内蒙古苏尼特右旗晚石炭世本巴图组火山岩地球化学特征及构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内蒙古地区晚石炭世本巴图组火山岩出露较差,查明区内本巴图组火山岩的岩石组合、地球化学特征等,对研究区域晚古生代古亚洲洋的构造演化提供重要证据。
     论文选择苏尼特右旗地区晚石炭世本巴图组火山岩作为研究对象,主要解决其岩石组合特征、地球化学属性的问题,通过对火山岩的岩石学、地球化学数据的分析,解决本巴图组火山岩的岩浆源区特征及成因过程,阐明火山岩形成的大地构造背景。结合区域早-晚石炭世岩浆弧、贺根山蛇绿岩以及地层学等方面资料,探讨晚古生代古亚洲洋构造演化过程。
     1.本巴图组火山岩的时空分布规律
     本巴图组火山岩主要出露于内蒙古苏尼特右旗东北部地区,其岩性以玄武安山岩为主,含少量英安岩和安山岩。通过对本巴图组火山岩的安山岩样品(ZQ50-112)进行锆石U-Pb同位素LA-ICP-MS技术测年,测年结果显示为300.9±1.6Ma,形成于晚石炭世。
     2.苏尼特右旗地区本巴图组火山岩的岩石组合与地球化学特征
     本巴图组火山岩以玄武安山岩为主,含少量英安岩和安山岩,属于低钾拉斑玄武岩系列。
     火山岩的SiO_2含量介于46.58%~64.84%,去LOI之后,重新计算SiO_2含量变化于52.30%~68.35%之间,具有相对较高的Al_2O_3(12.44%~15.09%)、TiO_2(0.61%~2.52%)和Na_2O(2.82%~5.48%),且相对贫镁Mg#=16~53,贫钾(0.08%~0.47%)的特征;随着SiO_2含量的不断增加主量元素FeOT、MgO、TiO_2、CaO、P_2O_5、Al_2O_3、K_2O含量明显呈降低的趋势;而Na_2O的含量则表现出增高的趋势。
     本巴图组火山岩中从玄武安山岩、安山岩到英安岩具有相似的稀土元素特征:稀土元素总量(∑REE=46.48μg/g~203.04μg/g),具有中等富集的特征,δEu值变化于0.68~0.90。在稀土元素球迷粒陨石标准化配分曲线上,本巴图组火山岩呈平坦型,具有轻、重稀土元素分馏不明显及轻微到弱的铕异常的特征。在微量元素原始地幔(Primitive mantle)标准化蛛网图中,本巴图组火山岩普遍具有富集Th、U、La、Ce、Zr、Hf等不相容元素,相对亏损高场强元素Nb、Ta、Ti等的特征。在稀土元素球粒陨石标准化配分曲线和原始地幔标准化微量元素蛛网图上,本巴图组火山岩均显示了与圣基茨岛弧火山岩相似的特征。结合本巴图组火山岩的球粒陨石标准化配分曲线从玄武安山岩、安山岩到英安岩呈近平行上移的特征和Harker图解中主量元素随SiO2含量变化的特征,认为本巴图组火山岩的成分变化是同源岩浆分离结晶作用的结果。
     3.本巴图组火山岩的源区性质及其岩浆演化特征
     本巴图组火山岩中未发现有幔源包裹体的存在,其Mg#、Sc、Co、Ni值均小于地幔原始岩浆的成分范围,说明形成本巴图组火山岩的岩浆并非是幔源的原始岩浆。
     本巴图组火山岩的岩石学、地球化学特征,与俯冲带发育的正常的岛弧火山岩和埃达克岩的对比表明,本巴图组火山岩的初始岩浆起源于受俯冲洋壳脱水流体交代的上覆地幔楔的部分熔融;在岩浆演化的过程中,经历了以斜长石等矿物为主的分离结晶作用。
     4.本巴图组火山岩的构造背景
     苏尼特右旗本巴图组火山岩的岩石组合、岩石系列特征类似于岛弧火山岩。火山岩的稀土元素球粒陨石标准化配分曲线与圣基茨典型的岛弧火山岩相似;微量元素原始地幔标准化蛛网图显示了相对富集Th、U、La、Ce、Zr、Hf等不相容元素,相对亏损高场强元素Nb、Ta、Ti等的特征,亦与圣基茨岛弧火山岩相近。在玄武岩的La-Y-Nb构造环境判别图解中,火山岩样品均落入到岛弧火山岩区内。在La/Nb-La/Ti图解中,通过对典型的构造环境下产出的火山岩进行对比,显示了同圣基茨岛弧火山岩相似的成分特征,进一步说明本巴图组火山岩形成于岛弧环境。
     5.区域石炭纪-早二叠世主要岩浆活动
     区域内,早石炭世末-晚石炭世初在苏左旗-西乌旗一带发育活动大陆边缘岩浆弧;晚石炭世末-早二叠世初形成南侧本巴图组火山岩;早二叠世早期形成北侧贺根山蛇绿岩。
     根据上述区域石炭纪-早二叠世火山岩和花岗质侵入岩以及贺根山蛇绿岩的地球化学成因特征、时空演化规律,结合区域地层学分析,取得以下基本认识:
     (1)研究区本巴图组火山岩岩石组合为玄武安山岩、安山岩和少量英安岩,地球化学性质属于低钾拉斑玄武岩系列,形成于晚石炭世(300.9±1.6Ma)。
     (2)火山岩富集大离子亲石元素,相对亏损Nb、Ta、Ti等高场强元素,具有与圣基茨岛弧火山岩相似的地球化学性质。
