半结晶高分子在压力诱导流动过程中的结构演变及强韧化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轻质高强是材料发展的永恒主题之一。高分子材料比重小,已经成为人类生活、经济建设、国家安全和科技进步不可或缺的重要材料。但它与金属材料和天然复合材料(贝壳、骨头等)比较,其强度和韧性较差。
     自从上世纪50年代首次提出高分子的增韧理论以来,人们已经成功发展了多种有效的增韧方法(最成功的就是以橡胶增韧的ABS材料),但这些方法多以牺牲强度和刚性为代价。与之相比,天然材料中有很多可以同时提高韧性、强度和刚性的多级有序微观结构(如贝壳中多级层状结构)。因此研究可以同时提高高分子材料韧性、强度和刚性的强韧化方法,具有理论意义和应用价值。
     我们受到天然贝壳多级有序层状结构的启发,发展了一种半结晶高分子材料强韧化的新概念及其方法——压力诱导流动成型方法(pressure-induced flow processing, PIF)。半结晶高分子材料存在晶区和无定形区,晶区由纳米厚度的折叠链片晶组成,片晶以放射状形成球晶,是一种多级结构。我们采用压力诱导流动成型法将近似球体的不规则多面体球晶转变为取向的扁平状,使球晶内部的片晶束发生重组与重排,形成多级有序层状微观结构,从而同时提高其韧性、强度和刚性。论文系统研究了典型高分子材料多级结构在PIF成型过程中的演变规律,提出了PIF成型半结晶高分子材料的多级结构模型及强韧化机理,并通过对多种半结晶高分子材料的印证、比较,证实了这一方法的有效性。主要研究结果如下:
     1、通过系统研究半结晶高分子在PIF成型过程中多级微观结构演变规律,发展了塑性变形的分子机制。
     从70年代Peterlin等人建立塑性变形理论以来,在塑性变形过程中,从球晶到取向分子链,球晶如何变形破坏、片晶如何运动和破坏、晶区和非晶区的分子链如何运动等科学问题,至今没有明确答案。本论文建立了半结晶高分子本体微观结构的无损表征和分析方法(包括“低温超薄切片、化学刻蚀和原子力显微镜照片拼接技术结合”,同步辐射小角X光散射、广角X光衍射及相关计算方法等),以典型的半结晶高分子为研究对象,包括等规聚丙烯(i-PP)、左旋聚乳酸(PLLA)、聚酰胺6(PA6)等,深入系统地研究了PIF过程中的晶区和非晶区等多级结构演变规律,包括晶区中多级微观结构(球晶、片晶、折叠链)演变和非晶区分子链运动规律。研究结果表明,在PIF成型过程中,大部分片晶在开始阶段首先发生偏转、然后破脆成为细小晶粒(数纳米),这些细小晶粒由系带分子(tie molecules)连接成为层状取向的富晶区;在压力诱导流动场中,这些细小晶粒仍然保持原有的片晶折叠链,但重新排列形成有序层状结构,片晶折叠链的方向与流动方向平行,这是塑性变形分子机制的新发展。
     2、提出了PIF成型i-PP材料的强韧化机理和结构模型。
     我们用光学显微镜(optical microscope, OM)、扫描电子显微镜(scanning electron microscopy, SEM)、原子力显微镜(atomic force microscopy, AFM)等方法对i-PP材料断裂方式及断面形貌与结构进行了系统分析,结合贝壳珍珠层的砖泥模型,我们提出了PIF成型在i-PP材料中的增韧增强机制,即通过片晶运动变化及球晶变形,在材料内部形成取向的多级薄弱界面,构成有序排列的多级层状结构,使材料在断裂过程中自动引发更多的裂纹扩展而增加能量耗散;同时由于“受限无定形”分子链段的作用,提高了片晶束的有效应力。两者协同作用,达到宏观力学的增韧与增强。
     3、建立了一种可以同时提高韧性、强度和刚性的半结晶高分子材料高性能化的新方法——压力诱导流动成型方法。
     对多种半结晶高分子材料进行的压力诱导流动成型的系统研究,为这些材料的高性能化提供了一种新途径及理论支撑。论文分别针对i-PP、PLLA、聚酰胺66(PA66)、PA6、PA6/PP、聚酰胺6/蒙脱土(PA6/MMT)、PP/MMT等7种半结晶高分子及其共混、杂化材料,研究了PIF成型过程中的各种加工参数(温度、压力、压缩比、保压时间等)对材料结构和性能的影响规律。所选择的半结晶高分子材料,在实验室条件下,韧性可提高2-22倍,强度提高2-3.5倍,刚性提高2-3倍。由此我们证实了,用PIF成型方法可以在半结晶高分子材料中构筑多级有序层状微观结构,从而大幅度提高材料的冲击韧性,并同时提高强度和刚性。
Combination of low density and high strength is the eternal objective for advanced materials, especially the structural materials. Due to their much lower densities than traditional metallic and inorganic materials, polymeric materials are becoming more and more important for social and economic life, defense security, and scientific progresses. However,, these materials exhibit inferior strength and toughness compared to metals and some natural composites (e.g., nacre, bones, etc.).
     Since the first proposal of toughening theory for polymeric materials in1950s, people have built various effective methods for toughening polymers (among which the rubber toughened ABS material is the most successful one). However, most of these methods take the cost of strength and stiffness. On the contrary, many natural materials could entitle themselves with simultaneously improved toughness, strength and stiffness by the formation of hierarchical ordered microstructures (such as the oriented layered structures of multi-level in nacre). Therefore the exploration of an effective method to simultaneously boost the toughness, strength and stiffness for polymeric materials is not only meaningful in the theoretical aspects, but also very important for potential applications in industry.
