SO_4~(2-)和/或SiO_3~(2-)对部分水解铝盐混凝剂性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在综合国内外大量相关文献的基础上,对SO_4~(2-)和/或SiO_3~(2-)对部分水解铝盐混凝剂中铝形态及性能的影响进行了研究。同时对含SO_4~(2-)和/或SiO_3~(2-)复合混凝剂的形态的分析表征和定量计算、结构形貌、水解过程以及混凝动态过程等问题进行了较为系统的探讨。主要研究内容及结论如下:
     1.Al-Ferron反应动力学曲线可以反映整个反应时间内混凝剂的铝形态与Ferron反应的情况,聚合铝盐混凝剂的Al-Ferron反应动力学曲线符合假一级化学反应方程式,Al-Ferron反应动力学法计算的铝水解形态与Al-Ferron反应过程的实验结果和~(27)Al-NMR法测定结果非常一致,可以很好的反映复合混凝剂的水解形态,避免了人为划分反应时间带来的误差。
     2.Al-Ferron法和~(27)Al-NMR法的计算结果表明,在PAC的制备过程中,SO_4~(2-)和/或SiO_3~(2-)的存在都会抑制具有较好混凝性能的Al_b和Al_(13)形态的形成,SO_4~(2-)的抑制作用比SiO_3~(2-)的影响更为明显。其中,SO_4~(2-)的存在使AlCl_3的水解过程向聚合方向进行,趋于形成更大的聚集体,SiO_3~(2-)的存在使AlCl_3的水解过程向水解方向进行,趋于形成较小的聚集体。
     3.SO_4~(2-)和/或SiO_3~(2-)与铝水解形态之间的相互作用会影响混凝剂的混凝性能。红外光谱结果表明,少量SO_4~(2-)存在使PAC中H-O-H水分子弯曲振动和Al-O八面体中Al-OH伸缩振动明显增强,分子间氢键O-H伸缩振动随SO_4~(2-)增加而增强至γ_(SO4/Al)=0.2时趋势逆转。SiO_3~(2-)的存在对PAC水解形态H-O-H水分子弯曲振动、Al-O八面体中Al-OH伸缩振动和分子间氢键O-H伸缩振动的影响较SO_4~(2-)弱,但随γ_(Si/Al)增加呈明显增强趋势。
     4.混凝剂的透射和扫描电镜观察表明PAC、PASiC_(0.10)和PACS_(0.10)三种混凝剂在贮存初期聚集体均呈枝状分布,其中PACS混凝剂中聚集体尺寸最大,聚集体晶粒在各分枝的外缘排列致密内部排列稍松散;PAC中聚集体尺寸次之,晶粒基本在各分枝的外缘紧密排列,内部晶粒很少;PASiC混凝剂聚集体尺寸最小但数量最多且晶粒排列最紧密。随贮存时间的延长,PAC和PACS
The influence of SO_4~(2-) and /or SiO_3~(2-) on Al (III) properties and flocculation efficiency is explored in this paper. Meanwhile, Al (III) species calculation, interactions of SO_4~(2-) and/or SiO_3~(2-) with Al (III) species, surface morphology, hydrolysis and flocculation dynamic of Polyaluminum flocculants containing SO_4~(2-) and /or SiO_3~(2-) are investigated. The main research and conclusions are as follows:
    1. A new Al-Ferron kinetics method was developed to monitor and calculate Al speciation. The results showed that the Al-Ferron kinetics fit a binary pseudo 1st order rate equation. Sulfate and silicate had different influences on Al-Ferron kinetics. Al-Ferron complexation timed spectrophotometry is the commonly used method of determining Al speciation but this new Al-Ferron kinetics calculation method shows different species distributions. For all the flocculants except polyaluminum silicate chloride (PASiC), the new method yielded higher Alb and lower Al_a values. The Al (III) chemical species calculated using Al-Ferron kinetics is more consistent with the Al-Ferron reaction results and ~(27)Al NMR results.
    2. The results of Al (III) speciation calculated using Al-Ferron kinetics and ~(27)A1 NMR method showed, on one hand , that the presence of SO_4~(2-) and /or SiO_3~(2-) inhibited forming Al_b/or Al_(13) species during polyaluminum prehydrolysis. And this effect of the presence of SO_4~(2-) was more obvious than that of SiO_3~(2-) On the other hand, the inhibition of SO_4~(2-) and SiO_3~(2-)on Al_b/or Al_(13) formation was in different direction. SO_4~(2-) tended to aggregate and form larger polymers while SiO_3~(2-) tended to disaggregate and form smaller polymers.