     (3)提出古亚洲洋在石炭纪期间,沿佳蒙地块南缘存在向北俯冲作用,俯冲板片在晚石炭世发生后撤作用,形成石炭纪岩浆弧自北向南迁移,并伴随北部贺根山弧后蛇绿岩的形成,认为古亚洲洋最终沿西拉木伦河一线闭合,陆-陆碰撞时间可能为晚二叠世-早三叠世。
Introdcuction
     The Late Carboniferous volcanic rocks of Benbatu Formation are poorly outcroppedin Inner Mongolia. The research of rock associations and geochemical characteristics ofthe volcanic rocks will provide an important evidence for the tectonic evolution ofPaleo-Asian Ocean in Late Paleozoic.
     In this paper,the volcanic rocks which outcrop in Sonid Youqi area are the mainresearch object. Fist,the rock associations and geochemical characteristics of the volcanicrocks are solved. Then,by the detailed analysis of the petrologic and geochemical data ofthe volcanic rocks,the characteristics of magma source and genetic process are clearlyillustrated. And,the background of the volcanic rocks will be cleared. Finally,combinedwith the early-late Carboniferous magmatic arc,Heggenshan ophiolite and the stratigraphymaterial,the tectonic evolution of Paleo-Asian Ocean in Late Paleozoic will beelucidated.
     1. The spatial and temporal distribution of the volcanic rocks of BenbatuFormation
     The volcanic rocks of Benbatu Formation mostly outcrop in the northeast part ofSonid Youqi,Inner Mongolia. The volcanic rocks are mainly composed of basalticandesite and a few dacite and andesite. The U-Pb isotopic LA-ICP-MS dating of theandesite(ZQ50-112)shows an age of300.9±1.6Ma. So,the volcanic rocks are formed inLate Carboniferous.
     2. The rock associations and geochemical characteristics of the volcanic rocks ofBenbatu Formation in Sonid Youqi area
     The volcanic rocks are mainly composed of basaltic andesite and a few dacite andandesite which belong to low-K tholeiite series.
     The contents of SiO_2of the volcanic rocks are between52.30%~68.35%(Remove theLOI). They arc characterized by relatively high content of Al_2O_3(12.44%~15.09%)、TiO2(0.61%~2.52%)and Na_2O(2.82%~5.48%),but relatively low content of MgO(Mg#=16~53) and K_2O(0.08%~0.47%). With the increase of the content of SiO_2,the content ofFeOT、MgO、TiO2、CaO、P2O5、Al_2O_3、K_2O presents a trend of decrease,but the contentof Na_2O shows a trend of increase.
