磷钨酸引发四氢呋喃阳离子开环聚合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚四氢呋喃(PTHF)是制备聚氨酯弹性体、氨纶等的重要原料,广泛应用于汽车、医疗器械和纺织等领域。为解决传统液体酸引发剂存在的废液排放、设备腐蚀和引发剂难以回收等问题,目前,固体酸引发剂成为研究热点。本文以环氧氯丙烷(ECH)为促进剂、以磷钨酸(HPW)为引发剂引发四氢呋喃(THF)开环聚合,首次采用在线红外技术监测了聚合反应过程,研究了THF开环聚合反应动力学,系统考察了聚合反应条件参数,重点分析和探讨了链转移剂乙二醇(EG)对聚合反应和聚合产物分子量的影响,并开展了HPW在SBA-15介孔分子筛上的负载化研究。论文主要包含以下内容:
     (1)基于在线红外技术研究了THF开环聚合反应过程,以1068和1109cm-1醚键特征峰分别对THF在二氯甲烷(CH2C12)中聚合过程的单体THF和聚合物PTHF变化进行实时监测。结果表明:THF在CH2C12溶剂中的开环聚合反应符合一级可逆动力学模型,其表观一级链增长速率常数kapp(kapp=kp×[P*])增大随引发剂浓度增大不成比例;通过不同温度下的单体平衡浓度[M]。,获得热力学参数为△Hp=-3.9kcal·mol-1、.△Sp=-15.3cal·mol-1·K-1,聚合上限温度Tc(标准状态)为155K;通过不同温度下的kapp,获得表观活化能为Ea=44.53kJ·mol-1;较高的聚合反应温度(15或25℃)使得链转移反应加剧,导致聚合后期存在偏离一级可逆反应现象。
     (2)针对THF开环聚合中聚合反应条件对其聚合反应及其聚合产物分子量具有较大影响,论文以EG为链转移剂,通过正交设计试验法系统考察了聚合温度、聚合时间、ECH、HPW和EG等因素对PTHF产率和数均分子量(Mn)的影响,尤其是链转移剂EG对聚合反应和聚合物分子量的影响,并深入研究了链转移剂对聚合反应的影响机制。结果表明:聚合体系中引发剂与促进剂存在协同作用;通过引入EG作为链转移剂,有效地控制了PTHF的Mn,从12000-23000降低至1100-1700,并使分子量分布(MWD)明显变窄,由双峰分布变为单峰分布;EG的加入可有效控制链增长,抑制“回咬”反应的发生,减少聚合过程中带环体聚合物的生成;同时,聚合体系传质效率的较高使得聚合物产率从50%提高至80%左右。此外,当聚合体系中有少量EG(mEG/mTHF=1.25×10-2~2.51×10-2)时,链转移剂可促进聚合反应;而当体系中有较多EG(mEG/mTHF=3.76×10-2~7.52×10-2)时,链转移剂会抑制聚合反应,单体平衡浓度随mEG/mTHF增大而增大。
     (3)为制备孔径较大的载体用于负载磷钨酸多相引发THF开环聚合,选取对二甲苯(PX)为胶束膨胀剂,以三嵌段共聚物P123为模板剂水热合成得到SBA-15介孔分子筛,通过控制合成条件(PX/P123质量比mPX/mP123、晶化温度和引入电解质NH4F),合成了可控孔径(6-30nm)的SBA-15。结果表明:SBA-15介孔分子筛孔径随着mPX/mP123增大而增大,但介孔材料的有序度会有所降低,而提高晶化温度和引入电解质NH4F均可以有效提高扩孔剂PX的扩孔作用。
     (4)以所合成的SBA-15为载体负载HPW,用于多相引发THF开环聚合。重点考察了HPW负载质量百分比wHPW、3-氨丙基三乙氧基硅烷(APTES)/SBA-15质量比mAPTES/mSBA-15和载体SBA-15孔径、比表面积等因素对引发剂的活性和THF转化率的影响。结果表明:采用直接浸溃法负载HPW,最优wHPW为40%;将SBA-15进行氨基改性后负载HPW,最优mAPTES/mSBA-15为0.0712,通过氨基改性可有效改善引发剂的重复使用性能;当载体SBA-15的比表面积较大(853m2.g-1)或孔径较大(比表面积较小,498-585m2·g-1)时,所制备的引发剂具有较高的引发效率、聚合产物的Mn较高,引发剂的引发效率和聚合产物分子量随着孔径增大而增大。
The polytetrahydrofuran (PTHF) is an important chemical material of elastomeric polyurethanes and spandex fibre, which is widely used in automotive industry, medical apparatus, textile industry and so on. Aiming at solving the problems of waste liquid discharge, equipment corrosion and difficult recycling of initiators, solid acid becomes a research hot spot at the present time. In this article, the THF polymerization was initiated by phosphotungstic heteropolyacid (HPW) using epichlorohydrin (ECH) as promoter. In-situ FT-IR was first applied for monitoring of the THF polymerization process, which provided full insight into the reaction kinetics. And effects of different factors on THF polymerization were systematically investigated. The influence of ethylene glycol as chain transfer agent on THF polymerization and the molecular weight (Mn) of PTHF product were emphatically studied. Furthermore, HPW was supported on the mesoporous SBA-15for heterogeneous catalysis in THF polymerization. It contains following parts:
     (1) The polymerization of THF carried out in CH2Cl2was monitored by in-situ mid-infrared spectroscopy system (ReactIR). The changes in absorbance intensity of the two characteristic peaks at1068and1109cm-1were used for monitoring the monomer and polymer, respectively. The experimental results demonstrated that the increase of apparent first-order rate constant kapp (kapp=kp×[P*]) for propagation is disproportional to the increase of HPW concentration and the THF polymerization reaction proved to be typically first-order reversible reaction. Thermodynamic parameters are determined to be△Hp=-3.9kcal·moF-1,△SP=-15.3cal·mol-1·K-1, Tc=155K from the temperature dependence of the monomer equilibrium concentration [M]e. And the ceiling temperature at standard state is determined to be155K. Also the apparent activation energy is determined to be Ea=44.53kJ·mol-1from the temperature dependence of kapp. Besides, it is confirmed that more chain-transfer occurred at higher temperatures (15or25℃), leading to a deviation from first-order propagation at the later stage of polymerization.
     (2) Considering that various reaction conditions have great influence on THF polymerization reaction and the Mn of PTHF, effects of various factors (polymerization temperature and time, content of ECH, HPW and EG) on the yield and Mn of PTHF were systematically investigated based on a L16(45) orthogonal experimental design using ethylene glycol (EG) as chain transfer agent. It was found that the initiator and promoter have synergistic effects on THF polymerization. The addition of EG as chain transfer agent in THF polymerization can effectively control the chain propagation and depress the back-biting reaction. In the presence of EG, cyclic fraction obviously diminishes in the resulted PTHF and its Mn decreases from12000~23000to1100~1700. Also PTHF's MWD is significantly narrowed changing from unimodal distribution into single peak distribution. Moreover PTHF's yield increases from50%to80%because of its higher mass transfer efficiency. It was also found that a trace amount of EG (mEG/mTHF=1.25×10-2~2.51×10-2) will slightly promote polymerization, while a large amount of EG (wEG//wTHF=3.76×10-2~7.52×10-2) will restrain polymerization, resulting in higher [M]e of THF.
