分块开关磁阻电机的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分块开关磁阻电机(switched reluctance machine,简称SRM)通过改变定、转子成分块结构,使其除具有普通SRM的控制灵活,耐高温等优点外,亦具有高速运行时风(油)阻小、低铁心损耗、高可靠性和高容错性等优点。因此,分块SRM在全电/多电飞机电力传动系统、起动/发电机双功能系统、电动车驱动系统以及新能源系统中具有潜在的应用前景。
     本文基于分块SRM的基本特性,从电磁设计、结构拓扑、性能仿真、位置信号故障诊断及容错控制、控制系统设计等角度开展研究。
     首先建立了12/8结构整距绕组分块转子SRM的二维和三维有限元模型,仿真分析电机的静态磁密分布,计算并实测了电机的相电感;基于整距绕组分块转子SRM不同位置时的电磁特性,确定了定、转子极弧系数选取的原则;将绕组电流波形等效于方波,推导了整距绕组分块转子SRM的主体尺寸计算公式;分析了绕组匝数的选取规则;并通过二维场路耦合有限元仿真验证了电机的性能。基于本文提出的方法设计了一台12/8结构的整距绕组分块转子SRM实验样机,并实验验证了本设计方法的有效性。
     针对单极性励磁时四相8/6结构整距绕组分块转子SRM定子磁通冲突的问题,提出采用定子分块和双极性励磁两种方案,并通过场路耦合法建立了两种方案下四相8/6结构整距绕组分块转子SRM的有限元瞬态模型,对比研究了两种电机的电流、铜耗、铁心磁密波形、铁心损耗等电磁特性。结果表明,采用双极性励磁方案,不但可克服定子磁通冲突,亦较采用定子分块方案时具有低的铁心损耗。
     在总结国内外现有结构的分块SRM工作原理和磁路特点的基础上,首次提出了环状绕组分块转子SRM、集中绕组分块转子SRM、C形分块定子SRM、E形分块定子SRM和混合气隙分块定子SRM等五种新型结构的分块SRM,结合结构示意图和磁路图对其基本工作原理分别进行分析,并根据结构特点和电磁特性分析了各种新型结构分块SRM的优缺点。
     通过三维有限元模型仿真了E形分块定子SRM的各定子线圈互感,结果表明E形分块定子SRM各线圈间的互感非常小,各定子块间磁路隔离。将各个独立的定子块作为单元,推导了E形分块定子SRM主体尺寸的计算公式,探析并建立了绕组匝数及其他主要尺寸的选取规则,完成了E形分块转子SRM的电磁计算,并通过磁路和电路的耦合计算对E形分块定子SRM的稳态性能进行了仿真分析,仿真结果验证了E形分块定子SRM电磁设计方法的有效性。
     在介绍分块SRM位置传感器安装的基础上,采用注入脉冲法测定位置传感器的位置偏差,实现电机的自起动。通过对分块SRM位置信号故障的分析,提出通过检测各相位置信号双边沿的触发顺序以及相邻触发边沿之间的角度差实现位置信号故障检测。该方法可统一诊断位置信号高、低电平故障。基于位置信号共享的原理,利用非故障位置信号对电机换相逻辑进行重构,实现传感器故障下的容错控制;且当故障位置信号恢复正常后,可平稳切入运行,提高了系统的可靠性。
     完成了分块SRM数字控制系统的研制,设计了两种不同结构的转速闭环控制程序。程序1根据转速优化开通角和关断角,采用实时调节电流斩波限的转速闭环控制策略;程序结构2采用实时调节开通角,优化关断角的转速闭环控制策略。最后讨论了两种程序结构的特点并通过实验验证。
The segmented switched reluctance machine (SRM) consists of several independent stator ironsegments, or several rotor iron segments which are embedded in non-magnetic cover. Both of the twofeatures make it have the advantages of high fault tolerance, low wind (oil) resistance, and low ironloss at a high speed, besides the advantages of the conventional SRM like flexible control as well asadaptability of high temperature and speed. Thus, the segmented SRM has potential foreground inapplicable systems such as electro-mechanical actuation systems and starter/generator system in themore/all electric aircraft, electric/hybrid-electric vehicles and new energy system.