     Inspired by the hierarchical ordered structures in seashell nacre, we came up with a novel method, pressure-induced flow processing (PIF-processing) to obtain high performances for commodity semicrystalline polymeric materials. It is well-known that semicrystalline polymers exhibit hierarchical structures, because they consist of crystalline regions and amorphous regions, the former being composed of lamellae of folded chains with thickness of several nanometers, and then form spherulites. With PIF-processing, the isotropic crystalline spherulites can be deformed into oriented ellipsoids, in which the stacks of lamellae undergo re-construction and re-arrangement, so as to form oriented hierarchical structures in semicrystalline polymers. These typical structures would introduce improvements on the toughness, strength and stiffness for the materials at the same time. In this thesis, we systematically investigated the evolvement of hierarchical microstructures during PIF-processing for typical polymeric materials, and suggested the structural evolution model and related toughening and strengthening mechanisms for semicrystalline polymers with PIF-processing, and confirmed the validity of this method by comparative studies on many semicrystalline polymeric materials. The main results are as follows.
     1. We discovered the principles in the evolvement of the hierarchical microstructures for semicrystalline polymers during PIF-processing, and revealed the molecular mechanisms for plastic deformation.
     In spite of the long-established plastic deformation theories since1970s, many issues during the plastic deformation from the spherulites to oriented molecular chains (e.g., how are the spherulites deformed and destroyed, how are the lamellae moving and destroyed, how are molecular chains moving in the crystalline regions and amorphous regions) remain controversial. With the newly developed methods for characterizing the hierarchical structures of semicrystalline polymers (such as synchrotron radiation small angle X-ray scattering, wide angle X-ray diffraction, and the combination of low-temperature microtoming, chemical etching and full splicing of AFM images), we carefully studied the structural evolutions in crystalline (including spherulite, lamellae and their stacks, and fold chains) and amorphous regions during PIF-processing, and confirmed that most of lamellae are broken into nano-sized crystalline fragments, which are then inter-connected by tie molecules to form crystal-rich areas of aligned layers. These crystalline fragments remain the long periods of original lamellae, however, the fold chains of them exhibit a preferred orientation along the flow direction. These new findings enriched the content of molecular mechanism for plastic deformation.