     The rare earth elements of Benbatu volcanic rocks have similar characteristics,whichare the similar total rare earth element contents (∑REE=46.48μg/g~203.04μg/g) and thesimilar anomalies of Eu (δEu=0.68~0.90). TiO_2the chondrite-normalized REE diagram,therocks are characterized by LREE and HREE without significant fractionation and slight orweak depletion of Eu. TiO_2the Primitive mantle-normalized spider diagram,the rocks areenriched in incompatible elements (Such as Th、U、La、Ce、Zr、Hf),but depleted ofhigh filed strength elements(HFSE,such as Nb、Ta、Ti). The characteristics both on thechondrite-normalized REE diagram and on the Primitive mantle-normalized spiderdiagram are similar to the St.Kitts island arc volcanic rocks. Combined with thecharacteristics of REE and the major elements,the contents change of Benbatu volcanicrocks is considered to be the result of the comagmatic fractional crystallization.
     3. Nature of magmatic source and Magmatic evolution of Benbatu volcanic rocksCompared with the geochemical characteristics of the mantle-derived primarymagma,the magma of the volcanic rocks of Benbatu Formation are not primary magma,which is not only because the rocks are lack of the mantle-derived inclusions,but alsohave the low Mg#values and low contents of Sc,Co,and Ni.
     Compared with the petrologic and geochemical characteristics of the ordinaryvolcanic rocks and adakite which both develop in subduction zones,the volcanic rocks are considered to be originated from partial melting of the overlying mantle wedge which ismetasomatized by the fluid which is dehydrated from subducted oceanic crust. And,thefractional crystallization mainly relies on plagioclase in the process of magma evolution.
     4.The tectonic setting of the volcanic rocks
     The association of basaltic andesite,andesite and dacite of the Late Carboniferousvolcanic rocks of Benbatu formation in Sonid Youqi is similar to the island arc volcanicrocks. They have the similar geochemical characteristics with the St. Kitts island arcvolcanic rocks both on the chondrite-normalized REE diagram and on the Primitivemantle-normalized spider diagram. TiO_2the La-Y-Nb diagram,all of the samples fall intothe island arc volcanic rocks area. TiO_2the La/Nb-La/Ti diagram,the rocks have a similarcomposition of the St. Kitts island arc volcanic rocks,which suggest the rocks wereformed in an island-arc environment.
     5. Regional main magmatic activity from Carboniferous to Early Permian
     Regionally,An active continental margin magmatic arc which was formed at the lateEarly Carboniferous-the early Late Carboniferous lies from Sonid Zuoqi to Xiwuqi. In thesouth of the magmatic arc,there is the existence of the volcanic rocks of Benbatuformation which were formed at the late Late Carboniferous-early Early Permian,and inthe north of the magmatic arc,there is the existence of the Hegenshan ophiolite which wasformed at early Early Permian.
     Finally,combined with the regional stratigraphic data,a few basic understandings areobtained:
     (1)The volcanic rocks of Benbatu formation in Sonid Youqi area,Inner Mongolia,mainly consist of basaltic-andesite, andesite and a little dacite. The geochemicalcharacteristics of volcanic rocks generally belong to the tholeiitic series. Zircon U-Pbisotopic dating revealed that the andesite was formed at300.9±1.6Ma.
     (2) They are characterized by enrichment in LILE but depletion in HFSE(Nb、Ta、Ti),which is similar to the St. Kitts island arc volcanic rocks.
     (3)The Paleo-Asian Ocean has subducted northward along the south edge of the Jiamushi-Mongolia block since Early Carboniferous. In Late Carboniferous, thesubduction slab became drop back,which made the Carboniferous magmatic arc movefrom north to south and the formation of Hegenshan ophiolite. So,the Paleo-Asian Oceanis considered to close along the Xar Moron River,and the continental collision couldhappen at Late Permian-Early Triassic.
引文
[1] Abe N,Arai S,Yurimoto H. Geochemical characteristics of the uppermost mantle beneath theJapan island arcs: Implications for upper mantle evolution[J]. Phys. Earth Planet. Int.,1998,107:233-248.
    [2] Andersen T. Correction of common1ead in U-Pb ana1yses that do not report204Pb[J]. ChemGeoL.,2002,192:59-79.
    [3] Brian F. Windley,Dmitry Alexeiev Wenjiao Xiao et al. Tectonic models for accretion of theCentral Asian Orogenic Belt[J]. Journal of the Geological Society,2007,164(1):31-47.
    [4] Bryant J A,Yogodzinskig G M,Hall M L,et al. Geochemical constraints on the origin ofvolcanic rocks from the Andean Northern volcanic zone[J],Ecuador. Journal of Petrology,2006,47(6):1147-1175.