     This dissertation focuses on structure topologies of segmented SRM, electromagneticcharacteristics and electric machine design, fault diagnosis and fault-tolerant control of positionsignals, and the design of the experimental system.
     Firstly,2D and3D models of SRM with fully pitched windings and segmental rotor areestablished in order to analyse the static magnetic density distribution and calculate phase inductance.The computational formula of main body for SRMs with fully-pitched windings and segmental rotorscan be obtained when the currents in phase windings are equivalent to square waveforms. The rule ofselecting pole arcs of stator and rotor teeth for SRMs with fully-pitched windings and segmentalrotors is analyzed based on the electromagnetic performances of the motor, especially at alignedposition and unaligned position. The principles of calculating the number of turns of windings andother key dimensions of the motor are also established. A prototype is designed with the methodpresented, the finite element analysis and the experiments are accomplished. The results verify thisdesign method for SRMs with fully-pitched windings and segmental rotors.
     To solve the collision of the magnetic flux in the stator teeth of the four-phase8/6SRM withfully-pitched windings and segmental rotors, two new methods are proposed. One is that dividing themotor’s stator and insulating them by magnetic spacers, the other is excitated with bipolar currents byfour identical H-bridges. Finite element instantaneous models of the two kinds of8/6segmented SRMare presented, to compare the electromagnetic feature of two kinds of motor’s current, copper loss,iron core’s flux density curve, iron loss.
     The existing segmented SRMs are overviewed based on the analysis of their constructions andmagnetic paths. Five novel segmented SRMs, which are toroidal-windings SRM with segmentalrotors, short-pitched windings SRM with segmental rotors, SRM with C-shaped segmental stators, SRM with E-shaped segmental stators and axial-radial air gap SRM with segmental stators, arepresented. The structures and the basic working principles of these five novel segmented SRMs areintroduced, and the advantages and disadvantages of them are also analyzed. All above will provide auseful reference for segmented SRM’s researches and applications.
     3D model of SRM with E-shaped segmental stators is established and mutual inductances ofwindings are analyzed. The computational formula of main body for SRM with E-shaped stators isdeduced when taking each separate modular stator as a power unit. The principles of calculating thenumber of turns of windings and other key dimensions of the motor are also established. A machineprototype is designed, the electromagnetic performance is analyzed and the results verify thiselectromagnetic design method.
     The installation of position sensors is discussed and position deviations are measured by plusecurrent method. According to the analysis of the fault of position signals, a diagnostic method, whichdetects the edge sequences of position signals and calculates the angle between the adjacent edges ofposition signals is researched. Fault-tolerant control is carried out by taking advantage of the anglerelations of position signals. When the fault position signals restore, the wrong edges can be detectedand rejected by using this diagnostic method, and the motor can run steadily when the position signalrestores. The validity and feasibility of fault diagnosis, fault-tolerant control and fault recovery areverified by experiments.
     A digital control system for segmented SRM is designed and the softwares are completed basedon two different control strategies. The first strategy optimizes turn-on angle and turn-off angle, aswell as adjusting current limits; The second strategy optimizes turn-off angles and adjusts turn-onangle according to speeds. Finally, the characteristics of two control strategies are analyzed andverified by experiments.
引文
[1]詹琼华.开关磁阻电动机.武汉:华中理工大学出版社,1992.
    [2]刘迪吉,张焕春,傅丰礼,等.开关磁阻调速电动机.北京:机械工业出版社,1994.
    [3]王宏华.开关磁阻电动机调速控制技术.北京:机械工业出版社,1995.
    [4]吴建华.开关磁阻电机设计与应用.北京:机械工业出版社,2000.
    [5]童怀.磁阻电机动态特性的非线性分析与计算机仿真.北京:科学出版社,2000.
    [6]陈昊.开关磁阻调速电动机的原理设计应用.江苏徐州:中国矿业大学出版社,2000.
    [7]周强.高速开关磁阻电机的关键技术研究和实践,[博士学位论文].南京:南京航空航天大学,2009.
    [8]陈昊,谢桂林,张超.开关磁阻电机功率变换器主电路研究.电力电子技术,2000,34(3):22-25.
    [9]曹家勇,陈幼平,詹琼华,等.开关磁阻电动机控制技术的研究现状和发展趋势.电机与控制学报,2002,6(1):1-5.
