基于量子计算的热工过程辨识研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人们在认识和改造客观世界的过程中,总存在一些难以用现有的知识去定量描述的系统,系统辨识就是根据测量系统产生的各种信号去构造系统的模型,它是联系现实和数学模型的纽带。在优化计算方面,量子计算相比于经典优化计算,在某些方面可能拥有后者无法比拟的优势。
     本文利用量子计算与量子优化的方法对热工过程进行了辨识,分别从线性单入单出系统传递函数模型的辨识、多变量子空间模型辨识和非线性神经网络模型辨识等三个方面进行了研究。主要创新成果有:
     (1)针对量子粒子群算法(QPSO)的收敛速度和寻优精度问题,提出了一种改进的QPSO算法。首先,采用混沌序列初始化粒子的初始角位置;其次,在算法中加入变异处理,有效地增加了种群的多样性,避免早熟收敛。函数优化测试结果表明:本文提出的算法具有良好的优化效果。同时利用本文提出的算法对经典的具典型意义的传递函数族模型进行了辨识,辨识结果证明了这种算法的有效性。利用此算法,在结合某DCS的基础上,编制出了一种通用的热工对象模型辨识算法模块,并应用于某循环流化床电厂的辨识,取得了令人满意的辨识结果。
     (2)用实例证明了状态子空间辨识方法是一种有差辨识方法。为了获得辨识参数的一致无偏估计,在经典状态子空间辨识的基础上,提出了基于优化算法的两段辨识方法.。首先利用经典状态子空间辨识获取被辨识对象的初始信息,然后利用改进的量子粒子群算法对其进行优化,通过实例验证了本文所提出算法的有效性。最后对某电厂协调控制系统的数据进行辨识。辨识的结果表明:本文所提出的方法可以适用于工业过程多变量系统的辨识,且具有良好的辨识精度。
     (3)量子遗传算法是基于量子计算原理的概率优化方法,在量子门更新过程中,旋转角的大小直接影响优化的结果和进化的速度。本文针对模糊量子遗传算法(FQGA)容易导致系统陷入局部最优的缺点,将量子衍生交叉算法的思想引入FQGA,提出了一种新的量子遗传算法。同时利用该方法构造径向基函数神经网络并进行非线性系统的辨识。其特点是通过这种新的量子遗传算法实现对RBF神经网络权值、宽度和中心位置等有关参数的估计,其速度快、精度高,从而通过RBF神经网络有效地完成了对非线性系统的辨识。对典型非线性函数辨识的测试表明:该方法有效的提高了量子遗传算法的计算精度和收敛速度。同时利用这种方法设计了一种通用的热上对象模型辨识神经网络算法,并编制了专用的模型识别软件,对某电厂循环流化床锅炉一次风对床温的动态特性进行辨识,结果表明该方法是一种精度比较高的辨算法,具有一定的实用价值。
There are always some sytems that people cannot describe them by using existing knowledge during the process of recognizing and transforming the objective world. System identification is the link between reality and mathematical model, which can be defined as the way of systematic modeling according to measured serious systematic signals. In the term of optimization calculation, quantum computing has incomparable advantages over classic optimization calculation in some aspects.
     This article identifies thermal process by using the way of quantum computing and quantum optimization, and studies linear and single-output system transfer function model identification, multivariable subspace identification and nonlinear neural network identification and so on. The main innovative efforts are:
     (1) In order to improve convergence speed and precision of optimization in quantum particle swarm optimization (QPSO), an improved QPSO algorithm was presented. First, chaotic sequences are used to initialize the origin angle position of particle; Second, mutation algorithm is introduced, which can effectively increase diversity of population, and also can avoid premature convergence. The test results of function optimization show that the proposed algorithm has better optimized effect. The improved algorithm proposed in this paper was applied to identify the classic adaptive IIR model, and results proved the validity of the algorithm. On the basis of DCS, a general-purpose identification algorithm modular for thermal object model is programmed, and it is applied to the identification of circulating fluidized bed power plant, achieving satisfactory results.
     (2)We use examples to prove that the state subspace identification method is a kind of discriminating identification method. In order to obtain consistent unbiased estimation parameters, two sections identification method is puts forward on the basis of classical state subspace identification and optimization algorithm. First, the initial values of the object are identified by using classical state subspace identification, then we use improved quantum partial swarm algorithm to get the consistent unbiased estimation parameters. Examples show the effectiveness of the presented algorithm. At last, a coordinated control system in power plant is identified, and results showed that the presented method can be used in identification MIMO system in industrial process, and it can get good results.