引文
[1] 汤鸿霄(1995).无机高分子絮凝剂的研究,生产和应用,《资源、发展与环境保护》,中国环境科学出版社,27—33
    [2] 胡勇有.新型混凝剂聚磷氯化铝的研究:[博士学位论文].北京:清华大学环境工程系,1990
    [3] Manual of British Water Enginearing Practice,Cambridge,Heifer and Sons Ltd.1961
    [4] 池野亮当.森本达雄,铝或铁的碱式氯化物的制造方法.日本特许公报,昭36-24055,1961-02
    [5] 森本达雄.碱式铝盐的制造方法.日本特许公告,昭40-5044,1965—03
    [6] 田部日出雄.无机酸的碱式铝盐的制法.日本特许公告,昭38-1730,1963—09
    [7] 川村静夫,后藤克已.聚铝离子的凝聚.工业用水,1963.1
    [8] 伴繁雄,幡野照玉.聚氯化铝凝聚剂的基础研究.水道协会杂志,1968.5
    [9] 日本水道协会规范,水道用聚氯化铝.水道协会杂志,1969.4
    [10] 哈尔滨市自来水公司等.碱式络合铝盐凝聚剂的初步实验研究.1964.5
    [11] 沈阳市饮水洁治研究小组.羟基氯化铝混凝剂试制和研究总结.1969.11
    [12] 四川省给排水设计院等,新净水剂—碱式氯化铝的生产试制及净水效果生产性检验小结,1972.6
    [13] 上海自来水公司.碱式氯化铝试验小结.1972.7
    [14] 汤鸿霄,陈辅君.无机高分子混凝剂聚合铝的制造和应用.建筑技术通信,1973.6
    [15] 高宝玉等(1997),环境科学,11(5):37
    [16] 郝红英,郝红元.水处理中絮凝剂的研究[J].华北工学院学报,1999,20(2):137~140.
    [17] 姚重华.聚合氯化铝的Al NMR研究[J].环境科学学报,1999.9(1):116~118.
    [18] 栾兆坤、汤鸿霄.聚铝形态分布特征及转化规律[J].环境科学学报,1998,8(2):146~148
    [19] 汤鸿霄.无机高分子复合絮凝剂的研制趋向.中国给水排水,1999,15(2):17
    [20] Gao. B. Y., Hahn. H. H., Hoffmann. E. Evaluation of aluminum-silicate polymer composite as a coagulant for water treatment. Water Research, 2002, 36(14), 3573-3581
    [21] Hasse D, Spriatos N. Polymeric Basic Aluminum Silicate-Sulphafe EP patent 0,372,715 1990
    [22] Arnold-Smith A K, Christie R M. Polyaluminum Silicate Sulfate--A New Coagulant for Potable and Wastewater Trantment. Proc of the 5th Gothenburg Symposium, France, 1992
    [23] Gao. B. Y., Yue. Q. Y., Wang. B. J., Chu. Y. B.Poly-aluminum-silicate-chloride (PASiC)—a new type of composite inorganic polymer coagulant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 229(1-3): 121 - 127
    [24] 石宝友,汤鸿霄.聚合铝与有机高分子复合絮凝剂的絮凝性能及其吸附特性.环境科学,2000,21(1):18-22
    [25] 陈立丰等.PAC、PAM复合絮凝剂处理不同浊度水的动力学和机理研究.南昌航空工业学院学报,1996,2:1-9
    [26] 陈立丰等.聚合氯化铝、聚丙烯酰胺复合絮凝剂处理不同浊度水的研究.水处理技术,1997,23(6):345-348
    [27] 张永战,等.聚合铝生产方法评述[J].河南化工,1994,5(8):8-10
    [28] 张璐璐,等.聚合铝试验及分析[J].天津化工,1994,(1):43-45
    [29] 白文科,等.Al(OH)3制备聚合铝[J].中国化工,1998,(4):42
    [30] 谢子汝,等.聚合铝生产工艺研究[J].现代化工,1995,(1):21-23
    [31] 蒋馥华,等.碱法从铝土矿制备聚合氯化铝[J].环境工程,1997,12(4):50-54
    [32] 陈辅君,等.高盐基度聚合氯化铝的制各研究[J].中国给水排水,1994,10(6):45-48
    [33] Liu Huijuan, Qu Jiuhui, Zhang Sujuan, Hu Chengzhi. Characteristics and formation of [AlO_4Al_(12)(OH)_(24)(H_2O)_(12)]~(7+) in electrolysis process. Science in China (Series B). 2002, 45(5):515-520
    [34] 李凡修,陈武.聚合氯化铝制备技术的研究现状和进展.工业水处理,2003, 23(3):5-8
    [35] 汤鸿霄.无机高分子絮凝剂的基础研究[J].环境化学,1990,9(3):1—12
    [36] 王东升,韦朝海.无机混凝剂的研究与发展趋势[J].中国给水排水,1997,13(5):20
    [37] Letterman R D ,Vanderbrook S G. Effect of solution chemistry on coagulation with hydrolyzed Al (Ⅲ) [J ], Water Res, 1983,17 : 195
    [38] Iler R K. The chemistry of silica[M]. Willey ,NY, 1979
    [39] 王东升,汤鸿霄.三类氧化硅的形态分布及其转化特性[J].环境化学,1997,16(6):515
    [40] Jander G., Winkel A. Diffusion coefficients of basis aluminum solutions. Z.Anorg. Chem. 1931,200:257
    [41] Brosset C. On the reactions of the aluminum ion with water. Acta Chem. Scand. 1952,6:910
    [42] Brosset C.,et.al.. Studies on the hydrolysis of metal ions Ⅺ:The aluminum ion. Acta. Chem. Scand., 1954,8:1917