     (3) In order to support HPW on the porous materials with larger pore size for THF polymerization, mesoporous silica SBA-15with tunable pore size (6-30nm) was synthesized through simple control of synthetic variables (/wPX/mP123, hydrothermal crystallization temperature and the addition of NH4F) using p-xylene (PX) as micelle expander and triblock copolymer as template agent. The results demonstrated that the increase of/mPX/wP123will expand the pore size and reduce the order degree of SBA-15. It suggested that the higher hydrothermal crystallization temperature and the addition of NH4F will lead to more efficient swelling of PX and subsequent pore expansion.
     (4) The initiator prepared by supporting HPW on mesoporous SBA-15was applied in THF polymerization. Effects of mass fraction of HPW (wHpw), mass ratio of APTES to SBA-15(/mAPTES/mSBA-15), the pore size and specific surface area of SBA-15on the performance of initiators and the conversion of THF were investigated. It was found that the supported initiator HPW/SBA-15prepared by impregnation with40%mass fraction of HPW exhibits highest activity. The amino-functionalized SBA-15can effectively improve the performance of HPW/SBA-15-NH2for repeated use in THF polymerization. And the initiator HPW/SBA-15-NH2has highest activity when the mass ratio of mAPTES/mSBA-15is0.0712. The initiator shows good performance in THF polymerization. PTHF product has higher molecular weight when SBA-15has higher specific surface area (853m2·g-1) or larger pore size (lower specific surface area,498~585m2·g-1). The performance of initiator and the Mn of PTHF increase with the pore size of SBA-15.
引文
[1]钱章伯,朱建芳.国内外聚醚多元醇开发进展[J].精细与专用化学品,2010,18(4):5-12.
    [2]孙亚斌,周集义.四氢呋喃均聚醚研究进展[J].化学推进剂与高分子材料,2004,2(2):7-12.
    [3]Tasdelen M A, Van Camp W, Goethals E, Dubois P, Prez D F, Yagci Y. Polytetrahydrofuran/clay nanocomposites by in situ polymerization and "click" chemistry process [J]. Macromolecules,2008,41(16):6035-6040.
    [4]Hou J, Yan D Y. Synthesis of a star-shaped copolymer with a hyperbranched poly(3-methyl-3-oxetanemethanol) core and tetrahydrofuran arms by one-pot copolymerization [J]. Macromol. Rapid. Commun.,2002,23(8):456-459.
    [5]Wang X H, Liu H W, Qiu L Z. Cationic polymerization of tetrahydrofuran from multiple-walled carbon nanotubes:Preparation and glass transition kinetics [J]. Mater. Lett.,2007,61(11-12):2350-2353.
    [6]Narita M, Nomura R, Tomita I, Endo T. Synthesis of star-shaped block copolymer of tetrahydrofuran and methy methacrylate [J]. Macromolecules,2000,33(13):4979-4981.
    [7]钱文斌.四氢呋喃和聚四氢呋喃生产技术进展[J]精细化工原料及中间体,2008,3:34-37.
    [8]汪家铭.聚四氢呋喃生产应用及市场前景[J].化工科技市场,2008,31(4):10-15.
    [9]于剑昆.聚四氢呋喃的经济概况及工艺进展[J].化学推进剂与高分子材料,2006,4(4):7-11.
    [10]陈亮,和进伟,张方.聚四氢呋喃工业化生产工艺及市场概况[J],河南化工,2012,9:23-26.
    [11]潘祖仁.高分子化学(第三版)[M].北京:化学工业出版社,2003.
    [12]Meerwein H, Hinz G, Hofmann P, Kroning E, Pfeil E. Uber Tertiare Oxoniumsalze, I [J]. J. fur. Prakt. Chem.,1937.147(10-12):257-285.
    [13]Matsuda K, Tanaka Y, Sakai T. Polym. Prep.,1974,1:468-470.
    [14]Matsuda K, Tanaka Y, Sakai T, Iwasa I. Process for polymerization of tetrahydrofuran [P]. US:3714266,1973.
    [15]Matsuda K, Tanaka Y, Sakai T. Process for polymerization of tetrahydrofuran [P]. US: 3720719,1973.
    [16]Matsuda K, Yakayama, Tanaka Y. Process for polymerization of tetrahydrofuran [P]. US: 3891715,1975.
    [17]Pruckmaryr G, Wu T K. Macrocyclic tetrahydrofuran oligomers 2:Formation of macrocyclics in the polymerization of tetrahydrofuran with triflic acid [J]. Macromolecules, 1978,11(1):265-270
    [18]Nobuyuki M, Masayuki S, Hiroshi T. Method for the production of polytetramethylene ether glycol [P]. US:5393866,1995.
    [19]崔小明.聚四氢呋喃的生产技术及国内外市场分析(上)[J].上海化工,2006,31(11):43-45.
    [20]Dorai S, Hida G A. Polymerization of tetrahydrofuran using trifluoromethane sulfonic acid monohydrate as catalyst [P]. US:5155283.1992.
    [21]Dubreuil M F, Farcy N G, Goethals E J. Influence of the alkyl group of triflate esters on their initiation ability for the cationic rng-opening polymeriation of tetrahydrofuran [J]. Macromol. Rapid. Commun..1999,20(6).383-386.
    [22]Dreyfuss P. Kennedy J P. J. Appl. Polym. Sci.:Appl. Polym. Symp.,1977.30:165.
    [23]Guan Y. Zhang W C. Wan G X, Peng Y X. Ji P J, Xu J. Ye M L. Shi L H. Preparation of polymerization monomethacrylate macromonomers by cationic ring-opening polymerization of tetrahydrofuran [J]. J. Appl. Polym. Sci..2000.77(4):810-815.
    [24]张阿方,张鸿志,杨惠昌,冯新德.三氟化硼引发四氢呋喃聚合的研究Ⅳ.1,4-丁二醇的影响[J].高分子学报,1989,5:637-640.
    [25]Olah G A, Farcooq O, Li C X. Farnia M A F F. Aklonis.1 J. Cationic ring-opening polymerization of tetrahydrofuran with boron, aluminum, and gallium tristriflate [J].J. Appl. Polym. Sci..1992.45(8):1355-1360.
    [26]Dreyfuss P. Poly(tetrahydrofuran) [M]. Gordon and Breach Science Publishers, Inc., New York,1982.
    [27]Marchetti F, Pampaloni G, Repo T. The polymerization of tetrahydrofuran initiated by Niobium(V) and Tantalum(V) Halides [J]. Eur..1. Inorg. Chem..2008.2008(12): 2107-2112.
    [28]Cataldo F. Iodine:A ring opening polymerizatin catalyst for tetrahydrofuran [J]. Eur. Polym. J.,1996.32(11):1297-1302.
    [29]Feng X D. Ring opening polymerization with living character and block copolymerization [J]. Polym. Prep.1988.29(2):65.
    [30]张鸿志.冯新德.四氢呋喃开环聚合的研究111.本体聚合的总生长反应速率常数[J].高分子通讯,1981.5:325-328.
    [31]粟方星,王红军,马克勤.CH,COSbCl(,催化四氢呋喃聚合的研究[J].高等化学学报,1994.15(5):785-787.