     2. We proposed a comprehensive structural model to illustrate the toughening and strengthening mechanisms of PIF-processing for semicrystalline polymeric materials.
     We made a systematic analysis on the fracture type as well as the morphologies and microstructures for the fractured surfaces, by means of optical microscope (OM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) observations. Based on the motor-brick model for seashell nacre, we proposed the molecular mechanisms of PIF-processing on toughening and strengthening the semicrystalline polymeric materials. Specifically, the motion of lamellae and deformation of spherulites result in well aligned hierarchical stratified structures with oriented multi-leveled weak boundaries between those layers. These weak boundaries would initiate abundant cracks and promote their propagations along flow direction, and thus leading to a greatly increased sum distance of energy-dissipating paths in the materials. On the other hand, the formation of "confined amorphous regions" consisting of tie-molecules increases the effective stress within lamellae stacks. The above two factors cooperatively contribute to the much improvement of both impact and tensile strength for the PIF-processed samples.
     3. We set up a novel method for simultaneously enhancing the toughness, strength and stiffness for semicrystalline polymeric materials.
     The new processing method of PIF-processing offers a novel route to entitle semicrystalline polymeric materials with high performances. For seven commodity polymeric materials including some semicrystalline polymers and their blending or hybrid materials (i-PP, PLLA, PA66, PA6, PA6/PP, PA6/MMT, PP/MMT), in details we discussed the effects of various processing parameters (such as temperature, pressure, compression ratio, and pressure holding time) on the microstructures and resultant properties, and found that the toughness could be improved by2-22folds, while the strength could be improved by2-3.5folds and stiffness by2-3folds. We confirmed that hierarchical oriented layered microstructures could be formed in semicrystalline polymeric materials, hence greatly boosting the impact strength without hurting the tensile strength and stiffness.
引文
[1]殷敬华,莫志深,现代高分子物理学,北京:科学出版社,2001.
    [2]何平笙,高聚物的力学性能,合肥:中国科学技术大学出版社,2008.
    [3]G. Strobl, The Physics of Polymers:Concepts for Understanding Their Structures and Behavior Berlin:Springer-Verlag Berlin Heidelberg,2007.
    [4]何曼君,陈维孝,董西侠,高分子物理,上海:复旦大学出版社,2000.
    [5]M. Pluta, Z. Bartczak, A. Galeski, Changes in the morphology and orientation of bulk spherulitic polypropylene due to plane-strain compression, Polymer, 2000,41(6),2271-2288.
    [6]K. Hong, A. Rastogi, G. Strobl, Model treatment of tensile deformation of semicrystalline polymers:Static elastic moduli and creep parameters derived for a sample of polyethylene, Macromolecules,2004,37(26),10174-10179.
    [7]K. Hong, A. Rastogi, G Strobl, A model treating tensile deformation of semicrystalline polymers:Quasi-static stress-strain relationship and viscous stress determined for a sample of polyethylene, Macromolecules,2004,37(26), 10165-10173.
    [8]I.L. Hay, A. Keller, Polymer deformation in terms of spherulites, Kolloid-Zeitschrift und Zeitschrift fur Polymere,1965,204(1-2),43-74.
    [9]D. Freitag, G Fengler, L. Morbitzer, Routes to new aromatic polycarbonates with special material properties, Angewandte Chemie-International Edition in English,1991,30(12),1598-1610.
    [10]R.D. Deanin, A.M. Crugnola, Toughness and Brittleness of Plastics, Washington:American Chemical Society,1976.
    [11]R.P. Kambour, A review of crazing and fracture in thermoplastics, Journal of Polymer Science:Macromolecular Reviews,1973,7(1),1-154.