    [43] Sillen L.G. On the reaction of the aluminum ion with water. Acta. Chem. Scand. 1952,6:910
    [44] Bidermann G. Sven. Kern, Tidskr. 1964,76:362
    [45] Hsu P.H., Bates T.F. Formation of X-ray amorphous and crystalline aluminumhydroxide. Mineral. Mag. 1964,33:749
    [46] Aveston J.L. Hydrolysis of aiuminum ion: Ultra centrifugation and acidity measurements. J. Chem. Soc. Acta. Chem. Scand.1965,16:403
    [47] Meamer R.E., Baes C.F. Acidity Measurements at elevated temperature 1. aluminum ion hydrolysis. Inorg.Chem. 1971,10:2290
    [48] Patterson, J. H. et al., A light scattering study of the hydrolytic polymerization of aluminum, J. Colloid Interf. Sci., 1973, 43(2):389-398.
    [49] Fripia EF. et.al. Structure of aluminum cations in aqueous solutions. J. Phys. Chem., 1965,69:2458
    [50] Bertsch, P.M., Conditions for Al_(13) polymer formation in partially neutralized aluminum Solutions, Soil Sci. Sci. Am. J., 51:825 1987.
    [51] Parker, D.R and Bertsch P.M., Formation of the Al_(13) Tridecameric polycation under diverse synthesis conditions, Environ. Sci. Technol., 26(5):914,1992.
    [52] Akitt J.W., Greenwood W.N., Lester S.D. Aluminum-27 nuclear magnetic resonance: Studies of acidic solutions of aluminum salts. J.Chem. Soc. Dalton Trans. 1969:803
    [53] Buffle J., Parthasarty N., Haerdi W. Importance of speciation methods in analytical control of water treatment processes with application to fluoride removal from wastewaters. Water Research. 1985,19(1):7
    [54] Bertsch P.M., et.al. Quantitative determination of aluminum-~(27)Al NMR by high-resolution nuclear magnetic resonance spectrometry. Anal. Chem. 1986,58:2583
    [55] Bertsch P.M., et.al. Speciation of hydroxy-aluminum solution by wet chemical and aluminum-~(27)Al NMR methods. Soil Sci.Sci.Am.J. 1986,50:1449
    [56] Bertsch, P.M., Thomas, G.W., Bamhisel, R.L. Characterization of hydroxy aluminum solutions by aluminum-27 nuclear magnetic resonance spectroscopy. Soil Sci. Soc. Am. J. 1986,50:825-830
    [57] 汤鸿霄.羟基聚合氯化铝的絮凝形态学.环境科学学报.1998,18(1):1-10
    [58] 汤鸿霄.环境水化学纲要.环境科学丛刊.1988
    [59] Allouche L., Taulelle F., Conversion of Al_(13) Keggin ε into Al_(30): a reaction controlled by aluminum monomers. Inorganic Chemistry Communications. 6(2003) 1167-1170
    [60] Lionel Allouche, Corine Ge rardin, Thierry Loiseau,Geard Ferey, Francis Taulelle, Al30 : A Giant Aluminum Polycation. Angew. Chem. Int. Ed. 2000, 39(3):511-514
    [61] Okura, T., Goto, K., and Votuyanagi, T., Forms of aluminum determined by an 8-quinolinolate extraction method, Anal. Chem., 1970, 48:723.
    [62] Turner, R. C., Three froms of aluminum in aqueous system determined by 8-quinolinolate extraction method, Anal. Chem., 1969, 34:581.
    [63] Turner, R. C. and Ross, G. J., Conditions in solution during the formation of gibbsite in dilute AI salt solutions. 4. Effect of Cl concentration and temperature and a proposed mechanism for gibbsite formation, Can, J. Chem., 1970, 48:723.
    [64] 冯利 栾兆坤等,铝水解聚合形态研究方法的对比,环境化学,12(5):130,1993
    [65] 栾兆坤 冯利等,铝水解聚合形态分布的定量模拟研究,环境科学学报,1995,15(1):39-47.