    [32]Franta E, Reibel L. Lehmann J, Penczek S. Use of mono-and muti-funclional oxocarenium salts in the polymerization of tetrahydrofuran [J].J. Polym. Sci.:Polym. Symp..1976.56: 139-148.
    [33]Mah S, You D K. Cho H J, Choi S R, Shin J H. Photoinduced living cationic polymerization of tetrahydrofuran.1. Living nature of the system and its application to the diblock copolymer synthesis [J].J. Appl. Polym. Sci..1998.69(3):611-618.
    [34]Mah S. Hwang H S. Shin J H. Photoinduced living cationic polymerization of tetrahydrofuran. Ⅱ:Synthesis of four-armed star-shaped poly(tetrahydrofuran) [J]. J. Appl. Polym. Sci.,1999,74(11):2637-2644.
    [35]Mah S, Choi J, Lee H, Choi S. Photo-induced living cationic polymerization of tetrahydrfuran. Ⅲ. Synthesis of poly(THF-co-3-MTHF) [J]. Fibers and Polymers,2000, 1(1):1-5.
    [36]Choi J, Kwon S H, Mah S. Photoinduced living cationic polymerization of tetrahydrofuran (IV):Syring method [J]. J. Appl. Polym. Sci..2002,83(10):2082-2087.
    [37]Rodrigues M R, Neumann M G. Cationic photopolymerization of tetrahydrofuran:A mechanistic study on the use of a sulfonium salt-phenothiazine initiation system [J]. J. Polym. Sci. Part A:Polym. Chem.,2001,39(1),46-55.
    [38]Rodrigues M R, "Neumann M G. Mechanistic study of tetrahydrofuran polymerization photo-initiated by a sulfonium salt/thioxanthone [J]. Macromol. Chem. Phys.,2001, 202(13):2776-2782.
    [39]Niu L G, Nagarajan R, Guan F X, Samuelson L A, Kumar J. Biocatalytic synthesis of multi-block copolymer composed of poly(tetrahydrofuran) and poly(ethylene oxide) [J]. J. Macromol. Sci. Part A:Pure.& Appl. Chem.,2006.43(12):1975-1981.
    [40]http://baike.baidu.com/view/177098.htm.
    [41]Machale W D, Bendoraitis J G. Polymerization of cyeliec ether [P]. US:4303782,1981.
    [42]Dostalek R, Fischer R, Mueller U, Becker R. Preparation of polytetrahydrofuran [P]. US: 5641857,1997.
    [43]Lambert T L, Knifton J F. Process for polymerization of tetrahydrofuran using acidic zeolite catalysts [P]. US:5466778,1995.
    [44]Setoyama T, Kobayashi M, Kabata Y, Kawai T, Nakanishi A. New industrial process of PTMG catalyzed by solid acid [J]. Catal. Today,2002,73(1-2),29-37.
    [45]赵丽丽.负载型HPW及改性SBA-15固体酸催化THF聚合的研究[D].山西:山西大学,2011.
    [46]Pruckmayr G, Weir R H. Method for preparing ester end-capped copolymer glycols [P]. US: 4120903,1978.
    [47]Li F F, Jin YT, Pei F K, Wang F S. Ring-opening polymerization of tetrahydrofuran with rare earth-contained catalysts [J]. J. Appl. Polym. Sci.,1993,50(11):2017-2020.
    [48]沈之荃.稀土催化剂在高分子合成中的开拓应用[J].高分子通报,2005,4,1-23.
    [49]沈建良,沈之荃,张一峰.四氢呋喃开环均聚以及四氢呋喃和环硫氯丙烷共聚新催化体系[J].高分子学报,1997,3,347-352.
    [50]You L X, Hogen-Esch T E, Zhu Y H, Ling J, Shen Z Q. Bronsted acid-free controlled polymerization of tetrahydrofuran catalyzed by recyclable rare earth triflates in the presence of epoxides [J]. Polymer,2012,53(19):4112-4118.
    [51]郝文正,于少明,陆亚玲.合成酯用固体超强酸催化剂研究进展[J].天然气化工,2004,29(5):50-54.
    [52]Bellis H E. Method for preparing polymer glycols [P]. US:4127513,1978.
    [53]Eller K, Rutter H, Hesse M, Becker R. Catalyst and method for producing polytetrahydrofuran [P]. US:6274700,2001.
    [54]李正青,慎炼,任杰.负载型蒙脱土(Fe2O3/H-MMT)催化合成聚四氢呋喃[J].化工时刊,2010,24(1):23-25.
    [55]Mueller H. Prodn. of poly-tetra:methylene-ether-glycol di:ester [P]. DE:19513493.
    [56]Schlitter S, Haubner M, Hesse M, Kashammer S, Pinkos R, Sigwart C. Catalyst its preparation and the polymerization of cyclic ethers over this catalyst [P]. US:7456249, 2008.
    [57]千载虎,李忆.复合氧化物酸性研究的进展[J].石油化工,1986,15(7):446-452.
    [58]潘丽,张因,贾志奇,高春光,赵永祥.ZrO2-SiO2复合物表面酸性的调控及催化四氢呋喃聚合性能研究[J].分子催化,2011,25(2):130-136.
    [59]Zhang Y, Pan L, Gao C G, Wang Y Z, Zhao Y X. Preparation of ZrO2-SiO2 mixed oxide by combination of sol-gel and alcohol-aqueous heating method and its application in tetrahydrofuran polymerization [J]. J. Sol-Gel. Sci. Technoi,2010,56(1):27-32.
    [60]Zhang Y, Pan L, Gao C G, Zhao Y X. Synthesis of ZrO2-SiO2 mixed oxide by alcohol-aqueous heating method [J]. J. Sol-Gel. Sci. Technoi,2011,58(2):572-579.
    [61]王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社,1997.4.
    [62]Corma A. Inoganic solid anids and their use in acid-catalyzed hydrocarbon reactions [J]. Chem. Rev.,1995,95(3):559-614.
    [63]Izumi Y, Konishi K, Tsukahara M, Obaid D M, Aika K I. Selective butanol synthesis over rhodium-molybdenum catalysts supported in ordered mesoporous silica [J]. J. Phys. Chem. C2007,111(27):10073-10081.
    [64]Choi J H, Kim J K, Park D R, Kang T H, Song J H, Song I K. Redox properties and oxidation catalysis of transition metal-substituted α-K5PW11O39(M-OH2) (M=Mn11, Co11, Nin, and Zn11) Keggin heteropolyacid catalysts for liquid-phase oxidation of 2-propanol [J]. J. Mol. Catal.A:Chem.,2013,371,111-117.
    [65]Kharat A N, Pendleton P, Badalyan A, Abedini M, Amini M M. Oxidation of aldehydes using silica-supported Co(Ⅱ)-substitued heteropolyacid [J]. J. Mol. Catal. A:Chem.,2001, 175(1-2):277-283.
    [66]Yin G C, Jia C G, Kitamura T, Yamaji T, Fujiwara Y. A new efficient Pd-catalyzed synthesis of diphenyl carbonate with heteropolyacid as a cocatalyst [J]. J. Organomet. Chem.,2001, 630(1):11-16.
