality andadsorption capacity in Hongyang, Handan and Huaibei coalfields, North China[J], International Journalof Coal Geology,2011,88(2-3):135-146.
    [51] Yao, Y.B. Liu, D.M. Tang, D.Z. Fractal characterization of adsorption-pores of coals from NorthChina: An investigation on CH4adsorption capacity of coals[J]. International Journal of Coal Geology,2008,73(1):27-42.
    [52] Yao, Y.B. Liu, D.M. Tang, D.Z. et al. A compreliensive model for evaluating coalbed methanereservoirs in China[J]. Acta Geologica Sinica: English edition,2008,82(6):1253-1270.
    [53] Yao, Y.B. Liu, D.M. Tang, D.Z. et al. Preliminary evaluation of the coalbed methane productionpotential and its geological controls in the Weibei coalfield, southeastern Ordos basin, China[J].International Journal of Coal Geology,2009,78(1):1-15.
    [54] Yao, Y.B. Liu, D.M. Tang, D.Z. et al. Petrophysical characterization of coals by low-field nuclearmagnetic resonance (NMR)[J]. Fuel,2010,89(7):1371-1380.
    [55] Yao, Y.B. Liu, D.M. CHE, Y. et al.Non-destructive characterization of coal samples from China usingmicrofocus X-ray computed tomography. International Journal of Coal Geology,2009,80(2):113-123.
    [56]姚艳斌,刘大锰,汤达祯等.沁水盆地煤储层微裂隙发育的煤岩学控制机理[J].中国矿业大学学报,2010,39(1):6-11.
    [57]章照明.火成岩侵入煤层瓦斯涌出规律研究[D].安徽理工大学,2008.
    [58] Anderson, S.B. Outbursts of methane gas and associated mining problems experienced at TwistdraaiColliery[C]. In: Lama, R.(Ed.), Proceedings of the Int. Symposium Cum Workshop on Management&Control of High Gas Emissions&Outbursts, Wollongong, pp.1995:423–434.
    [59] Saghafi, A. Pinetown, K. Grobler, P. et al. CO2storage potential of South African coals and gasentrapment enhancement due to igneous intrusions. International Journal of Coal Geology,2008,73(1):74–87.
    [60]赵明鹏,王宇林,梁冰,等.煤(岩)与瓦斯突出的地质条件研究--以阜新王营矿为例[J].中国地质灾害与防治学报,1999,10(1):14-19.
    [61]裴印昌,龚邦军,杨志.大兴井田火成岩活动与瓦斯突出的关系[J].煤炭技术,2007,26(5):71-73.
    [62] S Y Wu, Y Y Guo, Y X Li. Research on the mechanism of coal and gas outburst and the screening ofprediction indices [J]. Procedia Earth and Planetary Science,2009,1(1):173-179.
    [63] Bobrov A. I. Present day status and prospects for solution of gas-dynamic phenomena in mines [J].Ugol’ Ukr,1998,39(1):63-67.
    [64] Wostenholme, E.F. Arscottr, L. Methane drainage[J]. Colliery Guardian,1989,217(9):514-520.
    [65] H.马雷舍夫等著,魏风清,张建国译.煤与瓦斯突出预测方法和防治措施[M].北京:煤炭工业出版社,2003.
    [66] Ettinger, I.L. Pokazatel sklonnosti ugla k vybrosam ugla i gaza[J]. Ugol,1952(10):31–34.
    [67] Ettinger, I.L. Zhupakhina, E.S. Schterenberg, L.E. Methods of Allowing Forecasting in the Seams ofCoal Zoned Subject to Instantaneous Outbursts. Extract from Academy of Sciences of the USSR,Institute of Mines Central Committee of Measures Against Instantaneous Outbursts, Moscow, ChercharTranslation No.1, Paris.1958:11-50.
    [68] Lidin, D.L. Ettinger, I.L. Zhupakhina, E.S. et al. Determination of the rate of gas emission as a methodof detecting zones liable to sudden outbursts[J]. Ugol,1954(29):21–24.
    [69] Frid V I. Electromagnetic radiation method for rock and gas outburst forecast [J]. Journal of AppliedGeophysics,1997,38(2):97-104.
    [70] He Xueqiu, Zhou Shining. Rheological Hypothesis of Coal and Gas Outburst Mechanism[J]. Journalof University of Ming&Technology.1994,4(1):15-23.
    [71]王恩元,何学秋,李忠辉等.煤岩电磁辐射技术及其应用[M].北京:科学出版社,2008.