    [66] 栾兆坤,无机高分子絮凝剂聚合氯化铝的基础理论与应用研究,中国科学院生态环境研究中心博士学位论文,1997
    [67] 冯利,无机高分子絮凝剂的絮凝机理的对比研究,中国科学院生态环境研究中心硕士学位论文,1997
    [68] Akitt J. W., and A. Farthing, Aluminum-27 Nuclear Magnetic Resonance Studies of the hydrolysis of aluminum (Ⅲ). Part 5. Slow Hydrolysis using aluminum metal. J. Chem. Soc. Dalton Trans. 1981: 1624-1628.
    [69] Parker, D. R., Zelazny, L. W. and Kinraide., T. B. Comparison of three spectrophotometric methods for differentiating mono- and polynuclear hydroxy-aluminum complexes. Soil. Sci. Soc. Am. J. 1988,52: 67-75.
    [70] Akitt J.W., Greenwood W.N., and Lester, S.D., Aluminum--27 nuclear magnetic resonance, Studies of acidic solutions of aluminum salts, J. Chem. Soc. Dalton Trans., 1969,803.
    [71] Akitt, J.W., et al., ~(27)Al NMR studies of the hydrolysis and polymerization of the hexa-aquoaluminium(Ⅲ) cation. J.Chem.Soc.Dalton Trans., 1972,604-610.
    [72] Bertsch, P.M., et al., Speciation of hydroxy-aluninurn solution by wet chemical and aluminum-27Al NMR methods, Soil Sci.Soc.Am.J., 1986,50:1449.
    [73] Bertsch P. M., Thomas G. W., and Barnhisel R. I., Characterization of hydroxy-aluminum solutions by aluminum-27 Nuclear Magnetic Resonance spectroscopy. Soil Sci. Soc. Am. J. 1986, 50,825-830.
    [74] Kloprogge, J. T. Seykens, D. J. Ben H. Jansen and John W. Geus, Aluminum monoer line-broadening as evidence for the existence of [AlOH]~(2+) and [Al(OH)_2]~+ during forced hydrolysis: a ~(27)Al nuclear magnetic resonance study. J. Non-Crystalline Solids. 1993, 152: 207-211.
    [75] Kloprogge, J. T., Don seykens, John W. Geus, and J. Ben H. Jansen, The effects of concentration and hydrolysis on the oligomerization and polymerization of Al(Ⅲ) as evident from the ~(27)Al NMR chemical shifts and linewidths. J. Non-Crystalline Solids. 1993, 160: I44-15I.
    [76] Akitt J. W., and A. Farthing, 1981, Aluminum-27 Nuclear Magnetic Resonance Studies of the hydrolysis of aluminum (Ⅲ). Part 4. Hydrolysis using sodium carbonate. J. Chem. Soc. Dalton Trans. 1981: 1617-1623.
    [77] Akitt J. W., and A. Farthing, Aluminum-27 Nuclear Magnetic Resonance Studies of Heteropolyanions containing aluminum as Heteroatom, J. Chem. Soc. Dalton Trans. 1981: 1615-1616.
    [78] Akitt J. W., and Elders J. M, Aluminum-27 Nuclear Magnetic Resonance Studies of the hydrolysis of aluminum (Ⅲ). Part 7. Spectroscopic Evidence for the cation [AlOH]2+ from Line-broadening studies at High dilution. J. Chem. Soc. Dalton Trans. 1985, 81: 1923-1930.
    [79] Akitt J. W., and A. Farthing, Aluminum-27 Nuclear Magnetic Resonance Studies of the hydrolysis of aluminum (Ⅲ). Part 5. Slow Hydrolysis using aluminum metal. J. Chem. Soc. Dalton Trans. 1981: 1624-1628.
    [80] 姚重华,聚合氯化铝的27Al NMR研究,环境科学学报,1989,9(1):116-119.
    [81] 姚重华,水中稀释对聚合氯化铝形态分布的影响,环境化学,1991,10(2):1-6.
    [82] Parker, D.R. and Bertsch, EM., IdentifiCation and quantification of the Al_(13) tridecameric polycation using Ferron, Environ.Sci.Technol., 1992,26(5):908-914
    [83] Parker, D.R and Bertsch, EM., Formation of the Al_(13) Tridecameric polycation under diverse synthesis conditions, Environ.Sci.Technol., 1992,26(5):914-921.
    [84] Bottero, J.Y., et al., Investigation of the hydrolysis of aqueous of Aluminum Chloride Ⅱ. Nature and structure of small Angle X-ray Scattering, J. phys. Chem. 1982,86:3667- 3673.
    [85] Bottero, J. Y., Partial hydrolysis of ferric nitrate salt: structural investigation bydynamic light scattering and small angel X-ray scattering. Langmuir, 1991, 7(5):1365-1369.
    [86] 王东升,聚铁硅型复合无机高分子絮凝剂的形态特征与性能,中国科学院生态环境研究中心博士学位论文,1997.
    [87] 谷景华,用光散射法和小角X射线散射法研究无机聚合絮凝剂,中国科学院生态环境研究中心博士后研究报告,1999.