    [10]王磊,梁正峰.三相开关磁阻电动机PWM控制系统的硬件实现.同济大学学报,2004,32(4):520-523.
    [11]刘闯,朱学忠,李磊,等.开关磁阻发电机的脉宽调制控制.南京航空航天大学学报,2000,32(1):1-5.
    [12]陈昊,谢桂林.开关磁阻电动机的PWM控制理论与实践.中国矿业大学学报,1997,26(3):23-27.
    [13]赵宇,柴建云.升压斩波控制开关磁阻风力发电机系统.清华大学学报,2007,47(7):1118-1121.
    [14]王旭东,王喜莲,王炎,等.开关磁阻电动机电流双幅值斩波控制.中国电机工程学报,2000,20(4):83-86.
    [15]谭国俊,蒯松岩,何凤有,等.电压斩波控制的开关磁阻电机非线性仿真分析.系统仿真学报,2006,18(2):478-481.
    [16]刘迪吉,曲民兴,朱学忠,等.开关磁阻发电机.南京航空航天大学学报,2003,35(2):109-115.
    [17]周强,刘闯,朱学忠,等.超高速开关磁阻电动机设计.中国电机工程学报,2009,29(9):87-92.
    [18]陈新,郑洪涛,蒋静坪.基于角度控制的开关磁阻电动机模糊控制系统.电力电子技术,2004:38(2):10-11,26.
    [19]王喜莲,王旭东.开关磁阻电机角度最优控制.电机与控制学报,2006,10(6):587-597.
    [20] S. R. MacMinn, W. D. Jones. A Very High Speed Switched Reluctance Starter/generator forAircraft Engine Application. Aerospace and Electronics conference,1989, Vol.4:1758~1764.
    [21] A. V. Radun, C. A. Ferreira, E. Richter. Two Channel Switched Reluctance Starter/GeneratorResults. IEEE Transactions on Applied Power Electronics Conference and Exposition,1997,Vol.1:546~552.
    [22] I. Husain, A. Radun, J. Nairus. Fault Analysis and Excitation Requirements for SwitchedReluctance-generators. IEEE Transactions on Energy Conversion2002, Vol.17(1):67~72.
    [23] E. Richter, C. A. Ferreira. Performance Evaluation of A250kW Switched Reluctance StarterGenerator. IEEE Transactions on Industry Applications,1995, Vol.1:434~440.
    [24] C. A. Ferreira, S. R. Jones, W. S. Heglund, et al. Detailed Design of A30-kW SwitchedReluctance Starter/Generator System for A Gas Turbine Engine Application. IEEE Transactionson Industry Applications,1995, Vol.31(3):553~561.
    [25] P. Charl, H..Winston. Magnetic Bearing Controls for A High-speed, High-power SwitchedReluctance Machine (SRM) Starter/generator. SAE2000San Diego,2000.
    [26]胡育文.航空电源系统的新发展.第五届电力电子与运动控制学术年会.南京:南京航空航天大学,2004:8~9.
    [27]刘闯,朱学忠,刘迪吉.6kW开关磁阻起动/发电机系统设计与实现.南京航空航天大学学报,2000,16(1):1-5.
    [28]刘闯.开关磁阻电机起动/发电系统理论研究与工程实践,[博士学位论文].南京:南京航空航天大学,2000.
    [29]钱燕娟.7.5kW开关磁阻起动/发电平台研发,[硕士学位论文].南京:南京航空航天大学,2007.
    [30]严加根.航空高压直流开关磁阻起动/发电机系统的研究,[博士学位论文].南京:南京航空航天大学,2006.
    [31]李钟明,卢刚,马瑞卿,等.4kW开关磁阻发电机.西北工业大学学报,1999,17(2):327-331.
    [32]李声晋,卢刚,马瑞卿.运动载体发动机用组合起动机/发电机技术研究.兵工学报,1999,2:29-36.
    [33]李声晋,励庆孚,卢刚.开关磁阻起动/发电机控制方法研究.西安交通大学学报,2001,35(8):771-775.
    [34] Song Shoujun, Liu Weiguo, Dieter Peitsch, et al. Detailed Design of a High Speed SwitchedReluctance Starter/Generator for More/All Electric Aircraft. Chinese Journal of Aeronautics,2010,23:216-226.