     (3) Quantum genetic algorithm is a probability optimization method which is based on quantum compute principle. The precision and the rate of convergence are impacted by rotation angle. Aiming at the shortcoming of fuzzy quantum genetic algorithm (FQGA), quantum-inspired crossover method was introduced to FQGA, and a novel quantum genetic algorithm was put forward. Using this method, an identification algorithm of nonlinear systems is presented. This method is characterized by estimating parameters such as weight, width and central position of RBF NN using the new quantum genetic algorithm. High velocity and accuracy of the method enable nonlinear systems to be efficiently identified by using RBF NN. The results of identifying typical nonlinear function demonstrate that the precision and the rate of convergence are improved. A special program was compiled to identify the object model of the thermal process, and the dynamic process between primary air feed rate and bed temperature was identified. The results show that accuracy of the approach is high and has a certain practical value.
引文
[1]张颖.不确定系统的鲁棒辨识[M].北京:高等教育出版社,2003:1.
    [2]叶建华.过程辨识技术[M].上海:上海大学出版社,2007:1-10.
    [3]韩璞.热工过程建模方法的研究及应用[J].华北电力学院学报,1994,2(1):87-92.
    [4]方崇智,萧德云.过程辨识[M].北京:清华大学出版社,1988:1-15.
    [5]Ljung Lennart. Convergence analysis of parametric identification methods [J]. IEEE Transactions on automatic control,1978,23(5):770-783.
    [6]薛亚丽.热力过程多变量系统的优化设计[D].北京:清华大学博士学位论文,2005:
    [7]刘长良,于希宁,姚万业,等.基于遗传算法的火电厂热工过程模型辨识[J].中国电机工程学报,2003,23(3):170-174.
    [8]张小桃,倪维斗,李政,等.基于现场数据与神经网络的热工对象动态建模[J].热能动力工程,2005,20(1):34-37.
    [9]任青.智能优化理论及其在热工系统中的应用[D].保定:华北电力大学硕士学位论文,2003:
    [10]赵亮,雌刚.基于遗传算法的热工过程辨识[J].江苏电机工程,2006,25(3):76-78.
    [11]焦嵩鸣,韩璞,黄宇,李永玲.模糊量子遗传算法及其在热工过程模型辨识中的应用[J].中国电机工程学报,2007,27(5):87-92.
    [12]刘志远.采用径向基函数神经网络的热工过程在线辨识方法[J].动力工程,2005,25(6):844-848.
    [13]Narayanan, M Moore. Quantum-inspired Genetic Algorithms[A]. Proceedings of IEEE International Conference on Evolutionary Computation[C]. Nagoya:IEEE,1996:61-66.
    [14]K.H. Han, J.H. Kim. Genetic quantum algorithm and its application to combinational optimization problem[A]. Proceedings of the International Congress on Evolutionary Computation[C]. La Jolla:IEEE,2000: 1354-1360.
    [15]K. H. Han, J. H. Kim. Analysis of quantum-inspired evolutionary algorithm [J]. Proceedings of the International Congress on Artificial Intelligence,2001,2001(1):727-730.
    [16]H. Talbi, A. Draa, M. Batouche. A new quantum-inspired genetic algorithm for solving the travelling salesman problem [A]. Proceedings of the International Conference on Industrial Technology[C]. USA:IEEE,2004: 1192-1197.
    [17]P. Moore, G.K. Venayagamoorthy. Evolving combinational logic circuits using a hybrid quantum evolution and particle swarm inspired algorithm [J]. Proceedings of the NASA/DoD Conference on Evolvable Hardware, 2005,29(1):97-102.
    [18]S.M. Mikki, A.A. Kishk. Quantum particle swarm optimization for electromagnetics [J]. IEEE Transactions on Antennas and Propagation, 2006,54(10):2764-2775.
    [19]G.X. Zhang, W.D. Jin, L.Z Hu. A novel parallel quantum genetic algorithm [A]. Proceedings of the Fourth International Conference on Parallel and Distributed Computing Applications and Technologies[C]. China:Chengdu,2003:693-697.
    [20]S.Y. Yang, M. Wang, L.C. Jiao. A genetic algorithm based on quantum chromosome [A]. Proceedings of the 7th International Conference on Signal Processing[C]. China:IEEE,2004:1622-1625.