    [72]王恩元,何学秋,聂百胜等.电磁辐射法预测煤与瓦斯突出原理[J].中国矿业大学学报,2000,29(3):225-229.
    [73]何继善.瓦斯突出地球物理研究[J].北京:煤炭工业出版社,1999:1-29.
    [74]邵军.关于钻屑瓦斯解吸指标的探讨[J].煤矿安全,1991(03):34-39.
    [75]王佑安,王魁军.工作面预测敏感指标确定方法探讨[J].煤矿安全,1996(7):29-30.
    [76]程五一,栾永详.确定工作面突出预测指标临界值方法的研究[J].煤矿安全,1996(10):12-16.
    [77]胡千庭,文光才,徐三民.工作面突出预测敏感指标及临界值确定方法的研究[J].煤炭工程师。1998(增刊).
    [78]王兆丰,陈建忠,尹建国等.潘三矿综合指标法预测突出及其临界值分析[J].煤炭科学技术,2010,38(1):31-34.
    [79]李成武,何学秋.工作面煤与瓦斯突出危险程度预测技术研究[J].中国矿业大学学报,2005,34(1):71-76.
    [80]韩树棻.两淮地区成煤地质条件及成煤预测[M].北京:地质出版社,1990.
    [81]焦殿志,刘双跃.卧龙湖煤矿煤层突出原因及其防治技术研究山[J].山西建筑,2008,34(5):148-150.
    [82]王飞,焦殿志.卧龙湖煤矿l03工作面突出危险性预评价[J].煤炭科技,2008(04):61-63.
    [83]章磊,姚强岭,丁效雷等.岩浆岩侵入条件下工作面坚硬顶板控制技术[J].中国矿业,2008,17(11):61-63.
    [84]徐德金,胡宝林.影响煤层瓦斯赋存规律的地质要素分析[J].中州煤炭,2009(02):20-22.
    [85]张正培唐立华汪伟民.卧龙湖煤矿地质构造对瓦斯的控制作用分析[J].煤矿安全,2011(04):123-125.
    [86]张春华,刘泽功,徐涛.石门对掘揭开急倾斜煤层突出与爆破增透消突技术[J].煤炭学报,2010,35(1):85-88.
    [87]吴基文,赵志根,程新明等.影响海孜煤矿煤层瓦斯赋存地质因素分析[J].西安科技学院学报,2003,23(3):264-266.
    [88]李伟,连昌宝.淮北煤田煤与瓦斯突出地质因素分析与防治[J].煤炭科学技术,2007,35(1):19-22.
    [89]兰泽全,夏万报,王志亮等.海孜矿瓦斯动力现象特征及分析[J].煤矿安全,2008(05):73-76.
    [90]王亮.巨厚火成岩下远程卸压煤岩体裂隙演化与渗流特征及在瓦斯抽采中的应用[D].中国矿业大学,2009.
    [91]杨跃奎,程远平,王亮等.淮北海孜矿中组煤层瓦斯赋存地质因素研究[J].煤矿安全,2011,42(4):126-129.
    [92]张文永,徐胜平,蔡学斌.卧龙湖煤矿岩浆侵入规律及其对煤层、煤质、瓦斯的影响[J].安徽地质,2005,15(1):25-28.
    [93] Wang Liang, Cheng Yuan-ping, Li Feng-rong, et al. Fracture evolution and pressure relief gas drainagefrom distant protected coal seams under an extremely thick key stratum[J]. Mining Science&Technology,2008,18(2):182-186.
    [94] International standard ISO11760, Classification of coals,2005.
    [95] Barker, C.E. Pawlewicz, M.J. Calculation of vitrinite reflectance from thermal histories and peaktemperatures: a comparison of methods. In: Mukhopadhyay, P.K., Dow, W.G.(Eds.), VitriniteReflectance as a Maturity Parameter: Amer. Chem. Soc. Symp. Ser.,570,1994:216–229.
    [96] Barker, C.E. Elders, W.A. Vitrinite reflectance geothermometry and apparent heating duration in theCerro Prieto geothermal field[J]. Geothermics,1981,10(3-4):207-223.
    [97] Rice, D.D. Clayton, J.L. Pawlewicz, M.J. Characterization of coal-derived hydrocarbons andsource-rock potential of coal beds, San Juan Basin, New Mexico and Colorado, U.S.A.[J]. InternationalJournal of Coal Geology,1989,13(1-4):597-626.
    [98] Barker, C.E. Pawlewicz, M.J. An empirical determination of the minimum number of measurementsneeded to estimate the mean random vitrinite reflectance of disseminated organic matter[J]. OrganicGeochemistry,1993,20(6):643-651.