    [35] Song Shoujun, Liu Weiguo, Uwe Schaefer. Optimal Control of a High Speed SwitchedReluctance Starter/Generator for the More/All Electric Aircraft.电工技术学报,2010,25(4):44-52.
    [36]陈琼忠,孟光,莫雨峰,等.开关磁阻电机的非线性解析模型及其在航空系统仿真中的应用.上海交通大学学报,2008,42(12):2041-2051.
    [37]高金行.飞机电刹车开关磁阻机电作动机构研究,[硕士学位论文].西安:西北工业大学,2007.
    [38] G. L. Fronista, G. Bradbury. An electromechanical actuator for a transport aircraft spoiler surface,Proceedings of the32nd Intersociety Energy Conversion Engineering Conference Honolulu, HI,USA,1997:694-698.
    [39] C. Cossar, L. Kelly, T. J. E Mille. Comparison of electrical drive technologies for aircraft flightcontrol surface actuation. Ninth International Conference on Electrical Machines and Drives,Canterbury,1999:159-163.
    [40] J. J. Gribble, P. C. Kjaer, C. Cossar, et al. Feasibility study of a large switched reluctance spoileractuator system. IEE Colloquium on All Electric Aircraft, London,1998:1-6.
    [41] C. Cossar, L. Kelly, T. J. E. Miller, et al. The design of a switched reluctance drive for aircraftflight control surface actuation. IEE Colloquium on Electrical Machines and Systems for theMore Electric Aircraft, London,1999:1-8.
    [42] D. Gerling, A. Schramm. Analytical comparison of two different redundancy concepts forswitched reluctance machines. IEEE International Conference on Industrial Technology, HongKong,2006:871-876.
    [43] D. Gerling, A. Schramm. Evaluation and Comparison of Fault Tolerant Switched ReluctanceMachines for a Specific Application. Proceeding of the9th Spanish-Portuguese Congress onElectrical Engineering, Marbella, Spain,2005.
    [44] A. Schramm, D. Gerling. Researches on the Suitability of Switched Reluctance Machines andPermanent Magnet Machines for Specific Aerospace Applications Demanding Fault Tolerance.International Symposium on Power Electronics,Electrical Drives, Automation and Motion,Taormina,2006:7-11.
    [45] Zhen Gang Sun, N. C. Cheung, Shi Wei Zhao, et al. Magnetic Analysis of Switched ReluctanceActuators in Levitated Linear Transporters. IEEE Transactions on Vehicular Technology,2010,59(9):4280-4288.
    [46] H. Yamai, M. Kaneda, K. Ohyama, et al. Optimal switched reluctance motor drive for hydraulicpump unit. IEEE Industry Applications Conference, Rome,2000,3:1555-1562.
    [47] C. S. Edrington, B. Fahimi. Coolant Pump Drive An Application for Switched ReluctanceMachines. IEEE58th Vehicular Technology Conference,2003,5:3226-3230.
    [48] A. Omekanda, B. Lequesne, H. Klode, et al. Switched reluctance and permanent magnetbrushless motors in highly dynamic situations A comparison in the context of electric brakes.IEEE Industry Applications Magazine,2009,15(4):35-43.
    [49] K. M. Rahman, B. Fahimi, G. Suresh, et al. Advantages of Switched Reluctance MotorApplications to EV and HEV Design and Control Issues. IEEE Transactions on IndustryApplications,2000,36(1):111-121.
    [50] S. Kachapornkul, P. Jitkreeyarn, P. Somsiri, et al. A Design of15kW Switched ReluctanceMotor for Electric Vehicle Applications. International Conference on Electrical Machines andSystems, Seoul,2007:1690-1693.
    [51] W. Wu, H. C. Lovatt, J. B. Dunlop. Optimisation of switched reluctance motors for hybridelectric vehicles. International Conference on Power Electronics, Machines and Drives,2002:177-182.
    [52] S. Aida, A. Komatsuzaki, I. Miki. Basic characteristics of electric vehicle using40kW switchedreluctance motor. International Conference on Electrical Machines and Systems,2008:3358-3361.
    [53] K. Watanabe, S. Aida, A Komatsuzaki. Driving force characteristics of40kW switchedreluctance motor for electric vehicle. International Conference on Electrical Machines andSystems,2007:1894-1898.