    [5] Cabanis B and Lecolle M. The La/10-Y/15-Nb/8diagram:A tool for discrimination volcanicseries and evidencing continental crust magmatic mixtures and/or contamination crustale[J].Comptes Redus de I’Academie des Sciences, Serie Ⅱ,1989,309(20):2023-2029.
    [6] Robert G. Coleman. Continental growth of northeast China[J]. Tectonics,1989,8(3):621-635.
    [7] Chen B,Jahn B M,Wilde S,Xu B. Two contrasting Paleozoic magmatic belts in northern InnerMongolia China: petrogenesis and tectonic implications[J]. Tectonophysics,2000,328:157-182.
    [8] D′Orazio M D,Innocenti F,Manetti P,et al. The Quaternary calc-alkaline volcanism of thePatagonian Andes close to the Chile triple junction:geochemistry and petrogenesis of volcanicrocks from the Cay and Maca volcanoes (~45°S, Chile)[J]. Journal of South American EarthSciences,2003,16:219-242.
    [9] Defant M J,Drummond M S. Derivation of some modern arc magmas by melting of youngsubduction lithosphere[J]. Nature,1990,662-665.
    [10] Defant M J,Drummond M S. Mount St Helens:potential example of the partial melting ofsubducted lithosphere in a volcanic arc[J]. Geology,1993,21:54-550.
    [11] Defant M J,Richerson M,De Boer J Z,et al. Dacite genesis via both slab melting anddifferentiation: petrogenesis of La Yeguada volcanic complex[J]. Panama J Petrol,1991,32:1101-1142.
    [12] Depaolo D J. Neodymium Isotopes in Geology[J]. Springer-Verlag.1988,187.
    [13] Drummond M S,Defant M J. A model for trondhjenite-tonalite-dacite genesis and crustal growthvia slab melting: Archaean to modern comparisons[J]. J Geophys Res,1990,95:21503-21521.
    [14] Eiler J M,Grawford A,Elliott T,et al. Oxygen isotope geochemistry of oceanic arc lavas[J]. J.Petrol.,2000,41:229-256.
    [15] Ellison A J G,Navrotsky A. Enthalpy of formation of zircon[J]. J. Am. Ceramic Soc.1992,75:1430-1433.
    [16] G. Koschek. Origin and significance of the SEM cathodoluminescene from zircon[J]. Journal ofMicroscopy,1993,171(3):223-232.
    [17] Gill J B. Orogenic Andesites and Plate Tectonics[J]. Springer Verlag,New York..1981,385.
    [18] Grove T L,Elkins Tanton L T,Parman S W. et al. Fractional crystallization and mantle meltingcontrols on calk-alkaline differentiation trends[J]. Contrib Mineral Petrol.2003,145(5):515-533.
    [19] Gutierrez F,Gioncada A,Gonzalea F O,et al. The Hudson Volcano and surroundingmonogenetic centres (Chilean Patagonia):An example of volcanism associated with ridge-trenchcollision environment[J]. Journal of Volcanology and Geothermal Research,2005,145:207-233.
    [20] Ionov D A,Gregoire M, Prilhod'ko V S. Feldspar-Ti-oxide metasomatism in off-cratoniccontinental and oceanic upper mantle[J]. Earth and Planetary Science Letters.1999,165:37-44.
    [21] Jahn B M, Wu F Y,Lo C H et al. Crust-mantle interaction induced by deep subduction of thecontinental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafrcintrusions of the northern Dabie complex,central China[J]. Chemical Geology.1999,157:119-146.
    [22] Kay R W. Aleutian magnesian andesites melts from subduered Pacfie Ocean crust[J]. J VolcanolGeotherm Res,1978,4:117-l32.
    [23] Kay S M,Kay R W.Aleutian magmas in space and time[C]//Plafker G and Berg H C.Thegeology of Alaska.Boulder,Colorado:Geological Society of America,1997:687-722.
    [24] Kepezhinskas P,McDermott F,Defant M J et al. Trace element and Sr-Nd-Pb isotopic constraintson a three-component model of Kamchatka Arc petrogenesis[J]. Geochim. Cosmochim. Acta,1997,61(3):577-600.
    [25] Le Maitre R W,Bateman P,Dudek A,et al. A classification of igneous rocks and glossary ofterms[M].Oxford:Blackwell,1989:193.
