基于空间自相关法的微动勘探技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用天然源面波信息的微动勘探技术具有简便、快捷、低成本、对观测环境无特殊要求的特点,在实际应用中越来越受到重视。微动勘探技术与其他物探手段相结合,对解决资源勘探领域的采区构造、寻找石油和其它矿产资源方面已显现出其潜在的优势,但由于是利用随机噪声,该方法的精度问题一直受人们关注。基于空间自相关法的微动勘探技术是利用小规模圆形地震仪排列的微动勘探方法。目前用微动勘探技术得到的估算结果精度要低于常规地震勘探方法。综上所述,完善微动勘探方法,探索该方法的优化改善路线,满足地震工程领域勘探工作的精度要求显的尤为重要。
     针对以上问题,本文展开了对基于空间自相关法的微动勘探技术的研究。根据微动面波波勘探的理论,分别研究了微动数据的预处理和分析,并根据实际信号进行了测试。在此基础上,研究分析了谱估计跟频散曲线计算精度的关系,提出了趋势外推法的谱估计优化方法。研究了层状介质中的微动面波及其频散曲线的正演算法(Knopoff算法),结合不同地层模型讨论分析了对频散曲线产生影响的因素。在正演研究的基础上,研究了微动面波的线性反演方法,对遗传算法和神经网络算法的相关理论进行了深入的研究,分析了算法存在的缺点,然后针对这两种方法的不足之处提出了优化改进策略,并根据正演算法模拟频散曲线的地层模型实现了微动面波反演的计算,提出了遗传算法结合神经网络算法的非线性全局优化方法。最后结合校园内的野外试验,进行了实地探测,验证了对微动勘探技术的研究并针对速度异常区进行了探测实验。
Natural source surface wave information of micro-exploration technology issimple, fast, low-cost, no special requirements for the characteristics of theobserved environment, more and more attention in practical applications.Microcombination of exploration techniques and other geophysical instrumentsconstructed to solve the field of resource exploration and mining area, lookingfor oil and other mineral resources has been showing its potential advantages,but because of the use of random noise, the accuracy of the method has beenunderpeople's attention.Space micro-exploration technology from the relevantlaw is based on the use of small-scale circular seismographs arranged inmicro-exploration.Micro exploration technology to get the estimates accuracy islower than the conventional seismic exploration methods.To sum up, improvemicro-exploration methods to explore the optimization of the method to improvethe route to meet the accuracy requirements of the exploration work in the fieldof earthquake engineering was particularly important.
     For the current space-based self-the Micro exploration of the relevant law in thedispersion curve calculation and stratigraphic inversion exists.Support of the keytechnologies of metal mine seismic exploration equipment "project"863"plansubject in the micro-dynamic wave propagation and frequency dispersion curveof linear inverse calculation method based on, based on the spatialautocorrelation methodmicro exploration technology related technology researchand analysis.The main research work has the following five parts:
     (1) Prediction theory based on least squares method and the outer derivativepush to optimize the spectral estimation method, a base trend extrapolation of the spectral estimation method.In this paper, the basic theory of spatialautocorrelation analysis of the data processing method, we can see fromspace-based self-correlation of micro-exploration technology IF the accuracyof dispersion curves depends on the accuracy of the micro-signal powerspectrum and cross-spectral projections.Traditional spectrum estimationmethods to the poor resolution and variance of performance is not good.Forsuch problems, the spectral estimation method based on trend extrapolation,the method uses the derivative of the least squares method and extrapolationprediction theory, through the push model to establish the basis of knowndata and then fitted by the least squares method of the derivativedata, andfinally the use of trend extrapolation of the signal spectrum estimation.Afterthe widening of the data length, the spectral resolution will beimproved.Experimental results show that the higher resolution spectrumestimation method proposed in this paper, the more pronounced peak andpeak frequency and peak significantly help improve the accuracy of thecalculation of dispersion curves, compared to the traditional fitting algorithmfor spectral estimation to infer the error.less than2.3%.