    [54] T. Uematsu, R. S. Wallace. Design of a100kW switched reluctance motor for electric vehiclepropulsion. Proceedings of Applied Power Electronics Conference and Exposition,1995,1:411-415.
    [55] X. D. Xue, J. K. Lin, Z. Zhang, et al. Study of motoring operation of in-wheel switchedreluctance motor drives for electric vehicles.3rd International Conference on Power ElectronicsSystems and Applications, Hong Kong,2009:1-6.
    [56] X. D. Xue, K. W. E Cheng, T. W. Ng, et al. Multi-Objective Optimization Design of In-WheelSwitched Reluctance Motors in Electric Vehicles. IEEE Transactions on Industrial Electronics,2010,57(9):2980-2987.
    [57]王双红.混合动力电动车用开关磁阻电机控制系统研究,[博士学位论文].武汉:华中科技大学,2005.
    [58]詹琼华,马志源,郭伟.电动汽车用20kW开关磁阻电机的设计与试验研究.电机与控制学报,1999,3(3):161-164.
    [59] Wang Shuanghong, Zhan Qionghua, Ma Zhiyuan, et al. Implementation of a50kW4-phaseswitched reluctance motor drive system for HEV.12th Symposium on Electromagnetic LaunchTechnology, Snowbird,2005:518-522.
    [60] Wang Shuanghong, Zhan Qionghua, Ma Zhiyuan,et al. Design of a50kW switched reluctancemachine for HEV propulsion system. IEEE58th Vehicular Technology Conference2003,5:3207-3211.
    [61]罗建武.开关磁阻轮毂电机驱动系统的研究,[博士学位论文].武汉:华中科技大学,2006.
    [62]冬雷.基于开关磁阻电机系统的电动车辆驱动及相关技术研究与实践,[博士学位论文].南京:南京航空航天大学,2000.
    [63]韦银,全力,许珍,等.车用六相12/10极开关磁阻起动发电机系统起动性能分析与仿真.微电机,2006,39(1):47-54.
    [64]全力,赵德安,朱学忠,等.基于DSP的开关磁阻启动/发电机系统研究.农业机械学报,2005,36(10):138-141.
    [65]孙晓明,赵德安,刘东,等.基于开关磁阻电机的车用ISAD系统研究.电气传动,2006,36(9):13-15.
    [66]孙晓明,赵德安,刘东,等.基于开关磁阻电机的车用起动/发电/助力一体化系统研究.电机与控制应用,2006,33(3):17-20.
    [67]赵德安,刘东,茅靖峰,等.一种新型车用开关磁阻起动发电一体机系统.江苏大学学报(自然科学版),2006,27(1):59-62.
    [68]赵德安,郑斐,全力,等.车用开关磁阻电机起动/发电/助力一体化系统研究.南京航空航天大学学报,2008,40(6):825-830.
    [69]赵德安.车用开关磁阻电机ISAD系统的先进控制方法研究,[博士学位论文].南京:南京航空航天大学,2007.
    [70]全力.基于开关磁阻电机的汽车ISAD系统研究与实践,[博士学位论文].南京:南京航空航天大学,2007.
    [71]茆美琴,余世杰,苏建徽,等.开关磁阻发电机用于直接驱动/变速运行风力发电系统的评估.太阳能学报,2005,26(3):386-390.
    [72] M. Nassereddine, J. Rizk, M. Nagrial. Conversion of a switched reluctance motor to operate as agenerator for wind power applications. IEEE Bucharest Power Tech Conference, Bucharest,Romania,2009.
    [73] R. Cardenas, W. F. Ray, G. M. Asher. Switched reluctance generators for wind energyapplications.26th Annual IEEE Power Electronics Specialists Conference,1995,1(1):559–564.
    [74] Hao Chen, Chao Mang, Xucheng Zhao. Research on the switched reluctance wind generatorsystem. IEEE International Conference on Systems, Man, and Cybernetics. Tucson, AZ2001,3:1936-1941.
    [75] Hao Chen, Qiushuang Song. A switched reluctance variable speed generator. Conference onElectrical and Computer Engineering. Canadian,2003,1(1):467-470.