    [88] 吕春华,氯化铝和聚合氯化铝絮凝剂的LLS和AFM研究,中国科学院生态环境研究中心博士后研究报告,2002.
    [89] Dongsheng Wang, Hongxiao Tang and Fucang Cao. Particle speciation analysis of inorganic polymer flocculants: an examination by photon correlation spectroscopy. Colloids and Surface A: Physicochemical and Engineering Aspects. 2000, 166: 27-32.
    [90] 初永宝,聚合氯化铝中纳米Al_(13)形态的分离纯化及性能研究,山东大学博士学位论文,2005.
    [91] 陈文音.高效净水剂—聚合氯化铝的开发及应用.工业水处理,1988,8(1):42~44
    [92] 高宝玉,艾子萍,于慧,等.PACS的形态及电导特性研究.环境科学学报.1994,14(3):301~30
    [93] 高宝玉等.聚硅氯化铝混凝剂的混凝性能[J].工业水处理,2001,21(2):46~47
    [94] 孙剑辉.聚硅酸盐类絮凝剂的研究进展[J].工业水处理,2000,20(3):4~7
    [95] Haase,T.et al.Polymeric basic aluminum silicate-sulphate[P].US 4,961,675
    [96] Hasegawa,T.et al.Method and flocculant for water treatment[P].US 4,923,629
    [97] 贾能铀,陆柱,项茜.水处理絮凝剂聚合硫酸铝的合成及性能评定.华东化工学院学报,1993,19(5):633~638
    [98] Dehe K H, Stol R J . Hydrolysis-Precipitation Studies of Aluminum (Ⅲ) Solutions. 3. The Role of the Sulfate Ion. J. Colloid and Interface Sci. 1978,64:72~89
    [99] 何伟光,林森树.硫酸根在聚铝中的作用.工业水处理,1989,9(2):17~18,10
    [100] 高宝玉,何晓镇,王春省,等.PACS絮凝剂的制备及性能研究.环境科学,1990,11(3):34~37
    [101] 高宝玉,王淑仁.PACS在净化油田污水中的性能研究.山东大学学报(自然 科学版),1992,27(2):201~206
    [102] 张积树,陈宗淇.HPAM和PACS对钠型蒙脱土悬浮液的混合絮凝作用.高等学校化学学报,1991,12(7):973~975
    [103] Hua Pa Hu, Bates T E Formation of X--ray Amorphous and Crystaline Aluminum Hydroxides. Mineralog Mag., 1964,33:749
    [104] Patteron J H, Tyree J R. A light Scattering Study of the Hydrolytic Polymeri -zation of Aluminum. J. Colloid and Interface Sci., 1973,43(2):389~398
    [105] Arnold-Smith A.K, Christie R. M. Polyaluminum Silicate sulfate-A New Coa -gulant for Potable and Wastewater Treatment. Proc. of the 5th Gothenburg symposium, France, 1992, 203~219
    [106] Hasegawa T, Hashimeto K, Onitsuka T. Characteristic of Metal-Polysilicate Coagulants.Water Sci. Tech., 1991, 23(7): 1713~1722
    [107] 哈斯D,克里斯蒂R M,佐利柯尔C,等.中国专利,1082006A,1994-02-16
    [108] Hasegawa T, Onitsuka T. A Study of New Inorganic Polymer Coagulants (in Japanese). Proc.39th.Ann.Conf. JWWA. 1988; 107~109
    [109] 高宝玉,岳钦艳,王淑仁.含铝离子聚硅酸絮凝剂的研究.环境科学,1990,11(5):37-41
    [110] Hasegawa T, Onitsuka T, Suzuki M ,et al. A New Inorganic Polymer Coagulant. Proc. Int. Conf. water and Wastewater (China Civ. Eng. Soc.), Academic Periodical Press. Beijing, 1989:63~68
    [111] Hashimoto K, Hasegawa T , Onitsuka K, et al. Inorganic Polymer Coagulants of Metal-Polysilicate Complex. Water Supply, 1991,9:S65~S70
    [112] 王德英,李长久,张万友,等.聚硅酸硫酸铝处理低温低浊水的研究.工业水处理,1996,16(5):10~11,22
    [113] 高宝玉,李翠平,岳钦艳等.铝离子与聚硅酸的相互作用.环境化学,1993,12(4):268~273
    [114] 栾兆坤,汤鸿霄.聚合铝形态分布特征及转化规律.环境科学学报,1988,8(2):146~155
    [115] 唐永星,杨琨.聚硅铝混凝剂中的酸根离子的影响.环境科学,1996,17(5):91,88
    [116] Duan J, Greory J. Influence of soluble silica on coagulation by Aluminum Sulphate. Colloids and surfaces. 1996,107:309~319