     (2) Forward theory of micro surface waves in layered media, according to thestructural model of the forward calculation.As the use of micro-surface waveson a layered half-space detection and inversion of the theoretical basis, thispaper has studied the micro-surface wave propagation in layered media andits dispersion characteristics, to study the micro-layered mediafixed surfacewave dispersion curves algorithm (Knopoff algorithms), and micro surfacewave forward modeling calculations based on constructed two stratigraphicmodel.Finally, experimental discussion of the factors that impact on thedispersion curve.
     (3) Rayleigh wave inversion for the genetic algorithm convergence is slow andpremature convergence problem, based on improving the original fitnessfunction and the introduction of the mutation operator of the optimizationstrategy, genetic algorithm optimization in micro surfacewave inversioncalculation.Genetic algorithm by virtue of its unique characteristics of thenonlinear global optimization method of inversion theory has been widelyused in the micro-exploration techniques based on spatial autocorrelationmethod for Inversion of velocity structure.But in the inversion of the genetic algorithm convergence is slow and prone to premature convergence.For suchproblems, the adaptive function, selection strategy, mutation strategy and theoptimization of the genetic operator strategy, increasing the fitness of thegenetic probability of selection to improve the convergence speed, theimproved algorithm optimizationprecocious situation has been significantlyimproved.The experimental results show that during the frequencydispersion curve inversion, the genetic algorithm optimized to improve theretrieval accuracy and convergence speed, compared to the traditionalgenetic algorithm has been dramatically improved, the number of iterationsis equal to only1of the traditional algorithm/computing speed, enhanced bytwo orders of magnitude, to meet the micro-exploration formation retrievalaccuracy. This method is applicable not only to the stratigraphic inversion,introduced optimization strategy, the same can be extended to other dataprocessing areas.
     (4) Micro surface wave inversion, slow convergence and hidden nodes select adifficult problem, a neural network based on batch learning and optimize thenetwork structure optimization strategy to achieve a neural networkalgorithm in the micro-surfacewave inversion calculation.Neural networkalgorithms have more problems in the actual calculation, for example, whenthe sample is too much will cause the weights to adjust the tone of thephenomenon, which makes network learning time lengthened, theconvergence slows down; In addition, the number of hidden layer nodesaffect the networkthe structure, resulting in the difficulty of the choice ofhidden layer nodes.In this paper, such problems raised by the introduction ofthe batch and optimize network structure optimization strategies to improvethe speed of network learning, reducing the iterative inversion times.Theexperimental results show the effectiveness of the method, the contrastanalysis showed that this method significantly reduces the iterative inversionof the number of neural network algorithm reduced the number of iterationscompared to the standard20%to improve the convergence speed, and hasgood resistance tointerference.
     (5) Characteristics of each combination of genetic algorithms and neuralnetwork algorithm, a nonlinear hybrid global optimization algorithm toachieve a hybrid optimization algorithm in the micro-surface wave inversion in the calculation.Genetic algorithm has the characteristics of the nonlinearglobal optimization, such as premature, poor local searching capability; theother hand, the neural network algorithm has strong characteristics of thelocal search ability, but there is slow convergence and the objective functionof the existence of localminimum of problems.Therefore, for these twomethods in the micro-surface wave inversion of less than existing methods,genetic algorithm artificial neural networks and hybrid optimizationmethod.First, the neural network training samples, the training result doesnot meet the call to the genetic algorithm global search characteristics, andthen back to the network repeatedly until you find the best value, theintroduction of neural network algorithm LM optimizationapproach.Elasticformation model, the micro surface wave calculation of the joint inversionusing genetic algorithms and neural networks. The experimental results showthe effectiveness of the method, contrast inversion results, the relative errorsare less than the respective error of the two algorithms, each parameterrelative error does not exceed5%, improve the inversion accuracy, toovercome the respective shortcomings of the two algorithms.