    [76] R. Karthikeyan, K. Vijayakumar, R. Arumugam. Design and analysis of a switched reluctancegenerator for rural electrification in stand alone wind energy coversion system. InternationalConference on Power Systems. Kharagpur, INDIA,2009:1-6.
    [77] K. Ogawa, N. Yamamura, M. Ishda. Study for Small Size Wind Power Generating System UsingSwitched Reluctance Generator. IEEE International Conference on Industrial Technology,Mumbai,2006:1510-1515.
    [78] M. Ruba, L. Szabo, F. Jurca. Fault tolerant switched reluctance machine for wind turbine bladepitch control. International Conference on Clean Electrical Power. Capri,2009:721-726.
    [79] R. Cardenas, R. Pena, M. Perez, et al. Control of a switched reluctance generator for variablespeed wind energy applications. IEEE Transactionson Energy Conversion,2005,20(4):781-791.
    [80] M. A. Mueller. Design and performance of a20kW,100rpm, switched reluctance generator fora direct drive wind energy converter. IEEE International Conference on Electric Machines andDrives, San Antonio, TX,2005:56-63.
    [81]胡海燕,潘再平.开关磁阻风电系统最大风能追踪控制.太阳能学报,2005,26(6):787-791.
    [82]钟坤炎,易灵芝,彭寒梅,等.开关磁阻风力发电机非线性模型仿真研究.电网技术,2010,34(1):174-178.
    [83]孙鑫,赵德安,田传帮.开关磁阻风力发电系统最大功率追踪策略研究.微特电机,2008,10:42-44.
    [84]赵宇,柴建云.升压斩波控制开关磁阻风力发电机系统.清华大学学报,2007,47(7):1118-1121.
    [85]熊立新,徐丙垠,高厚磊,等.一种开关磁阻风力发电机最大风能跟踪方法.电工技术学报,2009,24(11):1-7.
    [86]朱学忠,张琦雪,刘迪吉.开关磁阻风力发电机系统的控制方案研究.数据采集与处理,2001,16(1):81-85.
    [87]熊立新,变速直驱开关磁阻风力发电机输出功率控制,[博士学位论文].济南:山东大学,2009.
    [88]詹宜巨,何慧多,余世杰.采用开关磁阻电动机的光伏水泵系统.太阳能学报,1994,15(1):1-6.
    [89] L. Morel, H. Fayard, R. VivesFos, et al. Study of ultra high speed switched reluctance motordrive. Preceedings of IEEE Industry Applicatios Conference, Rome, Italy,2000:87-92.
    [90] R. Hamdy, J. E. Fletcher, B. W Williams, et al. High-speed performance improvements of atwo-phase switched reluctance machine utilizing rotor-conducting screens. IEEE Transactions onEnergy Conversion,2002,17(4):500-506.
    [91]刘闯,曹志亮,孙建.圆柱凸极复合型的转子结构,中国,发明专利,授权号:ZL200610039202.2,2006.
    [92] R. James, H. O. Hendershot. Polyphase switched reluctance motor, United States Patent:5111095,1992-5-5.
    [93] A. M. Michaelides, C. Pollock. A new magnetic flux pattern to improve the efficiency of theswitched reluctance motor. Conference Record of the IEEE Industry Applications SocietyAnnual Meeting, Houston, TX, USA1992:226-233.
    [94] B. C. Mecrow, E. A. El-Kharashi, J. W. Finch, et al. Preliminary performance evaluation ofswitched reluctance motors with segmental rotors. IEEE Transactions on Energy Conversion,2004,19(4):679-686.
    [95] B. C. Mecrow, J. W. Finch, E. A. El-Kharashi, et al. The Design of Switched Reluctance Motorswith Segmental Rotors.15th International Conference on Electrical Machines, Brugges,Belgium,2002.
    [96] B. C. Mecrow, J. W. Finch, E. A. El-Kharashi, et al. Switched reluctance motors with segmentalrotors. IEE Proceeding Of Electric Power Application,2002,149(4):245-254.
    [97] B. C. Mecrow. Fully pitched winding switched reluctance and stepping motor arrangements.IEE Proceedings-Electric Power Applications,1993,140(1):61-70.
    [98] J. Oyama, T. Higuchi, T. Abe, et al. The fundamental characteristics of novel switched reluctancemotor with segment core embedded in aluminum rotor block. Proceedings of the EighthInternational Conference on Electrical Machines and Systems, Nanjing, China,2005:515-519.