    [67]Kim H J, Jeon Y, Par J L, Shul Y G. Heterocycle-modified 12-tungstophosphoric acid as heterogeneous catalyst for epoxidation of propylene with hydrogen peroxide [J]. J. Mol. Catal. A:Chem.,2013,378:232-237.
    [68]Kim H J, Shul Y G, Han H. Sulfonic-functionalized heteropolyacid-silica nanoparticles for high temperature operation of a direct methanol fuel cell [J]. J. Power. Sources.,2006, 158(1):137-142.
    [69]Zhang S, Zu Y G, Fu Y J, Luo M, Zhang D Y, Efferth T. Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst [J]. Bioresour. Technoi.,2010,101(3):931-936.
    [70]Li K X, Chen L, Wang H L, Lin W B, Yan Z C. Heteropolyacid salts as self-separation and recyclable catalysts for transesterification of trimethylolpropane [J]. Appl. Catal. A:Gen., 2011,392(1-2):233-237.
    [71]Badday A S, Abdullah A Z, Lee K T. Transesterification of crude Jatropha oil by activated carbon-supported heteropolyacid catalyst in an ultrasound-assisted reactor system [J]. Renew. Energy.,2014,62,10-17.
    [72]Aoshima A, Tonomura S. Process for producing polyetherglycol [P]. US:4568775.1986.
    [73]Kozhevnikov 1 V. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions [J]. Chem. Rev.,1998,98(1):171-198.
    [74]Keggin J F. Proceeding of the royal society of London, series A:mathematical and physical science [J]. Proc. R. Soc.,1934,144:75.
    [75]Keggin J F. Structure of the molecule of 12-phosphotungstic acid [J]. Nature,1933,131: 908.
    [76]Misono M. Unique acid catalysis of heteropoly compounds (heteropolyoxometalates) in the solid state [J]. Chem. Commun.,2001, (13):1141-1152.
    [77]王少鹏.分子筛SBA-15负载杂多酸催化剂的制备及其催化合成柠檬酸三丁酯的研究[D].山西:太原理工大学,2007.
    [78]Micek-Ilnicka A. The role of water in the catalysis on solid heteropolyacid [J]. J. Mol. Catal. A:Chem..2009,308(1-2):1-14.
    [79]Pozniczek J, Matecka-Lubanska A, Micek-Ilnicka A, Bielanski A. Gas phase hydration of isobutene to tert-butyl alcohol on H4SiW12O40 as the catalyst [J]. Appl. Catal. A:Gen., 176(1):101-109.
    [80]武冠英,吴一弦.控制阳离子聚合及其应用[M].北京:化学工业出版社,2005.
    [81]Misono M. Heterogeneous catalysis by heteropoly compounds of molybdenum and tungsten [J]. Catal. Rev.,1987.29(2-3):269-321.
    [82]Okuhara T, Mizuno N, Misono M. Catalytic chemistry of heteropoly compounds [J]. Adv. Catal,1996,41,113-252.
    [83]储伟.催化剂工程[M].四川:四川大学出版社.2009.
    [84]Aoshima A, Tonomura S, Yamamatsu S. New synthetic route of polyoxytetrametheneglycol by use of heteropolyacids as catalyst [J]. Polym. Adv. Technoi.,1990,1(2):127-132.
    [85]Weyer H J. Fischer R, Jeschek G, Mueller H. Adjustment of the average molecular weight of polyoxyalkylene glycols and polyoxyalkylene derivatives in the heteropolyacid-catalyzed polymerization of cyclic ethers and/or acetals with ring cleavage [P]. US:5395959.1995.
    [86]Kozhevnikov I V. Russ. Chem. Rev.,1987,56,811.
    [87]Bednarek M, Brzezinska K, Stasinski J, Kubisa P, Penczek S. Heteropolyacids-new efficient initiators of cationic polymerization [J]. Makromol. Chem.,1989,190(5):929-938.
    [88]尹红,陈志荣,杨政,吕德伟.杂多酸-醋酐催化四氢呋喃聚合的反应机理[J].化学反应工程与工艺,1999,15(3):288-294.
    [89]张阿方,张广利,张鸿志.杂多酸引发四氢呋喃聚合反应Ⅲ.环氧乙烷对聚合反应的影响[J].高分子学报,1999,4:502-505.
    [90]陈宇,张阿方,张广利,张鸿志.杂多酸引发四氢呋喃开环聚合反应Ⅳ.以环氧丙烷为促进剂[J].高分子学报m1999,5:644-648.
    [91]李淑勉,李占才,蒋玲,侯守君,方少明.杂多酸催化四氢呋喃开环聚合反应[J].化学研究与应用,2003,15(1):48-50.
    [92]陈宇,张广利,张鸿志.杂多酸引发四氢呋喃开环聚合反应Ⅵ.以环氧氯丙烷为促进剂[J].高分子学报,2000,6:372-374.
    [93]陈宇,陈铮铮,张广利,张鸿志.杂多酸引发四氢呋喃开环聚合Ⅶ.以氧杂环丁烷为促进剂[J].高分子学报,2000,4:506-509.
    [94]Aouissi A, Al-Deyab S S, Al-Shehri H. Cationic ring-opening polymerization of tetrahydrofuran with keggin-type heteropolycompounds as solid acid catalysts [J]. Chinese J. Polym. Sci.,2010,28(3):305-310.
    [95]Dreyfuss P, Dreyfuss M P, Pruckmayr G. In encyclopedia of polymer science and engineering,2nd ed., Kroschwitz Jl, ed., Wiley-Interscience:New York,1989.
    [96]刘国涛,范晓东,程广文,刘涛,高志亮,刘勤.环氧乙烷/四氢呋喃共聚醚的合成与表征[J].中国胶黏剂,2008,17(9):5-9.
    [97]Kim H, Jung J C, Yeom S H, Lee K Y, Yi J H, Song I K. Immobolization of a heteropolyacid catalyst on the aminopropyl-functionalized mesostructured cellular foam (MCF) silica[J]. Mater. Res. Bull.,2007,42(12):2132-2142.
    [98]武文良,于清跃,王军,王延儒.活性炭负载磷钨酸催化剂上萘的异丙基化[J].高校化学工程学报,2004,18(5):601-605.
    [99]王群,李春虎,王亮,郑昱,张祥坤,卞俊杰,冯丽娟.活性炭负载磷钨酸用于烟气脱硝抗水性能实验研究[J].工业催化,2013,21(1):57-63.
    [100]薛建伟,王少鹏,许芸,刘春丽,裴慧霞.活性炭负载磷钨酸催化合成氯乙酸正戊酯[J].工业催化,2007,15(9):52-55.
    [101]吴文清,俞玉萍,郑宇,陈庆渺,代伟.高比表面积活性炭负载磷钨酸催化乙醇制乙烯[J].上海化工2009,34(4):6-9.
    [102]陈乐,齐虎鹏,陈群,何明阳.活性炭吸附聚四氢呋喃中微量磷钨酸[J].化工进展,2010,29(9):1620-1629.
    [103]墙广灿,陈群,吴永琴,贾月存,何明阳.活性炭负载磷钨酸催化合成聚四氢呋喃[J].化学世界,2011,5:277-280.
    [104]王守国,王元鸿,谢忠巍,龚剑,瞿伦玉.氧化铝负载杂多酸催化甲醇脱水制备二甲醚[J].现代化工,2000,20(11):39-41.