    [99] Barker, C.E. Lewan, M.D. Pawlewicz, M.J. The influence of extractable organic matter on vitrinitereflectance suppression: A survey of kerogen and coal types[J]. International Journal of Coal Geology,2007,70(1-3):67-78.
    [100] Milici, P.C. Hatch, R.C. Pawlewicz, M.J. Coalbed methane resources of the Appalachian basin,eastern USA Original Research Article International[J]. Journal of Coal Geology,2010,82(3-4):160-174.
    [101] Schimmelmann, A. Mastalerz, M. Gao, L. et al. Dike intrusions into bituminous coal, Illinois Basin:H, C, N, O isotopic responses to rapid and brief heating[J]. Geochimica et Cosmochimica Acta,2009,73(20):6264-6281.
    [102] Gr cke, D. R. Schimmelmann, A. Elias, S. et al. Stable hydrogen-isotope ratios in beetle chitin:preliminary European data and re-interpretation of North American data[J]. Quaternary ScienceReviews,2006,25(15-16):1850-1864.
    [103] Schimmelmann, A. Lis, G. P. Nitrogen isotopic exchange during maturation of organic matter[J].Organic Geochemistry,2010,41(1):63-70.
    [104] Schimmelmann, A. Lange, C.B. Berger, W.H. et al. Extreme climatic conditions recorded in SantaBarbara Basin laminated sediments: the1835–1840Macoma event[J]. Marine Geology,1992,106(3-4):279-299.
    [105] Lis, G. P. Schimmelmann, A. Mastalerz, M. D/H ratios and hydrogen exchangeability of type-IIkerogens with increasing thermal maturity[J]. Organic Geochemistry,2006,37(3):342-353.
    [106] Mastalerz, M. Schimmelmann, A. Isotopically exchangeable organic hydrogen in coal relates tothermal maturity and maceral composition[J]. Organic Geochemistry,2002,33(8):921-931.
    [107] Stewart, A. Massey, M. Padgett, P. et al. Influence of a basic intrusion on the vitrinite reflectance andchemistry of the Springfield (No.5) coal, Harrisburg, Illinois[J]. International Journal of Coal Geology,2005,63(1-2):58–67.
    [108]陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报,2001,26(6):552-556.
    [109] Close, J. C. Natural fracture in coal In Hydrocarbons from coal[M]. Law B E and R ice D D eds.AAPG,1993:119-132.
    [110] XO.OT B B.煤与瓦斯突出[M].宋世钊,王佑安,译.北京:中国工业出版社,1966:27-30.
    [111]傅雪海,秦勇.多相介质煤层气储层渗透率预测理论与方法[M].徐州:中国矿业大学出版社,2003:19-31.
    [112]吴俊,金奎励,童有德等.煤孔隙理论及在瓦斯突出和抽放中的应用[J].煤炭学报,1991,16(3):86-95.
    [113]张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001,26(1):40-43.
    [114]姚艳斌,刘大锰.华北重点矿区煤储层吸附特征及其影响因素[J].中国矿业大学学报,2007,36(3):308-314.
    [115]姚艳斌,刘大锰,黄文辉等.两淮煤田煤储层孔-裂隙系统与煤层气产出性能研究[J].煤炭学报,2006,31(2):163-168.
    [116]徐永忠,崔若飞,潘冬明等.煤田采区火成岩分布地震反演技术的应用研究[J].中国矿业大学学报,2006,35(2):265-268.
    [117]刘金华,杨少春,陈宁宁,等.火成岩油气储层中构造裂缝的微构造曲率预测法[J].中国矿业大学学报,2009,38(6):815-819.
    [118] Clarkson, C.R. Bustin, R.M. The effect of pore structure and gas pressure upon the transportproperties of coal: a laboratory and modeling study.1. Isotherms and pore volume distributions[J].Fuel,1999,78(11):1333-1344.
    [119]琚宜文.构造煤结构演化与储层物性特征及其作用机理[D].徐州:中国矿业大学,2002.
    [120]郝琦.煤的显微微观孔隙形态特征及其成因探讨[J].煤炭学报,1987,(4):51-57.
    [121] Can, H. Niandi, S.P. Walker, P.L. Nature of porosity in American coals[J]. Fuel,1972,(51):272-277.
    [122]朱兴珊.煤层孔隙特征对抽放煤层气的影响[J].中国煤层气,1996,(1):37-39.
    [123] Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal ofAmerican Chemical Society,1918(40):1361-1362.