    [12]C.B. Bucknall, R.R. Smith, Stress-whitening in high-impact polystyrenes, Polymer,1965,6(8),437-446.
    [13]R.P. Kambour, D. Faulkner, E.E. Kampf, S. Miller, G.E. Niznik, A.R. Shultz, "Toughness enhancement by introduction of silicone blocks into polycarbonates of bisphenol acetone and bisphenol fluorenone," in Toughness and Brittleness of Plastics, (Advances in Chemistry), Washington:American Chemical Society,1976,312-325.
    [14]C.B. Bucknall, D.R. Paul, Notched impact behavior of polymer blends:Part 1: New model for particle size dependence, Polymer,2009,50(23),5539-5548.
    [15]A.C.M. Yang, E.J. Kramer, C.C. Kuo, S.L. Phoenix, "Crazes in diluted entanglement networks of polystyrene," 7,1986,2020-2027.
    [16]A.S. Argon, M.M. Salama, Growth of crazes in glassy polymers, Philosophical Magazine,1977,36(5),1217-1234.
    [17]K. Friedrich, "Crazes and shear bands in semi-crystalline thermoplastics," in Crazing in Polymers, (no.52-53), H. H. Kausch, ed., Berlin:Springer,1983, 225-274.
    [18]C.B. Bucknall, New criterion for craze initiation, polymer,2007,48(4), 1030-1041.
    [19]J. Takahashi, T. Yamamoto, K. Shizawa, Modeling and simulation for ductile fracture prediction of crystalline polymer based on craze behavior, International Journal of Mechanical Sciences,2010,52(2),266-276.
    [20]A.S. Argon, R.E. Cohen, Toughenability of polymers, Polymer,2003,44(19), 6013-6032.
    [21]A. Galeski, Strength and toughness of crystalline polymer systems, Progress in Polymer Science,2003,28(12),1643-1699.
    [22]I.M. Ward, Mechanical properties of solid polymers,2 ed., New York:Wiley, 1983.
    [23]Z. Bartczak, A.S. Argon, R.E. Cohen, M. Weinberg, Toughness mechanism in semi-crystalline polymer blends:I. High-density polyethylene toughened with rubbers, Polymer,1999,40(9),2331-2346.
    [24]方征平,宋义虎,沈烈,高分子物理,杭州:浙江大学出版社,2005.
    [25]C.E. Inglis, Stresses in a plate due to the presence of cracks and sharp corners, Transactions of the Insititution of Naval Architects,1913,44,15-37.
    [26]E.L.托马斯,聚合物的结构与性能,北京:科学出版社,1999.
    [27]A.A. Griffith, The phenomena of rupture and flow in solids, Philosophical Transactions of the Royal Society A:Mathematical or Physical Character, 1921,221,163-198.
    [28]G. Irwin, "Fracture Dynamics," in Fracturing of Metals, F. Jonassesn, W. P. Roop and R. T. Bayless, eds., Cleveland:American Society for Metals,1948, 147-166.
    [29]S.Y. Yarema, On the contribution of G. R. Irwin to fracture mechanics, Materials Science,1995,31(5),617-623.
    [30]ASTME399-83, Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, Philadelphia,1983.
    [31]化工部合成树脂及塑料工业信息总站,塑料工业编辑部,1995-1996年国外塑料工业进展,塑料工业,1997,25(3),67-89.
    [32]J. Liu, Z.J. Thompson, H.-J. Sue, F.S. Bates, M.A. Hillmyer, M. Dettloff et al., Toughening of Epoxies with Block Copolymer Micelles of Wormlike Morphology, Macromolecules,2010,43(17),7238-7243.
    [33]J.K. Wells, P.W.R. Beaumont, Debonding and pull-out processes in fibrous composites, Journal of Materials Science,1985,20(4),1275-1284.
    [34]M. Sova, M. Raab, M. Slizova, Polypropylene composite materials oriented by solid-state drawing:low-temperature impact behaviour, Journal of Materials Science,1993,28(23),6516-6523.