    [105]李洋,储伟,陈慕华,黄利宏,罗仕忠.氧化铝固载杂多酸催化合成聚四氢呋喃[J].石油学报(石油加工),2006,22(5):101-105.
    [106]Su K M, Li Z H, Cheng B W. The studied on the friedel-crafts acylation of toluene with acetic anhydride over HPW/TiO2 [J]. Fuel Process Technol,2011,92(10):2011-2015.
    [107]Alsalme A M, Wiper P V, Khimyak Y Z, Kozhevnikova E F, Kozhevnikov I V. Solid acid catalysts based on H3PW12O40 heteropoly acid:acid and catalytic properties at a gas-solid interface [J].y. Catal,2010,276(1):181-189.
    [108]孙亚萍,赵靓,赵景联,侯永平,种法国,梁勇.二氧化钛固载杂多酸催化剂的制备及其光催化性能研究[J].高校化学工程学报,2006,20(4):554-558.
    [109]Yoon M J, Chang J A, Kim Y H, Choi J R. Heteropoly acid-incorporated TiO2 colloids as novel photocatalytic systems resembling the photosynthetic reaction center [J]. J. Phys. Chem. B,2001,105(13):2539-2545.
    [110]周华锋,刘玉萍,张丽清.介孔二氧化钛负载硅钨杂多酸的制备及其催化性能[J].过程工程学报,2012,12(3):522-526.
    [111]杨水金,童文龙.二氧化钛负载磷钨钼杂多酸催化合成丁醛1,2-丙二醇缩醛[J].精细与专用化学名,2007,15(13):17-19.
    [112]杨水金,杨斌.二氧化钛负载磷钨钼杂多酸催化合成苯甲醛乙二醇缩醛[J].精细与专用化学品,2008,16(6):25-26.
    [113]杨水金,童文龙,吕宝兰.二氧化钛负载磷钨钼杂多酸催化合成环已酮乙二醇缩醛[J].北京化工大学学报,2006,33(4):52-56.
    [114]张玉军,张迎周,任亚辉,刘玄,许元栋.氧化锆负载磷钨酸催化果糖制备5-羟甲基糠醛[J].精细石油化工,2013.30(3):16-20.
    [115]梁丽萍,朱晴,赵永祥,刘滇生.水合ZrO2固载12-磷钨杂多酸催化四氢呋喃开环聚合[J].化学学报,2011,69(16):1881-1889.
    [116]朱晴,梁丽萍,贾志奇,高春光,赵永祥.多钨酸盐修饰ZrO2气凝胶催化四氢呋喃开环聚合[J].物理化学学报,2011,27(2):491-498.
    [117]Hafizi A, Ahmadpour A, Heravi M M, Bamoharram F F, Khosroshahi M. Alkylation of benzene with 1-decene using silica supported preyssler heteropolyacid:statistical design with response surface methodology [J]. Chinese J. Catal.,2012,33(3):494-501.
    [118]Molnar A, Keresszegi C, Torok B. Hetero acids immobilized into a silica matrix: characterization and catalytic applications [J]. Appl. Catal. A:Gen.,1999,189(2): 217-224.
    [119]Izumi Y, Ono M, Kitagawa M, Yoshida M, Urabe K. Silica-included heteropoly compounds as solid catalysts [J]. Micro. Mater.,1995,5(4):255-262.
    [120]Rafiee E, Eavanl S. Controlled immobilization of Keggin-type heteropoly acids on the surface of silica encapsulated y-Fe2O3 nanoparticles and investigation of catalytic activity in the oxidative esterification of arylaldehydes with methanol [J]. J. Mol. Catal. A:Chem., 2013,373,30-37.
    [121]赵敏,贾志奇,赵丽丽,孙自瑾,刘新文,王鹏飞,高春光,赵永祥.Si02气凝胶负载磷钨酸催化四氢呋喃聚合反应的研究[J].分子催化,2010,24(2):117-121.
    [122]周夫东,储伟,李洋,罗仕忠.介孔二氧化硅负载磷钨杂多酸催化合成聚四氢呋喃[J].合成化学,17(2):155-159.
    [123]Zhang P, Huang M, Chu W, Luo S Z, Li T. Effect of silver content on catalytic performances of SiO2-supported silver tungstophoric acid for the synthesis of polytetrahydrofuran [J]. Acta Phys-Chim Sin.,2013,29(4):770-776.
    [124]Huang M, Chu W, Liao X M, Dai X Y. Calcium salts of tungstophoric acid supported on silica as novel catalysts for tetrahydrofuran polymerization [J]. Catal. Lett.,2011,141(11): 1670-1676.
    [125]徐如人,庞文琴,于吉红,霍启升,陈接胜.分子筛与多孔材料化学[M].北京:科学出版社,2004.
    [126]Jens W, Lothar P. Catalysis and zeolites-fundamentals and applications [M]. Springer Press, 1999.
    [127]Mukai S R, Masuda T, Ogino I, Hashimoto K. Preparation of encaged heteropoly acid catalyst by synthesizing 12-molybdophosphoric acid in the supercages of Y-type zeolite [J]. Appl. Catal. A:Gen.,1997,165(1-2):219-226.
    [128]Mukai S R, Lin L, Masuda T, Hashimoto K. Key factors for the encapsulation of Keggin-type heteropoly acids in the supercages of Y-type zeolite [J]. Chem. Eng. Sci., 2001,56(3):799-804.
    [129]Lee W, Ji R, Goesele U, Nielsch K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nature Mater.,2006,5(9):714-747.
    [130]Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature,1992, 359:710-712.
    [131]Karandikar P, Patil K R, Mitra A, Kakade B, Chandwadkar A J. Synthesis and characterization of mesoporous carbon through inexpensive mesoporous silica as template [J]. Microporous and Mesoporous Mater,2007,98(1-3):189-199.
    [132]Jin H X, Wu Q Y, Zhang P, Pang W Q. Assembling of tungstovanadogermanic heteropoly acid into mesoporous molecular sieve SBA-15 [J]. Solid. State. Sci.,2005,7(3):333-337.
    [133]Zhou Y, Yue B, Bao R L, Liu S X, He H Y. Catalytic aerobic oxidation of acetaldehyde over keggin-type molybdovanadophosphoric acid/SBA-15 under ambient condition [J]. Chinese. J. Chem.,2006,24(8):1001-1005.
    [134]Kamalakar G, Komura K, Kubota Y, Sugi Y. Friedel-Crafts benzylation of aromatics with benzyl alcohols catalyzed by heteropoly acids supported on mesoporous silica [J].J. Chem. Technol. Biotechnol.,2006,81(6):981-988.
    [135]赵敏.改性MCM-41固体酸催化四氢呋喃聚合的研究[D].山西:山西大学,2010.
    [136]何静,冯桃,杨佳,段雪.HPA/MCM-48催化剂上四氢呋喃开环聚合[J].石油学报(石油加工),2002,18(1):37-41.
    [137]Liao X M, Chu W, Li Y, Zhou F D, Luo S Z. Effects of support pore size on new Cs2.5H0.5PW12040/SiO2 catalysts for the ring-opening polymerization of tetrahydrofuran [J]. Chinese. Chem. Lett.,2009,20(3):344-347.