    [117] Shin-Ichirowada, Kojiwada. Reactions between Aluminum Ions and Orthosilicic Acid in Dilute Alkaline to neutral Solutions. soil Science. 1981,132(4):267~ 273
    [118] Shin-Ichirowada, Wada, Wada K. Formation Composition and structure of Hydroxy -- Aluminum Silicate Ions. J. Soil science. 1980,31:457~467
    [119] Haase D, Spiratos N. Method for producing Aqueous Solutions of Basic Polyaluminum Sulphate. US patent, 4, 877,597, 1989.10-31
    [120] Boisvert J P, To T C, Berrak A ,et al. Phosphate Adosorption in Flocculation Processes of Aluminum Sulphate and Poly-Aluminum-Silica-Sulphate. Water Research, 1997, 31 (8): 1939~ 1946
    [121] 郑忠.胶体科学导论.第一版.北京:高等教育出版社,1989
    [122] Overbeek JThG. The rule of Schuldz and Hardy. Pure and Applied Chem., 52:1151-1161
    [123] Deryagin BV, Landau LD. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicichim. URSS. 14:733-762
    [124] Verwey E.J.W., Overbeek J.T.G.. Theory of the stability of lyophbic colloids. New York.:Elsevier. Publishing Co. 1948
    [125] 郑忠.胶体稳定性.第一版.广州:广东省科技出版社,1993
    [126] The Faraday Society London. Colloid stability in aqueous and non-aqueous media. Discusstions of the Faraday Society. NO.42
    [127] Ottewill RH. Faraday Discuss. Chem. Soc. 90:1-15
    [128] Stumm W. Morgan JJ. Chemical aspects of coagulation. JAWWA. 1962.54:971
    [129] Stumm.W.,O'MeliaC.R. Stoichiometry of coagulation. JAWWA.1968, 60:514 -539
    [130] 汤鸿霄.浑浊水铝矾絮凝机理的胶体化学观.中国土木学报.1965,45-55
    [131] Hahn H.H. Stumm W. Kinetics of coagulation with hydrolyzed Al(Ⅲ). J.Coll.Interf.Sci. 1968,28:133
    [132] Ives K.J.(eds.). The Scientific Basis of Flocculation. Silt hoff & Noordhoff, Netherland. 1978
    [133] [苏]巴宾科夫.论水的混凝.北京:中国建筑工业出版社,1982
    [134] Dobias B. (eds.) Coagulation and Flocculation. Theory and Applications. Marcel Decker. NY, 1994
    [135] 马青山等.絮凝化学与絮凝剂.第三版.北京:中国环境科学出版社,1988
    [136] 姚重华.混凝剂与絮凝剂.第一版.北京:中国环境科学出版社,1991
    [137] 范瑾初.混凝技术.第一版.北京:中国环境科学出版社,1992
    [138] 常青等.絮凝原理.第二版.兰州:兰州铁道学院出版社,1992.
    [139] Wang DS, Tang HX,and Gregory J. 2002. Relative importance of charge-neutra -lization and precipitation during coagulation with IPF-PACI: Effect of sulfate, ES&T, 36(8):1815-1820.
    [140] Wang D.S., Tang H.X., 2001. Modified inorganic polymer flocculants-PFSi: Its preparation, characterization and coagulation behavior, Water Res., 35(14): 3418-3428.
    [141] Tang,H.X.et al,1994. Preparation and charactrization of PFCl, Chemical Water and Wastewater Treatment(Ⅲ), R.Klute & H.H.Hahn, E.Hoffman, Eds., Springer-Verlag, Berlin.
    [142] Van Benschoten J., Edzwald J.K. (1990) Chemical aspects of coagulation using aluminum salts. Ⅰ. Hydrolytic reactions of aluminum and polyaluminum chloride, Wat. Res., 24(12), 1519.