    [35]P.W.R. Beaumont, P.D. Anstice, A failure analysis of the micromechanisms of fracture of carbon fibre and glass fibre composites in monotonic loading, Journal of Materials Science,1980,15(10),2619-2635.
    [36]J.-K. Kim, Y.-w. Mai, High strength, high fracture toughness fibre composites with interface control-A review, Composites Science and Technology,1991, 41(4),333-378.
    [37]M. Sakai, T. Miyajima, M. Inagaki, Fracture toughness and fiber bridging of carbon fiber reinforced carbon composites, Composites Science and Technology,1991,40(3),231-250.
    [38]S. Wu, Phase structure and adhesion in polymer blends:A criterion for rubber toughening, Polymer,1985,26(12),1855-1863.
    [39]A.J. Oshinski, H. Keskkula, D.R. Paul, Rubber toughening of polyamides with functionalized block copolymers:1. Nylon-6, Polymer,1992,33(2),268-283.
    [40]K. Dijkstra, R.J. Gaymans, Nylon-6/rubber blends:8. Influence of the molecular weight of the matrix on the impact behaviour, Polymer,1994,35(2), 332-335.
    [41]R.J.M. Borggreve, R.J. Gaymans, J. Schuijer, J.F.I. Housz, Brittle-tough transition in nylon-rubber blends:effect of rubber concentration and particle size, Polymer,1987,28(9),1489-1496.
    [42]O.K. Muratoglu, A.S. Argon, R.E. Cohen, M. Weinberg, Toughening mechanism of rubber-modified polyamides, Polymer,1995,36(5),921-930.
    [43]G. Xu, W.F. Shi, M. Gong, F. Yu, J.P. Feng, Photopolymerization and toughening performance in polypropylene of hyperbranched polyurethane acry late, European Polymer Journal,2004,40(3),483-491.
    [44]A. Margolina, S. Wu, Percolation model for brittle-tough transition in nylon/rubber blends, Polymer,1988,29(12),2170-2173.
    [45]F.J. Guild, A.J. Kinloch, A.C. Taylor, Particle cavitation in rubber toughened epoxies:the role of particle size, Journal of Materials Science,2010,45(14), 3882-3894.
    [46]S. Wu, A generalized criterion for rubber toughening:The critical matrix ligament thickness, Journal of Applied Polymer Science,1988,35(2), 549-561.
    [47]Y. Yoo, L. Cui, P.J. Yoon, D.R. Paul, Morphology and mechanical properties of rubber toughened amorphous polyamide/MMT nanocomposites, Macromolecules,2010,43(2),615-624.
    [48]P. Du, J. Yu, P. Lin, Y. Song, Q. Zheng, Effect of rubber and inorganic rigid particles on fracture behavior of injection-molded pvc nanocomposites, Acta Polymerica Sinica,2011,(12),1395-1401.
    [49]Z. Bartczak, A.S. Argon, R.E. Cohen, M. Weinberg, Toughness mechanism in semi-crystalline polymer blends:Ⅱ. High-density polyethylene toughened with calcium carbonate filler particles, Polymer,1999,40(9),2347-2365.
    [50]Y. Wu, Z. Dong, Three-dimensional finite element analysis of composites with coated spherical inclusions, Materials Science and Engineering:A,1995, 203(1-2),314-323.
    [51]Y. Peng, J.H. Liu, "Mechanical Properties of UPR Composite Synergistically Toughened by rigid nano-particles," in Advances in Superalloys, Pts 1 and 2, (Advanced Materials Research), S. Jiao, Z. Y. Jiang and J. L. Bu, eds., Stafa-Zurich:Trans Tech Publications Ltd,2011,310-313.
    [52]C.B. Bucknall, Toughened Plastics, London:Applied Science Publishers, 1977.