    [21]L. Wang, F. Tang and H. Wu. Hybrid genetic algorithm based on quantum computing for numerical optimization and parameter estimation [J]. Applied Mathematics and Computation,2005,171(2):1141-1156.
    [22]李士勇,李盼池.基于实数编码和目标函数梯度的量子遗传算法[J].哈尔滨工业大学学报.2006,2006,38(8):1216~1218.
    [23]侯媛彬,汪梅,王立琦.系统辨识及其MATLAB仿真[M].北京:科学出版社,2004:1-20.
    [24]张颖,冯纯伯.实现闭环系统参数一致估计的直接辨识方法[J].控制与决策,1996,11(6):628-632.
    [25]张颖,冯纯伯.应用最小二乘法辨识闭环系统[J].自动化学报,1996,22(4):452-455.
    [26]H. Garnier, M. Gilson, W. X. Zheng. A bias-eliminated least-squares method for continuous-time model identification of closed-loop systems [J]. International Journal of Control,2000,73(1):38-48.
    [27]Hwang, Lai. Use of two-stage least-squares algorithms for identification of continuous systems with time delay based on pulse response [J]. Automactia,2004,40(9):1561-1568.
    [28]Wang, L. and Leblanc, A. Second-order nonlinear least squares estimation [J]. Annals of the Institute of Statistical Mathematics,2008,60(4):883-900.
    [29]康雷.人工神经网络在辨识与控制中的应用研究[D].南京:东南大学博士学位论文,1999:
    [30]李丽荣,沈春林,韩璞.基于BP网络的热工过程模型辨识方法[J].南京航空航天大学学报,2001,33(5):499-502.
    [31]汪镭,吴启迪.蚁群算法在系统辨识中的应用[J].自动化学报,2003,29(1):102-109.
    [32]扬维,李岐强.粒子群优化算法综述[J].中国工程科学,2004,6(5).
    [33]董泽,黄宇,韩璞.一种新的量子遗传算法优化RBF神经网络及其在热工过程模型辨识中的应用[J].中国电机工程学报,2008,28(17):99-104.
    [34]黄宇,韩璞,刘长良,李永玲.改进量子粒子群算法及其在系统辨识中的应用[J],中国电机工程学报,2011,31(20):114-120.
    [35]Kennedy J, Eberhart R. Particle swarm optimization[A]. Conf on Neural Networks[C]. Perth:IEEE,1995:1942-1948.
    [36]Shi Y H, Eberhart R C.A modified particle swarm optimizer [A]. Proceedings of IEEE World Congress on Computational Intelligence[C]. Anchorage:IEEE, 1998:69-73.
    [37]M. Lovbjerg, T.K. Rasmussen, T. Krink. Hybrid particle swarm optimizer with breeding and subpopulations [A]. Proceedings of the 3rd Genetic and Evolutionary Computation Conference[C]. Montreal:,2001:469-476.
    [38]R.C. Eberhart, Y.H. Shi. Comparing inertia weights and constriction factors in particle swarm optimization [A]. Proceedings of the International Congress on Evolutionary Computation[C]. Piscataway:IEEE Press,2000:84-88.
    [39]Narayanan A, Moore M. Quantum-inspired genetic algorithms [A]. Proceedings of IEEE International Conference on Evolutionary Computation [C]. Piscataway:IEEE Press,1996:41-46.
    [40]李士勇,李盼池.量子计算与量子优化[M].哈尔滨:哈尔滨工业大学出版社,2009:90.
    [41]赵吉.群体智能算法研究及其应用[D].无锡:江南大学博士学位论文,2010:
    [42]蒋静.基于量子粒子群优化的Volterra核辨识及故障诊断方法研究[D].郑州:郑州大学硕士学位论文,2010:
    [43]张春燕.多阶段和多样性维持的QPSO算法研究及其在系统辨识中的应用[D].无锡:江南大学硕士学位论文,2007:
    [44]S.Y Kung. A New Identification Method and Reduction Algorithms via Singular Value Decomposion [J].Systems and Comp, CA,1978,4(1):3-15.
    [45]J.S.Lew, N.Juang and R.W.Longman. Comparision of Several System Identification Methods for Flexible Structures [J]. Journal and Vibration, 1993,167(1):461-480.
    [46]Moonen, M., B. DeMoor, L. Vandenberghe and J. Vandewalle. On and out line identification of linear state-space models[J]. International Journal of Control,1989,49(1):219-232.
    [47]K.S.Arun and S.Y.Kung. Balanced Approximation of Stochastic System [J].Matrix Analysis and Application,1990, 11(1):42-68.