    [26] Li J Y. Permian geodynamic setting of Northeast China and adjacent regions:closure of thePaleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences,2006,26(3):207-224.
    [27] Marc J. Defant,Mark S. Drummond. Derivation of some modern arc magmas by melting of youngsubducted lithosphere[J]. Nature,1990,347,662-665.
    [28] Miao L C,Fan W M,Liu D Y et al. Geochronology and geochemistry of the Hegenshan ophioliticcomplex:Implications for late-stage tectonic evolution of the Inner Mongolia-DaxinganlingOrogenic Belt,China[J]. Journal of Asian Earth Sciences,2008,32(5-6):348-370.
    [29] Miyashiro A. Volcanic rock series in island arc and active continental margins[J]. AmericanJournal of Science,1974,274:32-355.
    [30] R.C.Price,L.E.Johnson,and A.J. Crawford. Basalts of the North Fiji Basin: the generation of backarc basin magmas by mixing of depleted and enriched mantle sources[J]. Contrib Mineral Petrol,1990,105:106-121.
    [31] Robert G. Continental growth of northwest China[J]. Tectonics,1989:8(3):621-635.
    [32] Robinson P T,Zhou M F, Hu X F,et al. Geochemical constraints on the origin of the HegenshanOphiolite,Inner Mongolia,China[J]. J. Asian Earth Sci.1999,17:423-442.
    [33] Saunders A D,Norry M J and Tamey J. Origin of MORB and chemically depleted mantlereservoirs: trace element constrains[J]. J. Petrol.,Special Lithosphere Issue,1988:415-445.
    [34] Sengor A M C,Natal'in B A. Paleotectonics of Asia: fragments of a synthesis[M]. In: Yin A.,Harrison T. M.(Eds.). The Tectonic Evolution of Asia. Cambridge University Press,Cambridge.1996,486-641.
    [35] Sun S S,Mcdonough W F. Chemical and isotopic systematics of oceanic basalts:implications formantle composition and process[C]//Saunders A D,Norry M J.Magmatism in the OceanBasins.London:Geological Society Special Publications,1989,42:313-345.
    [36] TANG, Ke-dong.Tectonic development of Paleozoic foldbelts at the north margin of theSino-Korean Craton[J]. Tectonics,1990,9(2),249-260.
    [37] Taylor S R,S M McLennan.The continental crust: Its composition and evolution[M].Oxford:Blackwell,1985:312.
    [38] Tazawa J. Middle Permian brachiopod faunas in East Asia and their zoogeographic significance[J].Journal of the Geological Society of Japan,1992,98(6):483-496.
    [39] Toothill J,Williams C A,Macdonald R,et al. A Complex Petrogenesis for an Arc MagmaticSuite, St Kitts, Lesser Antilles[J]. Journal of Petrology,2007,48(1):3-42. Doi:10.1093/petrology/egl052.
    [40] Weaver B L. Traceelement evidence for the origin of ocean island basalts[J]. Geology,1991,19:123-126.
    [41] Winchester J A,Floyd P A.Geochimical discrimination of different magma series and theirdifferentiation products using immobile elements[J]. Chemical Geology,1977,20:325-343.
    [42] Xiao W J,Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonkersuture, Inner Mongolia,China: termination of the Central Asian Orogenic Belt[J]. Tectonics,2003,22:1069
    [43]白文吉,李行,L Le Bel.内蒙古贺根山蛇绿岩的铬铁矿床生成条件的讨论[J].中国地质科学院地质研究所所刊,1985,12号:1-19.
    [44]包志伟,陈森煌,张桢堂.内蒙古贺根山地区蛇绿岩稀土元素和Sm-Nd同位素研究[J].地球化学,1997,23(4):339-349.
    [45]曹从周.中国东北部的板块构造格局[J].中国地质科学院沈阳地质矿产所所刊,1987,16:60-67.
    [46]曹熹,党增欣,张兴洲等.木斯复合地体[M].长春:吉林科学出版社,1992.
    [47]陈斌,赵国春,Simon Wilde.内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义.地质论评.2001,47(4):361-367.
    [48]陈义贤,陈文寄,周新华等.辽西及邻区中生代火山岩—年代学、地球化学和构造背景[M].北京:地震出版社,1997.