    [99] J. Oyama, T. Higuchi, T. Abe, et al. Novel switched reluctance motor with segment coreembedded in aluminum rotor block. Transactions of the Institute of Electrical Engineers of Japan,2006,126(4):385-390.
    [100] N. Vattikuti, V. Rallabandi, B. G. Fernandes. A novel high torque and low weight segmentedswitched reluctance motor. IEEE Power Electronics Specialists Conference, Piscataway, NJ,USA2008:1223-1228.
    [101] T. Higuchi, K. Suenaga, T. Abe. Torque ripple reduction of novel segment type Switchedreluctance motor by increasing phase number. Electrical Machines and Systems, Tokyo,2009.
    [102] T. Higuchi, T. Ueda, T. Abe. Torque Ripple Reduction Control of A Novel Segment Type SRMwith2-steps Slide Rotor. Power Electronics Conference (IPEC), Sapporo,2010.
    [103] B. C. Mecrow, E. A. El-Kharashi, J. W Finch, et al. Segmental rotor switched reluctance motorswith single-tooth windings. IEE Proceedings-Electric Power Applications,2003,150(5):591-599.
    [104] R. Hall, A. G. Jack, B. C. Mecrow, et al. Design and initial testing of an outer rotatingsegmented rotor switched reluctance machine for an aero-engine shaft-line-embeddedstarter/generator. International Electric Machines and Drives Conference, San Antonio, TX, USA,2005:1870-1877.
    [105] D. J. Powell, G. W. Jewell, D. Howe, et al. Rotor topologies for a switched-reluctance machinefor the “more-electric” aircraft engine. IEE Proceedings-Electric Power Applications,2003,150(3):311-318.
    [106] D. J. Powell, G. W. Jewell, S. D. Calverley, et al. Iron loss in a modular rotor switchedreluctance machine for the "more-electric" aero-engine. IEEE Transactions on Magnetics,October,2005,41(10):3934-3936.
    [107] L. Cheewoo, R. Krishnan, N. S. Lobo. Novel two-phase switched reluctance machine usingcommon-pole E-core structure: concept, analysis, and experimental verification. IEEETransactions on Industry Applications,2007,45(2):703-711.
    [108] N. S. Lobo, E. Swint, R. Krishnan. M-Phase N-Segment Flux-Reversal-Free Stator SwitchedReluctance Machines. IEEE Industry Applications Society Annual Meeting, Edmonton, Alta.,Canada2008.
    [109] M. T. Holtzapple, G. A. Rabroker, B. Fahimi, et al. High-torque switched reluctance motor.United States Patent: No.20060279155. Dec.14,2006.
    [110] M. Shang-Hsun, T. Mi-Ching. A novel switched reluctance motor with C-core stators. IEEETransactions on Magnetics, Dec,2005,41(12):4413-4420.
    [111]诸嘉慧.开关磁阻电动机电磁参数及静态特性的有限元分析,[硕士学位论文].哈尔滨:哈尔滨理工大学,2003.
    [112]刘泽远.无轴承开关磁阻电机的电磁基础研究,[博士学位论文].南京:南京航空航天大学,2010.
    [113]杨丽,刘闯,严加根.开关磁阻电机铁损的双频法有限元计算方法的研究.中国电机工程学报,2006,26(12):117-121.
    [114]刘闯,周强,杨丽.开关磁阻电机两种绕组连接方式的铁心损耗.电工技术学报,2007,22(11):41-45.
    [115] C. S. Edrington, M. Krishnamurthy, B. Fahimi. Bipolar switched reluctance machines: a novelsolution for automotive applications. IEEE Transactions on Vehicular Technology,2005,54(3):795-808.
    [116] C. S. Edrington, B. Fahimi. Bipolar switched reluctance machines. IEEE Power EngineeringSociety General Meeting,2004, Denver, CO, United states,2004,2:1351-1358.
    [117]林鹤云,周鹗,黄建中,等.开关磁阻电机磁场有限元分析与铁耗计算.电工技术学报,1996,11(1):24-29.
    [118]吴建华,詹琼华,林金铭.开关磁阻电机的磁通波形.中国电机工程学报,1993,13(5):57-64.