引文
[1] Aki K.Space and time spectra of stationary stochastic waves,with special reference tomicrotremors[J].Bulletin of the Earthquake Research Institute,1957,35,415-456.
    [2] Aki K,Richards P G. Quantitative seismology,Second Edition [M].University ScienceBooks,2002.
    [3]冉伟彦,王振东.长波微动法及其新进展[J].物探与化探,1994,18(1):28-34.
    [4] Okada,H.The Microtremor survey method [C].Geophysical Monograph Series12,SEG,2003.
    [5]冈田广,凌甦群.微动利用の地下构造探查に关する最近の研究について[R].北海道大学大学院研究报告,1994.
    [6] Park C B,MillerR D,Ryden N,et a.l Combined use of active and passive surfacewaves[J].Journal of Environmental and Engi-neering Geophysics,2005,(10):323-334.
    [7] Park C B,MillerR D,and Xia J.Multichannel analysis of surface waves (MASW)[J].Geophysics,1999,64:800-808.
    [8]王兴泰,赵东.瑞利波勘探:应用、现状和问题[J].世界地质,1995,28(2),87-100.
    [9]王振东.面波勘探技术要点与最新进展[J].物探与化探,2006,30(1):1-7.
    [10] Capon J,High resolution frequency-wavenumber analysis[J].Proceeding of the IEEE,1969,57,1408-1418.
    [11]王振东,冉伟彦.微动探查新技术在北京热水井勘查设计中的成功应用A.地球物理与中国建设[C].北京:地质出版社,1997,189-190.
    [12]刘云祯,王振东.瞬态面波法的数据采集处理系统及其应用实例[J].物探与化探,1996,20(1):28-34.
    [13] Chavez-Garcia F J,M Rodriguez,W R Stephenson.An alternative approach to theanalysis of microtremors:Exploiting stationarity of noise[J].Bull.Seismol.Soc.Am.,2005,95:277-293.
    [14]王振东.双源面波勘探构想[J].中国地质,1998(4):47-48.
    [15] AstenMW.On bias and noise in passive seismic data from finite circular array dataprocessed using SPAC methods[J].Geophys-ics,2006,71(6):153-162.
    [16]肖柏勋,凡友华,刘家琦.我国瑞利波勘探方法研究现状分析[J].工程物探,2000,(1):9-16.
    [17]丁连靖,冉伟彦.天然源面波频率-波数法的应用与研究[J].物探与化探,2005,29(2):138-145.
    [18] Kohji Tokimatsu.Effcts of multiple modes on Rayleigh wave dispersion characteristics[J].Journal of Geotechnical Engi-neering,1992,118(10):1529-1544.
    [19]石耀霖,金文.非线性地球动力学问题的遗传算法反演[A].中国地球物理学会年刊[C].北京:地震出版社,1993,170-179.
    [20]日本物理探查学会.物理探查[C].1993-2003,46-56.
    [21] Chavez-Garcia F J,F Luzon,D Raptakis,J Fernandez.Shear-wave velocity structurearound Teide Volcano: Results using microtremors with the SPAC method andimplications for interpretation of geodetic results[J].Pure Appl.Geophys.,2007,164:697-720.
    [22]王振东.关于双源面波勘探系统的若干研究设想[A].中国地球物理学会年刊[C].西安:西安地图出版社,1998,137.
    [23] Chavez-Garcia F J,M Rodriguez,W R Stephenson.Subsoil structure using SPACmeasurements along a line [J].Bull.Seismol.Sos.Am.,2006,96:729-736.
    [24]黄嘉正,周鸿秋,关小平,工程地质中瑞利波法勘探的理论初探[J].物探与化探,1991,15(4):268-277.
    [25]关小平,黄嘉正,周鸿秋,工程勘察中稳态瑞利面波法解释理论的探讨[J].地球地理学报,1993,36(1):96-105.