    [48]Larimore, Wallace. E. Canonical vitiate analysis in identification, fltering and adaptive control[A]. Proceedings of the 29th Conference on Decision and Control[C]. Sydney:IEEE Press,1990:596-604.
    [49]Verhaegen, Michel. Identification of the deterministic part of MIMO state space models given in innovations form from input-output data [J]. Automatica,1994,30(1):61-74.
    [50]Van Overshcee Peter, De Moor Bart.N4SID:subspace algorithms for the identification of combined deterministic-stochastic systems [J]. Automatica, 1994,30(1):75-93.
    [51]Wouter Favoreel, Sabine Van Huffel, Bart De Moor. Comparative Study between Three Subspace Identification Algorithms[A]. Proceedings of the 5th European Control Conference ECC[C].Slovenia:IEEE Press,1999:45-50.
    [52]Van Overschee P., De Moor B. Subspace Identification for Linear Systems: Theory, Implementation, Applications [M]. Netherlands:Kluwer Academic Publishers,1996:24.
    [53]Tohru Katayama. Subspace methods for system identification [M]. London: springer,2005:52.
    [54]Biao Huang, Ramesh Kadali. Dynamic Modeling, Predictive Control and Performance——A Data-driven Subspace Approach [M]. London:springer, 2008:45.
    [55]Wang Jin, Qin S. Joe. A New Subspace Identification Approach based on Principal Component Analysis [J]. Journal of Process Control,2002,12(1): 841-855.
    [56]Huang Biao, Ding Steven X., Qin S. Joe. Closed-loop Subspace Identification: An Orthogonal Projection Approach [J]. Journal of Process Control,2005,15(1): 53-66.
    [57]Gustafsson T. Subspace methods for system identification and signal processing [M]. Sweden:Chalmers University of Tech,1999:89.
    [58]Jasson M, Wahberg B. On consistency of Subspace Method for System Identification [J]. Automatica,1998,34(12):1507-1519.
    [59]Ljung L, McKelvev T. Subspace identification from closed loop data[J]. Signal Procesing,1996,52(1):209-215.
    [60]Bauer D. Comparing the CCA subspace method to pseudo maximum likelihood methods in the case of no exogenous inputs [J]. Journal of Time Series Analysis,2005,26(5):631-668.
    [61]杨华.基于子空间方法的系统辨识及预测控制设计[D].上海:上海交通大学,2007:
    [62]葛志强.复杂工况过程统计监测方法研究[D].杭州:浙江大学,2009:
    [63]曾九孙.高炉冶炼过程的子空间辨识、预测及控制[D].杭州:浙江大学,2009:
    [64]关英辉.子空间辨识算法在铁水硅含量中的建模研究[D].包头:内蒙古科技大学,2011:
    [65]吴永玲.数据驱动控制系统的时变辨识与饱和特性分析[D].上海:上海交通大学,2011:
    [66]袁明.车辆侧向动力学模型辨识方法的研究与应用[D].上海:上海交通大学,2009:
    [67]李经昊.子空间预测控制及其在CFB锅炉燃烧系统的研究[D].沈阳:东北大学,2008:
    [68]W. S. McCulloch, W. Pitts. A logic calculus of the ideas imminent in neurons activity[J]. Bulletin of Math. Bio,1943,5(1):115-133.
    [69]Hebb. The Organization of BehaviorfM]. USA:Wiley, New York,1949: 45.
    [70]F.Rosenblatt. Principles of Neurodynamics[M]. USA:New York, Spartan Book,1962:76.
    [71]M.Minsky S.Papcrt. Perception[M]. USA:The MIT Press,1969:54.
    [72]J. J. Hopfield. Neural networks and physical system with emergent collective computational abilities[J]. Proc.Acad. Sci,1982,79(1):2554-2558.
    [73]G. E. Hinton, T. J. Sejnowski, D.H. Ackley. Boltzmann machine:constraint satisfaction networks that learn[D]. USA:Carneie-Mellon Uni,1984:
    [74]D.H. Ackley, G. E. Hinton, T. J. Sejnowski. Learning algorithm for Boltzmann machines[J]. Cognitive Science,1988,9(1):147-169.
    [75]D. E. Rumelhart, J. L. McClelland. Parallel Distributed Processing[M]. USA:MIT Press,1986:86.