    [138]Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis [J]. Chem. Rev.,1997,97(6):2373-2419.
    [139]Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science,1998,279(23):548-552.
    [140]Mortensen K. Structural properties of self-assembled polymeric aggregates in aqueous solutions [J]. Polym. Adv. Technol.,2001,12(1-2):2-22.
    [141]Alexandridis P, Holzwarth J F. Differential scanning calorimetry investigation of the effect of salts on aqueous solution properties of an amphiphilic block copolymer (Poloxamer) [J]. Langmuir,1997,13(23):6074-6082.
    [142]Ivanova R, Lindman B, Alexandridis P. Effect of glycols on the self-assembly of amphiphilic block copolymers in water.1. Phase diagrams and structure identification. Langmuir,2000,16(8):3660-3675.
    [143]Wanka G, Hoffmann H, Ulbricht W. Phase diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions. Macromolecules,1994,27(15):4145-4159.
    [144]Yu C Z, Fan J, Tian B Z, Stuky G D, Zhao D Y. Synthesis of mesoporous silica from commercial poly(ethylene oxide)/poly(butylene oxide) copolymers:Toward the rational design of ordered mesoporous materials [J]. J. Phys. Chem. B,2003,107(48): 13368-13375.
    [145]Fan J, Yu C Z, Lei J, Zhang Q, Li T C, Tu B, Zhou W Z, Zhao D Y. Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores [J]. J. Am. Chem. Soc,2005,127(31):10794-10795.
    [146]Feng P Y, Bu X H, Pine D J. Control of pore sizes in mesoporous silica templated by liquid crystals in block copolymer-cosnrfactant-water systems [J]. Langmuir,2000,16(12): 5304-5310.
    [147]Feng P Y, Bu X H, Stucky G D, Pine D J. Monolithic mesoporous silica templated by microemulsion liquid crystals [J]. J. Am. Chem. Soc,2000,122(5):994-995.
    [148]Kruk M, Cao L. Pore size tailoring in large-pore SBA-15 silica synthesized in the presence of hexane [J]. Langmuir,2007,23(13):7247-7254.
    [149]Zhang H, Sun J M, Ma D. Weinberg G, Su D S, Bao X H. Engineered complex emulsion system:Toward modulating the pore length and morphological architecture of mesoporous silicas [J]. J. Phys. Chem. B,2006,110(51):25908-25915.
    [150]Cao L, Man T, Kruk M. Synthesis of ultra-large-pore SBA-15 silica with two-dimensional hexagonal structure using triisopropylbenzene as micelle expander [J]. Chem. Mater., 2009,21(6):1144-1153.
    [151]Galarmeau A, Cambon H, Di Renzo F, Fajula F. True microporosity and surface area of mesoporous SBA-15 silica as a function of synthesis temperature [J]. Langmuir,2001, 17(26):8328-8335.
    [152]Desai P R, Jain N J, Sharma R K, Bahadur P. Effect of additives on the micellization of PEO/PPO/PEO block copolymer F127 in aqueous solution [J]. Colloids and Surfaces A, 2001,178(1-3):57-69.
    [153]Yu C Z, Tian B Z, Fan J, Stucky G D, Zhao D Y. Nonionic block copolymer synthesis of large-pore cubic mesoporous single crystals by use of inorganic salts [J]. J. Am. Chem. Soc.,2002,124(17):4556-4557.
    [154]Fan J, Yu C Z, Lei J, Zahng Q, Li T C, Tu B, Zhou W Z, Zhao D Y. Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores [J]. J. Am. Chem. Soc.,2005,127(31):10794-10795.
    [155]Wan H H, Liu L, Li C M, Xue X Y, Liang X M. Facile synthesis of mesoporous SBA-15 silica spheres and its application for high-performance liquid chromatography [J]. J. Colloid Interface Sci.,2009,337(2):420-426.
    [156]Zhao D Y, Huo Q S, Feng J L, Chmelka B F, Stuky G D. Nonionic triblock and star dibloc copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J]. J. Am. Chem. Soc.,1998,120(24):6024-6036.
    [157]Huo Q S, Margolese D I, Ciesla U, Demuth D G, Feng P Y, Gier T E, Sieger P, Firouzi A, Chmelka B F, Schuth F, Stuky G D. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays [J]. Chem. Mater.,1994,6(8): 1176-1191.
    [158]Lee H I, Kim J H, Stuky G D, Shi Y F, Pak C, Kim J M. Morphology-selective synthesis of mesoporous SBA-15 particles over micrometer, submicrometer and nanometer scales [J]. J. Mater. Chem.,20(39):8483-8487.
    [159]Schmidt-Winkel P, Yang P D, Margolese D I, Chmelka B F, Stuky G D. Fluoride-induced hierarchical ordering of mesoporous silica in aqueous acid syntheses [J]. Adv. Mater.,1999, 11(4):303-307.
    [160]Zhao D Y, Sun J Y, Li Q Z, Stuky G D. Morphological control of highly ordered mesoporous silica SBA-15 [J]. Chem. Mater,2000,12(2):275-279.
    [161]Chen B C, Lin H P, Chao M C, Mou C Y, Tang C Y. Mesoporous silica platelets with perpendicular nanochannels via a ternary surfactant system [J]. Adv. Mater.,2004,16(18): 1657-1661.
    [162]孙锦玉,赵东元.“面包圈”状高度有序度大孔径介孔分子筛SBA-15的合成[J].高等学校化学学报,2000,21(1):21-23.
    [163]Yu C Z, Fan J, Tian B Z, Zhao D Y. Morphology development of mesoporous materials:a colloidal phase separation mechanism [J]. Chem. Mater.,2004,16(5):889-898.
    [164]Linton P, Alfredsson V. Growth and morphology of mesoporous SBA-15 particles [J]. Chem. Mater.,2008,20(9):2878-2880.
    [165]Linton P, Hernandez-Garrido J C, Midgley P A, Wennerstrom H, Alfredsson V. Morphology of SB A-15-direted by assosiation process and surface energies [J]. Phys. Chem. Chem. Phys.,2009,11(46):10973-10982.
    [166]Linton P, Rennie A R, Zackrisson M, Alfredsson V. In situ observation of the nenesis of mesoporous silica SBA-15:Dynamic on length scales from 1 nm to 1μm [J]. Langmuir, 2009,25(8):4685-4691.
    [167]Moulin R, Schmitt J, Lecchi A, Degrouard J, Imperor-Clerc M. Morphologies of mesoporous SBA-15 particles explained by the competition between interfacial and bending energies [J]. Soft Matter,2013,9(46):11085-11092.
    [168]Bednarek M, Kubisa P, Penczek S. Coexistence of activated monomer and active chain end mechanisms in cationic copolymerization of tetrahydrofuran with ethylene oxide [J]. Macromolecules,1999,32(16):5257-5263.
    [169]何志强.四氢呋喃-环氧丙烷共聚醚的合成研究[D].江苏:江南大学,2009.
    [170]Pruckmayr G, Wu T K. Polymerization of tetrahydrofuran by proton acids [J]. Macromolecules,1978,11(4):662-668.
    [171]Franta E, Reibel L, Lehmann J, Penczek S. Use of mono- and multifunctional oxocarbenium salts in the polymerization of tetrahydrofuran [J]. J. Polym. Sci.:Polym. Sym.,1976,56(1):139-148.