    [26]张碧星,兰从庆,喻明,等.分层介质中面波的能量分布[J].声学学报,1998,23(2),97-106.
    [27]凡友华,刘家琦,肖柏勋.计算瑞利波频散曲线的快速矢量算法[J].湖南大学学报,2002,29(5):25-30.
    [28] A.K.Mal.Guided waves in layered solids with inter-face zones[J].Int.Eng.Sci.,1988,26(8):873-881.
    [29]牛滨华,何继善.半空间非水平层状介质瑞雷面波的频散方程[J].物探与化探,1996,20(5):345-350.
    [30] N.A.Haskell.The dispersion of surface waves on multilayered media[J].Bull.siesm.Soc.Am.,1953(43),17-34.
    [31] L.Knopoff.A matrix method for elastic wave problems[J].Bull.Seism.Soc.Am.,1964(54),431-438.
    [32] F.Schwab and L.Knopoff.Surface-wave dispersion computation [J].Bull.seism.Soc.Am.1970(60),321-344.
    [33] F.Schwab.&L.Knopoff.Fast surface wave and freemode computations[J].Inmethmods in Computa-tional physics,1972(2),7-80.
    [34] E.N.Thrower.The computation of elastic waves in layered media[J].J.SoundVib.1965(2),210-26.
    [35] J.W.Dunkin.Computation of modal solutions in lay-ered elastic media at highfrequencies[J].Bull.Seism.Soc.Am.,965(55),35-58.
    [36] H.T.Waston.A note on fast computation of Rayleigh wave dispersion in multisayeredhalf-space[J].Bull.Seism.Soc. Am.,1970(60),161-166.
    [37]李幼铭,束沛镒.层状介质中地震面波频散函数和体波广义反射系数的计算[J].地球物理学报,1982,25(2):130-139.
    [38] Bixing Zhang, M.Yu,C.Q.Lan and Wei Xiong.E-lastic wave&excitation mechanismof surface waves in multilayered media[J].J.Acoust.Soc.Am.,1996,100(6),3527-3538.
    [39]张碧星,喻明,熊伟,等.层状介质中的声波场及面波研究[J].声学学报,1997,22(3):230-241.
    [40] B.L.N.Kennett.Reflection rays and reverbera-tions.Bull.Seism.Soc.Am.,1974(64):1685-1696.
    [41] H.Marquering&R.Snieder.Shear-wave velocity structure beneath Europe,thenortheasten Atlantic and westen Asia from waveform inversions including surface-wavemode coupling[J].Geophys.J.Int.,1996,127(2):283-288.
    [42]张碧星,肖柏勋,杨文杰.瑞利波勘探中“之”字型频散曲线的形成机理及反演研究[J].地球物理学报,2000(4):557-567.
    [43] J.Dorman&D. Prentiss.Study of shear velocity dis-tribution by mantle Rayleighwaves[J].Bull.Seism.Soc.Am.,1960(50):87-115.
    [44]佐薇范.用GR-810激振系统进行勘探[M].日本VIC株式会社,1986.
    [45]杨成林.瑞雷波勘探法原理及其应用[J].物探与化探,1989,13(6):465-468.
    [46]朱裕林.瑞利波勘探在程勘察中应用[J].工程勘察,1991(1):67-60.
    [47]王伟君,刘澜波等.应用微动H/V谱比法和台阵技术探测场地响应和浅速度结构[J].地球物理学报,2009,52(6):1515-1525.
    [48]王振东.面波勘探技术要点与最新进展[J].物探与化探,2006,30(1):1-6.
    [49]王振东.微动的空间自相关法及其实用技术[J].物探与化探,1986,10(2):123-133.
    [50]吴世明,陈龙珠.岩土工程波动勘测技术[M].北京,地质出版社,1998.