    [76]唐亮.基于Volterra模型的非线性系统辨识和控制[D].上海:上海交通大学博士学位论文,1999:
    [77]Michael A N量子计算与量子信息[M].北京:清华大学出版社,2004:100.
    [78]杨淑媛,刘芳,焦李成.量子进化策略[J].电子学报,2001,29(12):1873~1877.
    [79]吴亚锋.子空间辨识方法及其在复杂结构中的应用[D].西安:西北工业大学,2000:
    [80]王川.基于子空间辨识的火电锅炉风烟系统预测控制研究[D].合肥:中国科技大学,2010:
    [81]陈维曾,韩璞.线性控制系统中的矩阵论[M].北京:中国水利水电出版社,2000:95.
    [82]张洪涛,胡红丽,徐欣航等.基于粒子群算法的火电厂热工过程模型辨识[J].热力发电,2010,39(5):59-61.
    [83]于希宁,程锋章,朱丽玲,王毅佳,基于T-S模型的自适应神经模糊推理系统及其在热工过程建模中的应用[J].中国电机工程学报,2006,26(15):78-82.
    [84]张小桃,倪维斗,李政,郑松.基于现场数据热工对象建模的可辨识性[J].清华大学学报,2004,44(11):1544-1547.
    [85]张世华,雌刚.一种实数编码的自适应遗传算法及其在热工过程辨识中的应用研究[J].中国电机工程学报,2004,24(2):210-214.
    [86]刘红波,李少远,柴天佑.一种基于工况分解的热工过程非线性控制模型建立方法及应用[J].控制理论与应用,2004,21(5):785-790.
    [87]沈佳宁,孙俊,须文波.运用QPSO算法进行系统辨识的研究[J].计算机工程与应用,2009,45(9):67-70.
    [88]Zhang Zhi sheng. Quantum-behaved particle swarm optimization algorithm for economic load dispatch of power system [J]. Expert Systems with Applications,2008,4(1):1800-1803.
    [89]李丽香,彭海朋,王向东,杨义先.基于混沌蚂蚁群算法的PID控制器的参数整定[J].仪器仪表学报,2006,27(9):1104-1106.
    [90]周彤.面向控制的系统辨识导论[M].北京:清华大学出版社,2004:50.
    [91]孙剑.大型循环流化床锅炉燃烧系统特性与建模研究[D].保定:华北电力 大学,2010:
    [92]Ljung Lennart. System Identification-Theory for the user,2nd ed [M]. Upper Saddle River, N.J:PTR Prentice Hall,1999:50.
    [93]朱海梅,吴永萍.一种高速收敛粒子群优化算法[J].控制与决策,2010,25(1):20-24.
    [94]迟玉红,孙富春,王维军等.基于空间缩放和吸引子的粒子群优化算法[J].计算机学报,2011,34(1):115-129.
    [95]李士勇,李盼池.求解连续空间优化问题的量子粒子群算法[J].量子电子学报,2007,24(5):569-574.
    [96]Bipul Luitel, Ganesh Kumar Venayagamoorthy. Quantum inspired PSO for the optimization of simultaneous recurrent neural networks as MIMO learning systems [J]. Neural Networks,2010,23(5):583-586.
    [97]王子杰,黄宇,韩璞,王东风.循环流化床汽温系统自抗扰控制器优化设计[J].动力工程学报,2010,30(1):31-35.
    [98]王凌.智能优化算法及其应用[M].北京:清华大学出版社,2001:65.
    [99]金以慧.过程控制[M].北京:清华大学出版社,1993:85.
    [100]朱豫才.过程控制的多变量系统辨识[M].北京:国防科技大学出版社,2005:90.
    [101]Ljung Lennart. System Identification Toolbox for Use with MATLAB [M]. USA:The MathWorks Inc,1998:1-30.
    [102]刘福才,高雪,吴士昌.模型参考自适应IIR递归滤波器辨识新算法[J].计算机工程与设计,2008,29(12):3170-3172.
    [103]Bipul Luitel, Ganesh K.Venayagamoorthy. Particle swarm optimization with quantum infusion for system identification [J]. Engineering Applications of Artificial Intelligence,2010,23(5):635-649.
    [104]赵伟杰.循环流化床锅炉控制系统的设计和应用[M].北京:中国电力出版社,2009:58-59.
    [105]Peter Van Overschee, Bart De Moor. Subspace identification for linear systems:Theory-Implementation-Applications [M]. USA:Kluwer academic publishers,1996:1-30.
    [106]Katrien De Cock, Bart De Moor. Subspace identification methods[M]. Begium:Leuven,2004:1-17.