    [172]Hoene R, Reichert K W. Reaktionskinetik und gleichgewichtsumsatze bei der PF5-initiierten homopolymerisation von tetrahydrofuran in 1,2-dichlorathan [J]. Makromol. Chem.,1973,168(1):145-161.
    [173]Bednarek M, Kubia P. Mechanism of cyclics formation in the cationic copolymerization of tetrahydrofuran with ethylene oxide in the presence of diols [J]. Macromol. Chem. Phys., 1999,200:2443-2447.
    [174]Burgess F J, Cunlife A V, Richards D H, Sherrington D C. Transformation reactions in polymerization system I:Anionic polymerization to cationic polymerization [J]. J. Polym. Sci., Polym. Lett. Ed.,1976.14(8):471-476.
    [175]Matyjaszewski K, Kubisa P, Penczek S. Ion—ester equilibria in the living cationic polymerization of tetrahydrofuran [J]. J. Polym. Sci.:Polym. Chem. Ed.,1974,12(6): 1333-1336.
    [176]Matyjaszewski K, Buyle A M, Penczek S. Neighboring group participation in the macroester-^macroion equilibrium in the cationic polymerization of tetrahydrofuran [J]. J. Polym. Sci.:Polym. Lett. Ed.,1976,14(3):125-128.
    [177]Buyle AM, Matyjaszewski K, Penczek S. Kinetics and thermodynamic of interconversion of macroesters and macroin pairs in the cationic polymerization of tetrahydrofuran [J]. Macromolecules,1977,10(2):269-270.
    [178]朱树新.开环聚合[M].北京:化学工业出版社,1987.
    [179]Li F X, Wang H J, Li C G, Ma K Q. Study on chain transfer to acetic anhydride of THF polymerization [J]. J. Polym. Sci. Part A:Polym. Chem.,1994,32(10):1939-1947.
    [180]Vofsi D, V.Tobolsky A. Oxonium ion-initiated polymerization of tetrahydrofuran [J]. J. Polym. Sci. Part A:Polym. Chem.,1965,3(9):3261-3273.
    [181]Saegusa T, Matsumoto S. Concentration of propagating species and rate of propagation in cationic polymerization of tetrahydrofuran [J]. Macromolecules,1968,1(5):442-445.
    [182]Imai H, Saegusa T, Matsumoto S, Tadasa T, Furukawa J. Polymerization of tetrahydrofuran:by the system triethylaluminum/water [J]. Makromol. Chem.,1967, 102(1):222-231.
    [183]Afshar-Taromi F, Scheer M, Rempp P, Franta E. A new efficient cationic initiator for the polymerization of tetrahydrofuran [J]. Makromol. Chem.,1979,179(3):849-853.
    [184]Hrkach S J, Matyjaszewski K. Cationic polymerization of tetrahydrofuran initiated by trimethylsilyl trifluoromethanesulfonate [J]. Macromolecules,1990,23(18):4042-4046.
    [185]Hrkach S J, Matyjaszewski K. Trimethylsilyl triflate as an initiator for cationic polymerization:Improved initiation through the use of promoters [J]. J. Polym. Sci. Part A: Polym. Chem.,1995,33(2):285-298.
    [186]Kobayashi S, Danda H, Saegusa T. Superacids and their derivatives. Ⅳ.1Kinetic studies on the ring-opening polymerization of tetrahydrofuran initiated with ethyl trifiuoromethane sulfonate by means of 19F and 1H nuclear magnetic resonance spectroscopy. Evidence for the oxonium-ester equilibrium of the propagating species [J]. Macromolecules,1974,7(4):415-420.
    [187]Kobayash S, Morikawa K, Saegusa T. Superacids and their derivatives. VII.1 Cationic polymerization of tetrahydrofuran initiated with ethyl and methyl fluorosulfonates. Kinetic and mechanistic studies by means of 19F and 1H nuclear magnetic resonance spectroscopy [J]. Macromolecules,1975,8(4):386-390.
    [188]Xu Y J, Pan C Y. Syntheses and characterization of poly (tetrahydrofuran) polyols with multifunctional oxocarbenium perchlorates as Initiator [J]. J. Polym. Sci. Part A:Polym. Chem.,1999,37(16):3391-3399.
    [189]Zhang A F, Zhang G L, Zhang H Z. Effective promotion of tetrahydrofuran polymerization initiated with heteropolyacid [J]. J. Appl. Polym. Sci.,1999,73(12):2303-2308.
    [190]Penczek S. Comments on the kinetics of cationic polymerization of tetrahydrofuran [J]. Macromolecules,1979,12(5):1010-1011.
    [191]Matyjaszewski K, Slomkowski S, Penczek S. Kinetics and mechanism of the cationic polymerization of tetrahydrofuran in solution. THF-CH2C12 and THF-CH2C12/CH?NO2 systems [J]. J. Polym. Sci.:Polym. Chem. Ed.,1979,17(8):2413-2422.
    [192]Matyjaszewski K, Kubisa P, Penczek S. Kinetics and mechanism of the cationic polymerization of tetrahydrofuran in solution. I. THF-CCl4 system [J]. J. Polym. Sci.: Polym. Chem. Ed,1975,13(4):763-784.
    [193]Matyjaszewski K, Slomkowski S, Penczek S. Kinetics and mechanism of the cationic polymerization of tetrahydrofuran in solution:THF-CHjNO2 system [J]. J. Polym. Sci.. Polym. Chem. Ed..1979,17(1):69-80.
    [194]Matsumoto A, Otaka T, Aota H. In-situ kinetic pursuit of emulsion crosslinking copolymerizations of monomethacrylate and dimethacrylate by means of ReactIR [J]. Macromol. Rapid Commun,2001,22(9):607-610.
    [195]王兴原,费美丽,陈纪忠.原位红外光谱研究聚对苯二甲酸乙二醇酯(PET)的醇解反应过程[J].高校化学工程学报,2013,27(1):58-64.
    [196]Aubrecht K B, Hillmyer M A, Tolman W B. Polymerization of lactide by monomeric Sn(II) alkoxide complexes [J]. Macromolecules,2002,35(3):644-650.
    [197]Storey R F, Donnalley A B, Maggio T L. Real-time monitoring of carbocationic polymerization of isobutylene using in situ FTIR-ATR spectroscopy with conduit and diamond-composite sensor technology [J]. Macromolecules,1998,31(5):1523-1526.
    [198]Pasquale A J, Long T E. Real-time monitoring of the stable free radical polymerization of styrene via in-situ mid-infrared spectroscopy [J]. Macromolecules,1999,32(23): 7954-7957.
    [199]钱铭熙.催化剂中的新秀——杂多酸[J].现代化工,1985,4:52-57.
    [200]俞国星,范晓东,张翔宇,孔杰.窄分子量分布聚四氢呋喃的合成[J].合成化学,2006,14(5):450-453.
    [201]Setoyama T, Ookoshi T, Ono I, Kobayashi M, Kabata Y, Kawai T, Nakanishi A, Takeo H. New industrial process of PTMG catalyzed by solid acid supported on mesoporous material [J]. Catal. Swv. Asia.,2003,7(2-3):183-187.