    [51]马强,微震观测数据实时处理方法的研究,中国地震局工程力学研究所,硕士研究生学位论文,2002.
    [52]郭明珠,地脉动波场分析及其在场地动力特性测试中的应用,中国地震局工程力学研究所,博士研究生学位论文,2000.
    [53]康兰池,利用地震台网监测台风的初步研究,中国地震局工程力学研究所,硕士研究生学位论文,2006.
    [54]杨学林.短周期地脉动信号的分析与应用,博士学位论文.杭州:浙江大学建工学院,1994.
    [55]陶夏新,刘曾武,郭明珠等.工程场地条件评定中的地脉动研究[J].哈尔滨:地震工程与工程振动,2001,21(4):18-23.
    [56]郭明珠,任凤华.工程场地动力学特性分析的地脉动法.哈尔滨:世界地震工程,2005,12.
    [57]张从珍,高景春等.张家口地震台与兴隆地震台地脉动信号初步分析.石家庄:华北地震科学,2004,09.
    [58]章熙海,黄永林.井下地脉动测试方法及工程意义.南京:地震学刊,1995(4).
    [59]郭明珠,宋泽清.论地脉动场地动力学特性分析中的Nakamura方法.哈尔滨:世界地震工程,2000,06.
    [60]简文彬,李哲生,黄真萍等.地基土层构造与地微动频率效应[M].土动力学学与岩土地震工程.南京:中国建筑工业出版社,2002.
    [61]陶夏新,师黎静,董连成.中日地脉动台阵联合观测.哈尔滨:世界地震工程,2002,06.
    [62][日本]大崎顺彦著,吕敏申,谢礼立译.地震动的谱分析入门[M].北京:地震出版社,1980.
    [63]徐建聪.地脉动频谱结构与场地土动力学响应研究,硕士学位论文.福州:福州大学岩土工程与工程地质研究所,2003.
    [64]程乾生编著,信号数字处理的数学原理,石油工业出版社,1979.
    [65]大崎顺彦著,吕敏申,谢礼立译.地震动的谱分析入门.地震出版社,1980.
    [66][瑞典]M.巴特著,郑治真,叶正仁等译.地球物理学中的谱分析.地震出版社,1978.
    [67]郑治真.波谱分析基础[M].地震出版社.1979.
    [68] C.Ikuo and Y. Shinozaki.A Theoretical Study on Circular Array Analyses for anExploration Method Using Microtremors[J].Geophysical Exploration.Japan,2003,vol.56,pp.29-42.
    [69] K.Tienfuan,T.Ku,and D.Gunaratnam.Evaluations of the Strong Ground MotionParameter by Neural Computing and Microtremor Measurement[J]. Proc. IEEESymp.Computer Systems and Applications (AICCSA2010),IEEE Press,May2010,pp.1-7,doi:10.1109/AICCSA.2010.5587031.
    [70] L.H.Koopmans,Spectral Analysis of Time Series:Academic Press Inc.[M],1974.
    [71] R.Shinozaki.Locally Stationary Random Processes.Transaction on InformationTheory,2003,vol.3,pp.182-187.
    [72] S.Wang and Q.Yumei.The Discussion of a New Spectrum Estimation-CorrelationFitting Extrapolation Method[J].Journal of Graduate School,Academia Sinica,1997,vol.14,pp.66-73.
    [73] J.D.Henstridge.A Signal Processing Method for Circular Arrays[J].Geophysics,1979,vol.44,pp.179-184.
    [74] C.Svanberg.Correlation Function for Relaxations in Disordered Materials[J].Journalof Applied Physics,2004,vol.94, pp.4191-4197.
    [75] S.O.Rice.Mathematical Analysis of Random Noise[J].Bell System Technical Journal,1945,vol.24,pp.146-156.
    [76] J.L.Bierkens.Comparison of Methods for the Detection and Extrapolation of Trendsin Groundwater Quality[J].J.Environ.Monit.,2009,vol.11,pp.2030-2043.