    [107]Overschee, P. V, Moor, B. D. A unifying theorem for three subspace system identification algorithms [J]. Automatica,1995,31(12):1877-1883.
    [108]蒙祖强,蔡自兴.一种基于并行遗传算法的非线性系统辨识方法[J]. 控制与决策,2003,18(3):367-374.
    [109]王尔馥,孟维晓,史兢.基于遗传算法RBF网络的波束形成[J].哈尔滨工业大学学报,2007,39(1):89-92.
    [110]张娟,陈杰,王珊珊.基于遗传算法和RBF网络的番茄生长模型辨识[J].控制与决策,2005,20(6):682-685.
    [111]Dong-feng Wang, Pu Han, Na Liu etc. Modeling the circulating fluidized bed boiler using RBF-NN based on immune genetic algorithm[A]. Proceeding of the first international conference on machine learning and cybernetics[C]. China:Beijing,2002:4-5.
    [112]林金星,沈炯,李益国.基于免疫原理的径向基函数网络在线学习算法及其在热工过程大范围工况建模中的应用[J].中国电机工程学报,2006,26(9):14-19.
    [113]夏长亮,祁温雅,杨荣,史婷娜.基于RBF神经网络的超声波电机参数辨识与模型参考自适应控制[J].中国电机工程学报,2004,24(7):117-212.
    [114]杨戈,吕剑虹,刘志远.基于RBF神经网络的热工过程在线自适应建模算法研究[J].中国电机工程学报,2004,24(1):191-195.
    [115]仝卫国,杨耀权,金秀章.基于RBF神经网络的气体流量软测量模型研究[J].中国电机工程学报,2006,26(1):66-69.
    [116]夏长亮,王明超.基于RBF神经网络的开关磁阻电机单神经元PID控制[J].中国电机工程学报,2005,25(8):161-165.
    [117]吴宏晓,侯志俭,刘涌,蒋传文.基于免疫聚类径向基函数网络模型的短期负荷预测[J].中国电机工程学报,2005,25(16):53-56.
    [118]丁宏锴,萧蕴诗,李斌宇,岳继光.基于PSO-RBF NN的非线性系统辨识方法仿真研究[J].系统仿真学报,2005,17(8):1826-1829.
    [119]Shaohua Tan, Jianbin Hao, Joos Vandewalle. Efficient identification of RBF neural net models for nonlinear discrete-time multivariable dynamical systems [J]. Neurocomputing,1995,9(1):11-26.
    [120]J.Park and I.W.Sandberg. Universal approximation using radial-basis-funcion networks[J]. Neural comput,1991,3(2):246-257.
    [121]Narayanan A, Moore M. Quantum-inspired genetic algorithms [A]. Proceedings of IEEE International Conference on Evolutionary Computation[C]. Piscataway:IEEE,1996:41-46.
    [122]Hey T. Quantum computing an introduction[J]. Computing & Control Engineering Journal,1996,10(3):105-112.
    [123]张葛祥,金炜东.量子遗传算法的改进及其应用[J].西南交通大学学报,2003,38(6):717-722.
    [124]杨淑媛,刘芳,焦李成.量子进化策略[J].电子学报,2001,39(12A):1873-1877.
    [125]杨俊安,庄镇泉,史亮.多宇宙并行量子遗传算法[J].电子学报,2004,32(6):923-928.
    [126]杨淑媛,焦李成,刘芳.量子进化算法[J].工程数学学报,2006,23(2):235-246.
    [127]焦嵩鸣.计算智能及其在热工系统中的应用研究[D].保定:华北电力大学,2007:
    [128]K. S. Narendra & K. Parthasarathy. Indentification and control for dynamic systems using neural networks [J]. IEEE Trans.on Neural Networks,1990, 1(1):4-27.
    [129]J. Hertz, et al. Introduction to the Theory of Neural Computation [M]. USA: Westview Press,1991:1-18.
    [130]焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社1990:95.
    [131]董泽,黄宇,韩璞.一种新的量子遗传算法优化RBF神经网络及其在热工过程模型辨识中的应用[J].中国电机工程学报,2008,28(17):99-104.
    [132]于洋,查建中,唐晓君.基于学习的遗传算法及其在布局中的应用[J].计算机学报,2001,24(12):1242-1249.
    [133]舒华,舒怀林.基于PID神经网络的多变量非线性动态系统辨识[J].计算机工程与应用,2006,12(1):47-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700