    [202]Yildiz S, Hepuzer Y, Yagci Y, Pekcan O. Swelling and drying kinetics of polytetrahydrofuran and polytetrahydrofuran-poly (methyl methacrylate) gels:A photon transmission study [J]. J. Appl. Polym. Sci.,2003,87(4),632-640.
    [203]翁诗甫.傅里叶变换红外光谱分析(第二版)[M].北京:化学工业出版社,2012.
    [204]宫为民.分析化学(第二版)[M].沈阳:大连理工大学出版社,2004.
    [205]Vivas M G, Mendonca C R. Temperature effect on the two-photon absorption spectrum of alltrans-β-carotene [J]. J. Phys. Chem. A,2012,116(26):7033-7038.
    [206]Penczek S, Kubisa P, Matjaszewski K. Cationic ring-opening polymerization [J]. Adv. Polym. Sci.,1985,68-69:1-298.
    [207]徐耀良,鲁波,张治国.酸催化下四氢呋喃阳离子均聚机理的量子化学研究[J].石油学报(石油化工),2007,23(6):56-60.
    [208]Raquez J M, Degee P, Narayan R, Dubois P. Some thermodynamic, kinetic, and mechanistic aspects of the ring-opening polymerization of 1,4-dioxan-2-one initiated by Al(OiPr)3 in bulk [J]. Macromolecules,2001,34(24):8419-8425.
    [209]Ofstead E A. Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.),1965,6,674.
    [210]Zhang A F, Zhang G L, Zhang H Z. Studies on mechanism of tetrahydrofuran polymerization initiated by a heteropolyacid [J]. Macromol. Chem. Phys.,1999,200(8): 1846-1853.
    [211]Alamo R, Guzman J, Fatou J G. Kinetics of polymerization of tetrahydrofuran initiated by acetyl perchlorate [J]. Makromol Chem,1981,182(3):725-730.
    [212]Saegusa T, Hashihiko Y, Matsumoto S. Ring-Opening Polymerization of Oxacyclobutane by Boron Trifluoride. Concentration of Propagating Species and Rate of Propagation [J]. Macromolecules,1971,4(1):1-3.
    [213]宁永成.有机化合物结构鉴定与有机波谱学(第二版)[M].北京:科学出版社,2000.
    [214]Allcock R, Lampe F W, Mark J E. Contemporary Polymer Chemistry(当代聚合物化学)3rd ed(原著第三版)[M]. Beijing(北京)Chemical Industry Press(化学工业出版社),2006.
    [215]邢其毅,徐瑞秋,周政,裴伟伟.基础有机化学(第二版)[M].北京:高等教育出版社.
    [216]施介华,胡玉华,王桂林,余红丽,李艳.活性炭负载磷钨酸催化合成已二酸二正丁酯的研究[J].高校化学工程学报,2007,21(2):269-274
    [217]Zhang F M, Yuan C S, Wang J, Kong Y, Zhu H Y, Wang C Y. Synthesis of fructone over dealmuinated USY supported heteropoly acid ad its salt catalysts [J]. J. Mol. Catal. A: Chem.,2006,247(1-2):130-137.
    [218]Li Bo, Inagaki S, Miyazaki C, Takahashi H. Synthesis of highly ordered large size mesoporous silica and effect of stabilization as enzyme supports in organic solvent [J]. Chem. Res. Chinese Univ.,2002,18(2):200-205.
    [219]Sun J M, Zhang H, Ma D, Chen Y Y, Bao X H, Klein-Hoffmann A, Pfander N, Su D S. Alkanes-assisted low temperature formatin of highly ordered SBA-15 with large cylindrical mesopores [J]. Chem. Commun.,2005, (42):5343-5345.
    [220]Zhang H, Sun J M, Ma D, Bao X H, Klein-Hoffmann Achim, Weinberg G, Su D S, Schlogl R. Unusual mesoporous SBA-15 with parallel channels running along the short axis [J]. J. Am. Chem. Soc,2004,126(24):7440-7441.
    [221]Qin Y, Wang Y, Wang H Q, Gao J S, Qu Z P. Effect of morphology and pore structure of SBA-15 on toluene dyamic adsorption/desorption performance [J]. Procedia Environmental Sciences,2013,18,366-371.
    [222]Taghavimoghaddam J, Knowles G P, Chaffee A L. SBA-15 supported cobalt oxide species: Synthesis, morphology and catalytic oxidation of cyclohexanol using TBHP [J]. J. Mol. Catal A:Chem.,2013,379.277-286.
    [223]Ruggles J L, Gilbert E P, Holt S A, Reynolds P A, White JW. Expanded mesoporous silicate films grown at the air-water interface by additionof hydrocarbons [J]. Langmuir, 2003,19(3):793-800.
    [224]Schmidt-Winkel P, Lukens J W W, Zhao D Y, Yang P D, Chmelka B F, Stucky G D. Mesocellular siliceous foams with uniformly sized cells and windows [J]. J. Am. Chem. Sot:,1999,121(1):254-255.
    [225]Fan J, Yu C Z. Wang L M, Tu B, Zhao D Y, Sakamoto Y, Terasaki O. Mesotunnels on the silica wall of ordered SBA-15 to generate three-dimensional large-pore mesoporous networks [J].J.Am. Chem. Soc,2001,123(48):12113-12114.
    [226]Groen J C, Peffer L A A, Perez-Ramirez J. Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis [J]. Micro. Mesoporous. Mater.,2003,60(1-3):1-17.
    [227]Fulvio P F, Pikus S, Jaroniec M. Tailoring properties of SBA-15 materials by controlling conditions of hydrothermal synthesis [J]. J. Mater. Chem.,2005,15(47):5049-5053.
    [228]Lettow J S, Han Y J, Schmidt-Winkel P, Yang P D, Zhao D Y, Stuky G D, Ying J T. Hexagonal to mesocellular form phase transition in polymer-templated mesoporous silicas [J]. Langmuir,2000,16(22):8291-8295.
    [229]Zhu Y H, Li H, Xu J Q, Yuan H, Wang J J, Li X X. Monodispersed mesoporous SBA-15 with novel morphologies:controllable synthesis and morphology dependence of humidity sensing [J]. Cryst. Eng. Commun.,2011,13(2):402-405.
    [230]Ruan J F, Kjellman T, Sakamoto Y, AlfressonV. Transient colloidal stability controls the particle formation of SBA-15 [J]. Langmuir,2012,28(31):11567-11574.
    [231]Schmidt-Winkel P, Glinka C J, Stuky G D. Microemulsion templates for mesoporous silica [J]. Langmuir,2000,16(2):356-361.
    [232]Huang M, Chu W, Liao X M. Dai X Y. Immobilization of 12-phosphotungstic heteropolyacid on amine-functionalized SiO2 for tetrahydrofuran polymerization [J]. Chinese. Sci. Bull,2010,55(24):2652-2656.
    [233]Yuan C Y, Chen J. Preparation of heterogeneous mesoporous silica-supported 12-tungsto phosphoric acid catalyst and its catalytic performance for cyclopentene oxidation [J]. Chinese. J. Catal.,2010,32(7):1191-1198.
    [234]Chong A S M, Zhao X S. Functionalization of SBA-15 with APTES and characterization of functionalized materials [J]. J. Phys. Chem. B,2003,107(46):12650-12657.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700