    [143] AWWA Coagulation Committee. Committee report: coagulation as an integrated water treatment process. JAWWA. 1989,81(10): 72
    [144] Stumm W., Morgan J.J. Aquatic Chemistry. New York: Wiley-Interscience, 1981
    [145] 汤鸿霄.环境水质学进展—颗粒物与表面络合(上、下).环境科学进展.1993,1(1,2)
    [146] Letterman R.D.,Iyer D.R.modeling the effects 0f hydrolyzed aluminum andsolution.Environ.Sci.& Techno.1985,19:673
    [147] Dentel S.K.,Bobber T.A.,Ivans PD.,Gossett J.M.A physical-chemical model of coagulation. In AWWA 1985 Annul. Conf. Proc. American Water Works Association, Denver. 1985,659
    [148] Dentel S.K., Application of the precipitation-charge neutralization model of coagulation. Envri. Sci.& Tech. 1988,22(7): 825
    [149] 王志石.混凝和过滤工艺过程的基础理论方面.土木过程学报.1988,21(4):48
    [150] Dempsey B.A., Ganho R.M., O'Melia C.R The Coagulation of humic substancees by means of aluminum salts, J.AWWA. 1984,76(4): 141
    [151] Verwey E J W, Oerbeek J Th G.Theory of the Stability of Lyophobic Colloids. Amsterdam, 1948
    [152] Miller L B.A Study of the Effects of Anions upon the Properties of "Alum Floc".Publ Health Repts, 1925,40:351
    [153] Busewell A M.Chemistry of Water and Sewage Treatment.N Y, 1928
    [154] Bartow E,Black A P, Sanbury W E.Ind and Engng Chem, 1933,25:898
    [155] Black A P.The Chemistry of Water Treatment.Water and Sewage Works, 1948,95:142
    [156] Langelier W F.Mechanism of Flocculation in the Clarification of Turbid Water.J Am Water Works Assoc, 1949,41:163
    [157] Langelier W F.Flocculant Phenomena in Turbid Water Clarification.J Sanit Engng Div Proc ASCE, 1952,2:118
    [158] Mattson S.Cataphoresis & the Electrical Neutralization of Colloidal Material.J Phys Chem,1928,32:1532
    [159] Mackrle S.Proc ASCE San Eng Div, 1962,5
    [160] Packham R F.The Coagulation Process:Ⅰ. Effect of pH and the Nature of the Turbidity.J Appl Chem, 1962,12:556
    [161] Packham R F.Some Studies of the Coagulation of Dispersed Clays with Hydrolyzing Saits.J Colloid Sci,1965,20:81~92
    [162] Weres O,Yee A,Tsao L.J Colloid Intofface Sci,1981,84:379
    [163] Fournier R O,Rowe J J.Am Mineral,1977,62:1052
    [164] Hall E S,Packham R F.The Coagulation Process:VI.Studies of the Removal of Organic Color with Hydrolyzing Coagulants.W R A Techn Pap,1965,39
    [165] O'Melia C R, Stumm W.Aggregation of Silica Dispersions by Iron(Ⅲ).J Colloid and Interface Sci, 1967,23:437--447
    [166] Hall S B,Duffield J R, Williams D R.J Colloid Interface Sci,1991,143(2)
    [167] O'Melia C R.Coagulation in Wastewater Treatment.In the Scientific Basis of Flocculation. NATO ASI Series.Ives K J.Ed.Sijthoff and Noordhoff.Aalphenaan den Rijin. Netherlands,1978
    [168] Hahn H H,Stumm W.Kinetics of Coagulation with Hydrolyzed Aluminum.J Colloid and Inter Sci,1968,28:133
    [169] James R O,Healy T W.Adsorption of Hydrolysable Metal Ions at the Oxide-Water Interface(Ⅰ,Ⅱ).J Colloid and Inter Sci, 1972,40:42~53
    [170] Ruehrwein R A,Ward D W.Mechanism of Clay Aggregation by Polyelectrolytes. Soil Sci, 1952,73:485~492
    [171] Micheals A S.Aggregation of Suspensions by Polyelectrolytes.Ind Eng Chem, 1954,46:1485~1490
    [172] Smellie R H,Jr, LaMer V K.Flocculation Subsidence and Filtration of Phosphate Slimes Ⅵ.A Quantitative Theory of Filtration of Flocculated Suspensions.J Coll Sci, 1956,13:589~599
    [173] LaMer V K,Healy T W.Adsorption-Flocculation Reactions of Macromolecules at the Solid-Liquid Interface.Rev Pure App Chem, 1963,13:112~132
    [174] Letterman R D,Lyer D R.Envir Sci Tehnol, 1985,19(8):673
    [175] Dentel S K,Gossett J M.Mechanisms of Coagulation With Al(Ⅲ) Salts.J AWWA, 1988,80(4): 187
    [176] [日]井出哲夫.张自杰译.水处理工程理论与应用.北京:中国建筑工业出版社,1986.43
    [177] 胡万里.混凝、混凝剂、混凝设备,化学工业出版社,2001,19-20。
    [178] T.R.Camp and P.C.Stein. Velocity Gradients and Internal Work in Fluid Motion, J. the Boston Society of Civil Engineers, 1943, 30:629
    [179] S.S.EFilho, I.Hespanhol and H.A.Moreira, Flocculation Kinetics of Colloidal Suspensions: Effects of Metallic Coagulation Dosage and Primary Particle Concentration on the Breakup and Aggregation Constants, Chemical water and Wastewater Treatment, 2000, 101-103
    [180] 中华人民共和国国家标准,水处理剂-GB 15892-1995.
    [181] Johansson G. On the Crystal Structure of a Basic Aluminum Sulfate and the Corresponding Selenate. Acta Chem. Scand., 1960, 14(3): 769-771.
    [182] 蒋绍阶,刘宗源.UV_(254)作为水处理中有机物控制指标的意义.重庆建筑大学学报,2002,24(2):61-65.