    [53]E.H. Merz, G.C. Claver, M. Baer, Studies on heterogeneous polymeric systems, Journal of Polymer Science,1956,22(101),325-341.
    [54]O.K. Muratoglu, A.S. Argon, R.E. Cohen, M. Weinberg, Microstructural processes of fracture of rubber-modified polyamides, Polymer,1995,36(25), 4771-4786.
    [55]S. Newman, S. Strella, Stress-strain behavior of rubber-reinforced glassy polymers, Journal of Applied Polymer Science,1965,9(6),2297-2310.
    [56]B.Z. Jang, D.R. Uhlmann, J.B. Vander Sande, Ductile-brittle transition in polymers, Journal of Applied Polymer Science,1984,29(11),3409-3420.
    [57]R.A. Pearson, A.F. Yee, Toughening mechanisms in elastomer-modified epoxies:Part 2 Microscopy studies Journal of Materials Science,1986,21(7), 2475-2488.
    [58]G.N. Toepperwein, J.J. de Pablo, Cavitation and Crazing in Rod-Containing Nanocomposites, Macromolecules,2011,44(13),5498-5509.
    [59]A. Pawlak, A. Galeski, Cavitation during tensile drawing of annealed high density polyethylene, polymer,2010,51(24),5771-5779.
    [60]A.L. Gurson, "Plastic Flow and Fracture Behaviour of Ductile Materials Incorporating Void Nucleation, Growth And Coalescence," Brown University, Providence,1975.
    [61]R.O. Ritchie, The conflicts between strength and toughness, Nature Materials, 2011,10(11),817-822.
    [62]M.D. Demetriou, M.E. Launey, G. Garrett, J.P. Schramm, D.C. Hofmann, W.L. Johnson et al, A damage-tolerant glass, Nature Materials,2011,10(2), 123-128.
    [63]M.E. Launey, M.J. Buehler, R.O. Ritchie, "On the Mechanistic Origins of Toughness in Bone," in Annual Review of Materials Research, Vol 40, (Annual Review of Materials Research), D. R. Clarke, M. Ruhle and F. Zok, eds., 25-53.
    [64]F. Song, A.K. Soh, Y.L. Bai, Structural and mechanical properties of the organic matrix layers of nacre, Biomaterials,2003,24(20),3623-3631.
    [65]F. Barthelat, H. Tang, P.D. Zavattieri, C.M. Li, H.D. Espinosa, On the mechanics of mother-of-pearl:A key feature in the material hierarchical structure, Journal of the Mechanics and Physics of Solids,2007,55(2), 306-337.
    [66]D.S. Dugdale, Yielding of steel sheets containing slits, J. Mech. Solids,1960, 8(100-104),
    [67]H.J. Gao, B.H. Ji, I.L. Jager, E. Arzt, P. Fratzl, Materials become insensitive to flaws at nanoscale:Lessons from nature, Proceedings of the National Academy of Sciences of the United States of America,2003,100(10),5597-5600.
    [68]B.H. Ji, H.J. Gao, Mechanical properties of nanostructure of biological materials, Journal of the Mechanics and Physics of Solids,2004,52(9), 1963-1990.
    [69]K.S. Katti, D.R. Katti, Why is nacre so tough and strong?, Materials Science & Engineering C-Biomimetic and Supramolecular Systems,2006,26(8), 1317-1324.
    [70]P. Nukala, S. Simunovic, A continuous damage random thresholds model for simulating the fracture behavior of nacre, Biomaterials,2005,26(30), 6087-6098.
    [71]K.S. Liu, L. Jiang, Bio-inspired design of multiscale structures for function integration, Nano Today,2011,6(2),155-175.
    [72]H.D. Espinosa, J.E. Rim, F. Barthelat, M.J. Buehler, Merger of structure and material in nacre and bone-Perspectives on de novo biomimetic materials, Progress in Materials Science,2009,54(8),1059-1100.