    [49]陈义贤,陈文寄,周新华等.辽西及邻区中生代火山岩—年代学、地球化学和构造背景[M].北京:地震出版社,1997
    [50]池际尚等.中国东部新生代玄武岩及上地慢研究(附金伯利岩)[M].武汉:中国地质大学出版社,1988.
    [51]邓晋福,鄂莫岚,路凤香.中国东北地区上地幔组成、结构及热状态[J].岩石矿物学杂志,1987,6(1):1-10.
    [52]邓晋福,赵海玲,罗照华等.玄武岩反演软流层地球化学与地幔流体.见杜乐天主编:地幔流体与软流层(体)地球化学[J]..北京:地质出版社,1996:58-96.
    [53]地质部内蒙古自治区地质局.中华人民共和国地质图说明书(苏尼特右旗幅1:200000[M].1956.
    [54]何国琦,邵济安.内蒙古东南部(昭盟)西拉木伦河一带早古生代蛇绿岩建造的确认及其大地构造意义.见[C]//中国北方板块构造文集.武汉:中国地质大学出版社,1983.243-250.
    [55]洪大卫.内蒙古中部二叠纪碱性花岗岩及其地球动力学意思义[J].地质学报,1994,68(3):219-221.
    [56]黄汲清,姜春发.从多旋回构造运动观点初步探讨地壳发展规律[J].地质学报,1962,42(2):105-152.
    [57]黄汲清,任纪舜,姜春发等.中国大地构造基本轮廓[J].地质学报,1977,51(2):117-135.
    [58]黄汲清,任纪舜.中国大地构造及其演化[M].北京:科学出版社,1980.
    [59]黄汲清.中国主要构造地质单元[M].北京:地质出版社,1945.
    [60]汪云亮,张成江,修淑芝等.玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J].岩石学报,2001,17(3):413-421.
    [61]李春昱,王荃,张之孟等.中国板块构造的轮廓[J].地球学报,1980,000-001.
    [62]李春昱等.我们北部边陲及邻区的古板块构造及欧亚大陆的形成[C]//中国北方板块构造文集,地质出版社,1983,1:3-13.
    [63]刘建峰.内蒙古林西-东乌旗地区晚古生代岩浆作用及其对区域构造演化的制约[M].吉林大学博士学位论文,2009.
    [64]李锦轶.中国东北及邻区若十地质构造问题的新认识[J].地质论评,1998,44:339-347.
    [65]李莉,谷峰.内蒙-吉林亚区早二叠世早期的沉积特征及古地理轮廓[J].中国地质科学院院报,1984,8:107-121.
    [66]梁日暄.内蒙古中段蛇绿岩特征及地质意义[J].中国区域地质,1994,1:37-45.
    [67]刘家义,李春昱,肖序常.内蒙古贺根山地区蛇绿岩套研究及构造意义[J].中国地质科学院报,1985:171-172.
    [68]李文国.内蒙古哲斯腕足动物群的再研究[J].中国区域地质,1983,8:1-11
    [69]吕志成,段国正,郝立波等.大兴安岭中段二叠系大石寨组细碧岩的岩石学地球化学特征及其成因探讨[J].岩石学报,2002a,18(2):212-222.
    [70]吕志成,郝立波,段国正等.大兴安岭南段早二叠世两类火山岩岩石地球化学特征及其构造意义[J].地球化学.2002b,31(4):338-346.
    [71]彭玉鲸,纪春华,辛玉莲.中俄朝毗邻地区古吉黑造山带岩石及年代记录[J].地质与资源,2002,11(2):65-75.
    [72]任纪舜,陈延愚,牛宝贵等.中国东部及邻区岩石圈的构造演化与成矿[M].北京:科学出版社,1990.
    [73]任纪舜,牛宝贵等.软碰撞叠覆造山和多旋回缝合作用[J].地学前缘,,1999,6(3):85-93.
    [74]尚庆华.北方造山带的内蒙古中、东部地区二叠纪放射虫的发现及意义[J].科学通报,2004,49(24):2574-2579.
    [75]邵积东.内蒙古大地构造分区及其特征[J].内蒙古地质,1998,(2):1-23
    [76]邵济安,牟保磊,何国琦等.华北北部在古亚洲域与太平洋域构造叠加过程中的地质作用[J].中国科学(D辑),1997,27(5):390-394.