    [124]国家安全生产监督管理总局.中华人民共和国安全生产行业标准AQ/T1047-2007:煤矿井下煤层瓦斯压力直接测定方法[S].2007.
    [125]国家安全生产监督管理总局.中华人民共和国安全生产行业标准AQ/T1066-2008:煤层瓦斯含量井下直接测定方法[S].2008.
    [126] Polutranko, A. Causes of formation and distribution of abnormally high formation pressure inpetroleum basins of Ukraine[J]. Abnormal Pressures in Hydrocarbon Environments,1998(70):181–194.
    [127] Su, X. Lin, X. Liu, S. et al. Geology of coalbed methane reservoirs in the Southeast Qinshui Basin ofChina[J]. International Journal of Coal Geology,2005,62(4):197–210.
    [128] Barker, C. Aquathermal pressuring: role of temperature in development of abnormal pressure zone[J].AAPG Bulletin,1972,56(6):957-973.
    [129] Bruce, C.H. Pressured shale and sediment: mechanism for development of regional contemporaneousfaults[J]. AAPG Bulletin,1973,57(6):878-886.
    [130] Bradley, J.S. Abnormal formation pressure[J]. AAPGBulletin,1975,59(6):957-973.
    [131]周兴熙.封存箱与油气成藏作用[J].地质前缘,2004,11(4):609-616.
    [132]周兴熙.封存箱辨义及主要类型[J].石油实验地质,2006,28(5):424-429.
    [133]刘福宁.异常地层压力的预测及其在地质风险评价中的应用[J].石油勘探与开发,1992,19(6):9-14.
    [134]王红岩,万天丰,李景明等.区域构造热事件对高煤阶煤层气富集的控制[J].地学前缘,2008,15(5):364-369.
    [135]韩树棻,朱彬,齐文凯.淮北地区浅层煤成气的形成条件及资源评价[M].北京:地质出版社,1993.
    [136]琚宜文,王桂梁.煤层流变及其与煤矿瓦斯突出的关系[J].地质论评,2001,48(1):96-105.
    [137]姜波,秦勇,琚宜文等.煤层气成藏的构造应力场研究[J].中国矿业大学学报,2005,34(5):564-569.
    [138]任战利,肖晖,刘丽等.沁水盆地构造-热演化史的裂变径迹证据[J].科学通报,2005,50(1):87-92.
    [139]王魁军,程五一.预测敏感指标及临界值的确定[J].煤炭科学技术,1966,24(11):44-47.
    [140]俞启香.煤层突出危险性的评价指标及其重要性排序的研究[J].煤矿安全,1991(9):11-14.
    [141] О.Ичернов, В.М.Пузырев. Прогнозвнезапных выбросов уrля иrаза, Недра,1979.
    [142]北票矿务局瓦斯组,辽宁省煤炭研究所一室.北票煤田煤层煤与瓦斯突出危险性若干问题的探讨[J].煤矿安全,1975(1):10-15.
    [143]王佑安.煤和瓦斯突出危险性预测的研究[A].抚顺煤研所科学研究报告选集第九集[C].1983.
    [144]李培庆.祁南煤矿7煤层突出预测敏感指标的研究与应用[D].徐州:中国矿业大学,2011.
    [145]王日存,王佑安.钻孔钻屑量测定及其与突出危险性关系[J].煤矿安全,1983(09):1-4.
    [146]刘国泉.关于应用钻屑量与钻屑瓦斯解吸指标判定突出危险性若干问题的讨论[J].煤矿安全,1993(02):35-40.
    [147]文光才,王先义.突出预测钻屑量指标的探讨[J].煤炭工程师,1998(03):32-34.
    [148]孟贤正,王君得.钻屑量指标预测综采面煤突出危险性研究[J].陕西煤炭,2003(04):20-23.
    [149]邱贤德,姜永东,舒生云等.芙蓉煤矿煤与瓦斯突出指标临界值分析[J].煤炭科学技术,2004,32(1):58-62.
    [150]尹光志,李晓泉,赵洪宝等.钻屑量与矿山压力及瓦斯压力关系现场实验研究[J].北京科技大学学报,2010,32(1):1-7.
    [151]桂祥友,徐佑林,孟絮屹等.钻屑量与钻屑瓦斯解吸指标在防突预测的应用[J].北京科技大学学报,2009,31(3):285-289.
    [152] Wolfa, K.A. Bergenb, F.V. Ephraim, R. et al. Determination of the cleat angle distribution of theRECOPOL coal seams, using CT-scans and image analysis on drillingcuttings and coal blocks[J].International Journal of Coal Geology,2008,73(3-4):259–272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700