    [73]GM. Luz, J.F. Mano, Biomimetic design of materials and biomaterials inspired by the structure of nacre, Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2009,367(1893), 1587-1605.
    [74]H.D. Espinosa, A.L. Juster, F.J. Latourte, O.Y. Loh, D. Gregoire, P.D. Zavattieri, Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials, Nature Communications,2011,2,173-179.
    [75]P. Podsiadlo, A.K. Kaushik, E.M. Arruda, A.M. Waas, B.S. Shim, J.D. Xu et al, Ultrastrong and stiff layered polymer nanocomposites, Science,2007, 318(5847),80-83.
    [76]Z. Burghard, A. Tucic, L.P.H. Jeurgens, R.C. Hoffmann, J. Bill, F. Aldinger, Nanomechanical properties of bioinspired organic-inorganic composite films, Advanced Materials,2007,19(7),970-974.
    [77]G.K. Xu, W. Lu, X.Q. Feng, S.W. Yu, Self-assembly of organic-inorganic nanocomposites with nacre-like hierarchical structures, Soft Matter,2011, 7(10),4828-4832.
    [78]B.R. Furman, M.J. Rubal, C.K. Baker, C.N. Tiftickjian, S.T. Wellinghoff, Electrophoretic deposition of organically modified gibbsite nanocomposites with liquid crystalline character, Journal of Materials Science,2012,47(19), 6896-6907.
    [79]S.L. Tracy, H.M. Jennings, The growth of self-aligned calcium carbonate precipitates on inorganic substrates, Journal of Materials Science,1998, 33(16),4075-4077.
    [80]H. Gao, B. Ji, M.J. Buehler, H. Yao, Flaw tolerant bulk and surface nanostructures of biological systems, Mechanics & chemistry of biosystems MCB,2004,1(1),37-52.
    [81]B.L. Smith, T.E. Schaffer, M. Viani, J.B. Thompson, N.A. Frederick, J. Kindt et al., Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites, Nature,1999,399(6738),761-763.
    [82]J.B. Thompson, J.H. Kindt, B. Drake, H.G Hansma, D.E. Morse, P.K. Hansma, Bone indentation recovery time correlates with bond reforming time, Nature, 2001,414(6865),773-776.
    [83]M. Ma, K. Vijayan, A. Hiltner, E. Baer, J. Im, Thickness effects in microlayer composites of polycarbonate and poly(styrene-acrylonitrile), Journal of Materials Science,1990,25(4),2039-2046.
    [84]E. Baer, A. Hiltner, H.D. Keith, Hierarchical Structure in Polymeric Materials, Science,1987,235(4792),1015-1022.
    [85]H.P. Wang, J.K. Keum, A. Hiltner, E. Baer, B. Freeman, A. Rozanski et al., Confined Crystallization of Polyethylene Oxide in Nanolayer Assemblies, Science,2009,323(5915),757-760.
    [86]H.P. Wang, J.K. Keum, A. Hiltner, E. Baer, B.D. Freeman, High gas barrier from confined crystallization of polyethylene oxide in nanolayer assemblies, Abstracts of Papers of the American Chemical Society,2009,237,
    [87]J. Kerns, A. Hsieh, A. Hiltner, E. Baer, Comparison of irreversible deformation and yielding in microlayers of polycarbonate with poly(methylmethacrylate) and poly(styrene-co-acrylonitrile), Journal of Applied Polymer Science,2000, 77(7),1545-1557.
    [88]沈佳斌,王明,李姜,杜芹,许双喜,陈光顺et al.,丙烯-乙烯共聚物/乙烯-1-辛烯共聚物层状复合材料的力学性能研究,高分子学报,2007,(9), 827-832.
    [89]王明,沈佳斌,杜芹,许双喜,李姜,陈光顺et al.,EPDM/PS交替多层复合材料的力学性能分析,复合材料学报,2007,24(6),36-43.