    [77] Yilmaz O Z.Seismic data analysis[M].Tulsa:Society of Exploration Geophysicists,2001.
    [78] Sheriff R E,Geldart L P.Exploration seismology[M].New York:Cambridge UniversityPress1995.
    [79]何樵登,熊维刚.应用地球物理教程——地震勘探[M].北京:地质出版社,1991.
    [80]陆基孟.地震勘探原理[M].东营:石油大学出版社,993.
    [81] Tatham R H,McCormack M D.Multicomponent Seismology in Petroleum Exploration
    [M].Tulsa Society of Exploration Geophysicists,1991.
    [82]董敏煜.多波多分量地震勘探[M].北京:石油工业出版社,2002.
    [83]詹正彬,姚姚.多波及横波地震勘探[M].北京:地质出版社,1994.
    [84] Scott G S,Adler L.The structure of ultrasonic Leak waves and Interaction withsubsurface flows.Master.Eval,1997,35(3):54-58.
    [85] Jansen D P,Hutchins D A.Immersion tomography using rayleigh and lambwaves.Ultrasonics,1992,30(4):245-253.
    [86]夏唐代,吴世明.流体-固体介质中瑞利波特性[J].水利学报,1994,1(2):67-75.
    [87]夏唐代,蔡袁强,吴世明.各向异性成层地基中Ryaleigh波的弥散特性[J].振动工程学报,1996,9(2):191-196.
    [88]陈龙珠,黄秋菊,夏唐代.饱和地基中瑞利波的弥散特阵[J].岩土工程学报,1998,20(3):6-9.
    [89] Knopoff L.Observation and inversion of surface wave dispersion[J]. Tectonophysics.1972.13:497-519.
    [90]陈祥.瑞雷波频散曲线拟合分析及其应用,硕士学位论文.北京:中国地质大学,2004.
    [91]裴江云,吴永刚,刘英杰.近地表低速带反演[J].长春地质学院学报,1994,24(3):317-326.
    [92]胡家富,段永康,胡毅力等.利用Ryaeligh波反演浅土层的剪切波速度结构[J].地球物理学报,1999,42(3):393-400.
    [93]胡家富.Ryaefgih波在工程勘探中的解释方法探讨[J].岩土工程学报,1999,25(5):599-602.
    [94]胡家富,段永康.影响面波勘探精度的因素探讨[J].地震研究,2000,23(3):328-333.
    [95]张碧星,肖柏勋,杨文杰.瑞利波斟探中“之”形频散曲线的形成机理及反演研究[J].地球物理学报,2000,43(4):557-567.
    [96] Harkrider,DavidG.Surface waves in multilayed elastic media.Bull.seismsocAm,1964,52(2):627-679.
    [97]董海文.瞬态瑞雷波法在公路工程质量检测中的理论与应用研究,硕士学位论文.长沙:湖南大学土木工程学院,2005.
    [98]郭良辉.地震瑞雷面波速度反演及其在P-SV波静校正中的应用研究,硕士学位论文.北京:中国地质大学地球探测与信息技术学院,2006.
    [99]肖柏勋.高模式瑞雷面波及其正反演研究,博士学位论文.长沙:中南大学,2000.
    [100]赵东,王光杰,王兴泰等.用遗传算法进行瑞雷波反演[J].物探与化探,1995,19(3):178-185.
    [101]徐佩芬,李传金,凌甦群等.利用微动勘察方法探测煤矿陷落柱[J].地球物理学报,2009,52(7):1923-1930.
    [102]叶太兰.微动台阵探测技术及其应用研究[J].中国地震,2004,20(1):47-52.
    [103]宋先海.瑞雷波频散曲线的正反演研究,硕士学位论文.武汉:中国地质大学,2001.
    [104]雷英杰,张善文,李续武,周创明.遗传算法工具箱及应用[M],西安:西安电子科技大学出版社,2005.