    [119]丁文,周会军,鱼振民.开关磁阻电机磁通波形与铁耗计算,电机与控制应用,2006,33(6):10-17.
    [120] H. Y. Yang, J. G. Kim, Y. C. Lim, et al. Position detection and drive of a Toroidal SwitchedReluctance Motor (TSRM) using search coils. IEE Proceedings-Electric Power Applications,2004,151(4):377-384.
    [121] L. Ji-Young, L. Byoung-Kuk, S. Tao, et al. Dynamic analysis of toroidal winding switchedreluctance motor driven by6-switch converter. IEEE Transactions on Magnetics,2006,42(2):1275-1278.
    [122] A. Khalil, I. Husain, S. A. Hossain, et al. A hybrid sensorless SRM drive with eight-andsix-switch converter topologies. IEEE Transactions on Industry Application,2005,41(6):1647-1655.
    [123] K. Trakrancharoungsook, S. Kittiratsatcha. Position estimation technique of a switchedreluctance motor at standstill. Power Conversion Conference, Nagoya,2007.
    [124] X. D. Xue, K. W. E. Cheng, S. L. Ho, et al. New estimation scheme of the arbitrary rotorposition at standstill for the sensorless switched reluctance motor drive. The35th Annual IEEEPower Electronics Specialists Conference, Aachen, Germany,2004.
    [125]辛凯,詹琼华.基于相电流梯度法的开关磁阻电机间接位置检测.微电机,2006,39(6).
    [126] H. Gao, B. Fahimi, F. R. Salmasi,et al. Sensorless control of the switched reluctance motordrive based on the stiff system control concept and signature detection. The36th IAS AnnualMeeting,2001.
    [127] Gao Hongwei, F. R. Salmasi, M Ehsani. Inductance Model-Based Sensorless Control of theSwitched Reluctance Motor Drive at Low Speed. IEEE Transactions on Power Electronics,2004,19(6):1568-1573.
    [128]邱亦慧,詹琼华,马志源,等.基于简化磁链法的开关磁阻电机间接位置检测.中国电机工程学报,2001,21(10):59-62.
    [129] S. B. Won, H. K. Min, H. K. Nam, et al. Improved rotor position estimation for the sensorlesscontrol system of SRM. IEEE ISIE2005, Dubrovnik, Croatia,2005.
    [130] C. Hudson, N. S. Lobo, R. Krishnan. Sensorless control of single switch based switchedreluctance motor drive using neural network. The30th Annual Conference of the IEEE IndustrialElectronics Society, Busan, Korea,2004.
    [131]夏长亮,贺子鸣,周亚娜,等.基于支持向量机的开关磁阻电机转子位置估计.电工技术学报,2007,22(10):12-17.
    [132]夏长亮,谢细明,史婷娜,等.开关磁阻电机小波神经网络无位置传感器控制.电工技术学报,2008,23(17):33-38.
    [133]郑洪涛,蒋静坪,徐德鸿,等.开关磁阻电动机无位置传感器能量优化控制.2004,24(1):153-157.
    [134] Gopalakrishnan Suresh, Avoki M. Omekanda, Bruno Lequesne, Classification and Remediationof Electrical Faults in the Switched Reluctance Drive. IEEE Transactions on IndustryApplications,2006,42:479-486.
    [135]刘震,林辉,司利云.开关磁阻发电系统的故障分析与仿真.电力系统及其自动化学报,2005,17(5):7-11.
    [136] L. O. A P Henriques, L. G. B. Rolim, W. I. Suemitsu, et al. Development and implementation ofa neuro fuzzy technique for position sensor elimination in a SRM. IEEE InternationalSymposium on Industrial Electronics, Ajaccio, France,2004.
    [137] Chen Hao, Meng Xianjun, Xiao Fang,et al. Fault tolerant control for switched reluctance motordrive. Industrial Electronics Society, IEEE28th Annual Conference, Sevilla, Spain,2002.
    [138]秦海鸿,赵朝会,王惠贞,等.永磁双凸极中常见故障的机理研究.南京航空航天大学学报,2006,38(3):292-297.
    [139]马长山,周波.双凸极电机的位置信号的故障检测与容错控制.中国电机工程学报,2008,28(18):73-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700