    [183] 《水和废水监测分析方法》(第四版),中国环境科学出版社
    [184] Wang, D., Tang, H., Gregory, J., Relative importance of charge neutralization and precipitation on coagulation of Kaolin with PACl: effect of sulfate ion. Environ. Sci. Technol. 36(8), (2002) 1815-1820
    [185] Jardine, F. M., Zelazny, L W., Mononuclear and polynuclear aluminum speciation through differential kinetic reactions with Ferron. Soil Soc. Am. J. 50 (1986) 895-900
    [186] E. Molis, F. Thomas, J. Y. Bottero, O. Barre's, A. Masion. Chemical and Structural Transformation of Aggregated Al13 polycations, Promoted by Salicylate Ligand. Langmuir 1996, 12, 3195-3200
    [187] Perry, C.C., Shafran, K. L., The systematic study of aluminum speciation in medium concentrated aqueous solution. J. Inorganic Biochemistry. 87(2001) 115-124.
    [188] Allouche L., Taulelle F., Conversion of Al_(13) Keggin ε into Al_(30): a reaction controlled by aluminum monomers. Inorganic Chemistry Communications. 6(2003) 1167-1170
    [189] Boisvert, J.P., Jolicoeur C., Influence of sulfate and/or silicate present in partially prehydrolyzed Al (Ⅲ) coagulants on Al (Ⅲ) speciation in diluted solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 155 (1999) 161-170.
    [190] 高宝玉,聚硅氯化铝混凝剂的应用基础研究(博士学位论文),北京:清华大学环境科学与工程系,1998
    [191] 于慧,高宝玉,岳钦艳,王艳,红外光谱法研究聚硅氯化铝混凝剂的结构 特征,山东大学学报(自然科学版),1999,34(2):198-201
    [192] 吴瑾光,许振华,李琼瑶等,近代傅立叶变换红外光谱图技术及应用,北京:科学技术文献出版社,1994,639
    [193] Mahmut zacar, . Ayhan Sengil, Enhancing phosphate removal from wastewater by using polyectrolytes and clay injection, Joumal of Hazardous Materials, B 100(2003) 131-146
    [194] 王雅静,翟玉春,田彦文等,铝酸钠和含硅氯酸钠溶液的红外光谱和拉曼光谱,中国有色金属学报,2003,13(1):271-275
    [195] 卢涌泉,邓振华,实用红外光谱解析,北京:电子工业出版社,1989,244
    [196] Lou G., Huang P. M., Hydroxy-aluminosilicate Itrelayers in montmorillonite: Implications for acidic environments, Nature, 1988, 35(13):625
    [197] 常青,水处理絮凝学,北京,化学工业出版社,2003,53
    [198] M. Wang, M. Muhammed, Novel synthesis of Al_(13)-cluster based aluminum materials, NanoStructured Materials, Vol. 11, No. 8, pp. 1219-1229, 1999
    [199] 周上祺,X射线衍射分析原理方法应用,重庆,重庆大学出版社,1991
    [200] 周勤,丁玲玲.聚硅铝系列絮凝剂的制备表征及其应用.环境科学与技术,2004.27(6):71-72
    [201] 彭晓春,陈国牛,彭晓宏,赵建青,林裕卫.聚酰胺-胺树枝状高分子及其研究进展.2005,13(14):1-6
    [202] 刘和清,汪凤珍,袁天佑,谭承德,韦万兴.聚硅酸锌絮凝剂的电镜特征和絮凝效果.环境化学.2001,20(2):179-184
    [203] 张美珍,柳百坚,谷晓昱.聚合物研究方法.北京,中国轻工业出版社,2000.185-188
    [204] Gregory, J., Nelson, D.W.. Monitoring of aggregates in flowing suspensions[J]. Colloids Surface 1986,18:175-188.
    [205] McCurdy, K., Carlson, K., Gregory, D.. Floe morphology and cyclic shearing recovery: comparison of alum and polyaluminum chloride coagulants [J]. Water Research, 2004,38: 486-494.
    [206] Tambo, N., Matsui, Y., Kurotani, K., Kubota, M., Akiyama, H., Ohto, T., Zaisu, Y., Itoh H.. Control of coagulation process by dual wavelength particle analyzer[J]. Wat Sci Tech, 1997, 36: 135-142.
    [207] Gregory, D., Carlson, K.. Relationship of pH and floc formation kinetics to granular media filtration performance [J]. Environ Sci Technol, 2003, 37(7): 1398-1403.
    [208] Gregory J.. Turbidity fluctuation in flowing suspensions[J]. J Colloid Interface Sci, 1985, 105: 357-371.
    [209] Weimin Xie, Qunhui Wang, Hongzhi Ma, Yukihide Ohsumi, Hiroaki Ⅰ. Ogawa c. Study on phosphorus removal using a coagulation system. Process Biochemistry 2005 (40): 2623-2627.
    [210] 任大恭,都国友PAC的改性对印染废水处理作用的探讨,染整技术,1995,17(6):7—8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700