    [105] Srinvas,M., Patnaik.L.M.Adaptive probabilities of crossover and mutation ingenetic algorithms.IEEE Transactions on SMC.1994.24(4):656-666.
    [106]张碧星,肖柏勋,杨文杰等.瑞利波勘探中“之”字型频散曲线的形成机理及反演研究[J].地球物理学报,2000,43(4):557-567.
    [107]石耀霖,金文.面波频散反演地球内部构造的遗传算法[J].地球物理学报,1995,38(2):189-198.
    [108]周双喜,蔡虎.应用于无功优化的遗传算法中的编码问题.全国高等学校电力系统及其自动化专业第十二届学术年会论文集,1996.
    [109]张晓缋,戴冠中,徐乃平.一种新的优化搜索算法——遗传算法[J].控制理论与应用,1995,12(3):265-273.
    [110] D.E.Goldberg.GAs in Search:Optimization and Machine Learning[M].AddisonWesley,1989.
    [111]杨启文,蒋静萍,张国.遗传算法优化速度的改进[J].软件学报,2001,12(02):270-275.
    [112] Potts,J.C.,Terri,D.G.,Surya,B.Y. The development and evolution of an improvedgenetic algorithm based on migra-tion an artificial selection[J].IEEE Transactions onSMC,1994,24(1):73-86.
    [113]史忠植.神经计算[M].北京:电子工业出版社,1993:1-22,65-72.
    [114]王学辉,张明辉.Matlba6.1最新应用详解[M].北京:中国水利水电出版社,2002:377-402.
    [115]李孝安,张晓绩.神经网络与神经计算机导论[M].西安:西北工业大学出版社,1994,1-48.
    [116]焦李成.神经网络系统理论[M].西安:西安电子科技大学.1996:1-18,34-41.
    [117]袁曾任.人工神经元网络及其应用[M].北京:清华大学出版社,1999:1-4,118-131.
    [118]闻新,周露,王丹力等.MATLAB神经网络应用设计[M].北京:科学出版社,2000:207-212.
    [119]焦李成.神经网络计算[M].西安:西安电子科技大学出版社,1995.
    [120]周辉,何樵登,徐世浙.人工神经网络非线性地震波形反演[J].石油物探,1997,36(1):61-70
    [121]杨文采.波动方程的逆散射与迭代线性化反演[J].石油物探,1995,34(3):114-121.
    [122]杨文采.非线性反演方法的补充及比较[J].石油物探,1995,34(4):109-116.
    [123]杨文采.神经网络算法在地球物理反演中的应用[J].石油物探.1995,34(2):116-120.
    [124]崔建文.一种改进的全局优化算法及其在面波频散曲线反演中的应用[J].地球物理学报,2004,47(3):521-527.
    [125]赵弘,周瑞祥,林廷圻.基于Levenberg Marquardt算法的神经网络监督控制[J].西安交通大学学报,2002,36(5):523-527.
    [126] Qi Duan,K Djidjeli,W G Price et al.Weighted Rational cubic spline interpolation andits application[J].J Computational and Applied Mathe-matics,2000,117:121-135.
    [127]杜月云,周子平.针对传统遗传算法中存在的不足的改进[J].广西轻工业,2007,104(7):58-63.
    [128]仪垂样非线性科学及其在地学中的应用[M].北京气象出版社,1995.
    [129]薛年喜,贾永乐.用自调整S函数提高神经网BP算法[J].计算机测量与控制,2003,11(2):153-155.
    [130]马正华,薛国新.BP神经网络训练算法的改进[J].江苏理工大学学报(自然科学版),2000,21(1):79-82.
    [131] Xu Liang-hong,Men Yong,Chen Tie.Geometric Continutity Hermite Interpolation forSpatial Curves[J].J Computer-Aided&Computer Graphics,2001,13:158-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700