    [77]邵济安.中朝板块北缘中段地壳演化[M].北京:北京大学出版社,1991.
    [78]施光海,刘敦一,张福勒等.中国内蒙古锡林郭勒杂岩SHRIMP锆石U-Pb年代学意义[J],科学通报,2003,48(20):216-221
    [79]施光海,苗来成,张福勤等.内蒙古锡林浩特A型花岗岩的时代及区域构造意义[J].科学通报,2004,49(4):384-389.
    [80]苏养正.中国东北区二叠纪和早三叠世地层[J].吉林地质,1996,15(3,4):55-65.
    [81]孙德有,吴福元,张艳斌等.西拉木伦-长春-延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据[J].吉林大学学报(地球科学报),2004,34(2):174-181.
    [82]汤文豪,张志诚,李建峰等.内蒙古苏尼特右旗查干诺尔石炭系本巴图组火山岩地球化学特征及其地质意义[J].北京大学学报(自然科学版),2011,47(2):321-330.
    [83]唐克东.中朝板块北侧褶皱带构造演化及成矿规律[M].北京大学出版社,1992.
    [84]唐克东.中朝陆台北侧褶皱代构造发展的几个问题[J].现代地质,1989.3(2):195-204.
    [85]王成文,金巍,张兴洲等.东北及邻区晚古生代大地构造属性的新认识[J].地层学杂志,2008,32(2):119-135.
    [86]王成文,张松梅.哲斯腕足动物群[M].北京:地质出版社,2003.
    [87]王荃,刘雪亚,李锦轶.中国内蒙古中部的古板块构造[J].中国地质科学院院报,1991,22:1-15.
    [88]王荃.内蒙古中部中朝与西伯利亚古板块间缝合线的确定[J].地质学报,1986,(1):31-43.
    [89]王玉净,樊志勇.内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义[J].古生物学报,1997,36(1):58-69.
    [90]王玉净,樊志勇.内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义[J].古生物学报,1997,36(1):58-69.
    [91]吴福元,曹林.东北亚地区的若干重要基础地质问题[J].世界地质,1999,18(2):1-13.
    [92]肖序常,汤耀庆,冯益民等.新疆北部及其邻区大地构造[M].北京:地质出版社,1992,1-169.
    [93]肖序常,汤耀庆,李锦轶等.古中亚复合巨型缝合带南缘构造演化[C]//肖序常,汤耀庆,主编.古中亚复合巨型缝合带南缘构造演化.北京科学技术出版社,1991,1-29.
    [94]谢鸣谦.拼贴板块构造及其驱动机理—中国东北及其邻区的大地构造演化[M].北京,科学出版社.2000.
    [95]徐备,J.Charvet,张福勒.内蒙古北部苏尼特左旗蓝片岩岩石学和年代学研究[J].地质科学,2001,36(4):424-434.
    [96]徐备,陈斌.内蒙古北部华北板块与西伯利亚之间中古生代造山带的结构及演化[J].中国科学(D辑),1997,27(3):227-232.
    [97]徐志刚.内蒙古东南部铜多金属矿床成矿构造背景[C]//张德全,赵一鸣主编.大兴安岭及邻区铜多金属矿床论文集,北京:地震出版社,1993,20-41.
    [98]余和中,李玉文.松辽盆地古生代构造演化[J].大地构造与成矿学,2001,25(4):389-396.
    [99]张臣,李茂松.内蒙古苏左旗地区晚古生代构造—岩浆活动及地壳演化特征[J].高校地质学报,1997,13(1):31-40.
    [100]张臣,吴泰然.内蒙古苏尼特左旗南部早古生代蛇绿混杂岩特征及其构造意义[J].地质科学,1998,34(3):381-389
    [101]张兴洲.黑龙江岩系-古木斯地块加里东缝合带的证据[J].长春地质学院学报,1992,22:94-101.
    [102]张贻侠.中国满洲里—绥芬河地学断面1:1000000说明[M].北京:地质出版社,1998.
    [103]赵芝.内蒙古大石寨地区早二叠世大石寨组火山岩的地球化学特征及其构造环境[M].吉林大学硕士毕业论文,2008.
    [104]赵振华,王强,熊小林.俯冲带复杂的壳幔相互作用[J].矿物岩石地球化学通报,2004,23(4):277-284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700