    [90]李婷,李姜,张玉清,杜芹,郭少云,微层共挤出(PP+EVOH)/PP阻隔材料的结构与性能研究,高分子学报,2009,(12),1226-1231.
    [91]M. Rubner, Materials science:Synthetic sea shell, Nature,2003,423(6943), 925-926.
    [92]Z.Y. Tang, N.A. Kotov, S. Magonov, B. Ozturk, Nanostructured artificial nacre, Nature Materials,2003,2(6),413-418.
    [93]K. Oaki, H. Imai, The hierarchical architecture of nacre and its mimetic material, Angewandte Chemie-International Edition,2005,44(40),6571-6575.
    [94]P. Podsiadlo, S.Y. Choi, B. Shim, J. Lee, M. Cuddihy, N.A. Kotov, Molecularly engineered nanocomposites:Layer-by-layer assembly of cellulose nanocrystals, Biomacromolecules,2005,6(6),2914-2918.
    [95]P. Podsiadlo, S. Paternel, J.M. Rouillard, Z.F. Zhang, J. Lee, J.W. Lee et al., Layer-by-layer assembly of nacre-like nanostructured composites with antimicrobial properties, Langmuir,2005,21(25),11915-11921.
    [96]S. Ludwigs, U. Steiner, A.N. Kulak, R. Lam, F.C. Meldrum, Bioinspired Polymer-Inorganic Hybrid Materials, Advanced Materials,2006,18(17), 2270-2273.
    [97]M.E. Buck, J. Zhang, D.M. Lynn, Layer-by-layer assembly of reactive ultrathin films mediated by click-type reactions of poly(2-alkenyl azlactone)s, Advanced Materials,2007,19(22),3951-+.
    [98]P. Podsiadlo, Z.Q. Liu, D. Paterson, P.B. Messersmith, N.A. Kotov, Fusion of seashell nacre and marine bioadhesive analogs:High-strength nanocompoisite by layer-by-layer assembly of clay and L-3,4-dihydroxyphenylaianine polymer, Advanced Materials,2007,19(7),949-951.
    [99]P. Podsiadlo, L. Sui, Y. Elkasabi, P. Burgardt, J. Lee, A. Miryala et al., Layer-by-layer assembled films of cellulose nanowires with antireflective properties, Langmuir,2007,23(15),7901-7906.
    [100]B.S. Shim, P. Podsiadlo, D.G. Lilly, A. Agarwal, J. Leet, Z. Tang et al., Nanostructured thin films made by diewetting method of layer-by-layer assembly, Nano Letters,2007,7(11),3266-3273.
    [101]M.A. Haque, T. Kurokawa, G. Kamita, J.P. Gong, Lamellar bilayers as reversible sacrificial bonds to toughen hydrogel:hysteresis, self-recovery, fatigue resistance, and crack blunting, Macromolecules,2011,44(22), 8916-8924.
    [102]M.A. Haque, T. Kurokawa, J.P. Gong, Anisotropic hydrogel based on bilayers: color, strength, toughness, and fatigue resistance, Soft Matter,2012,8(31), 8008-8016.
    [103]A. Peterlin, Molecular model of drawing polyethylene and polypropylene, Journal of Materials Science,1971,6(6),490-508.
    [104]P.B. Bowden, R.J. Young, Deformation mechanisms in crystalline polymers, Journal of Materials Science,1974,9,2034-2051.
    [105]M.C. Boyce, D.M. Parks, A.S. Argon, Plastic-flow in oriented glassy-polymers, International Journal of Plasticity,1989,5(6),593-615.
    [106]P.D. Coates, G.R. Davies, R.A. Duckett, A.F. Johnson, I.M. Ward, Some routes for tailoring of polymer properties through processing, Chemical Engineering Research and Design,1995,73a,753-770.
    [107]O.U. Colak, Modeling deformation behavior of polymers with viscoplasticity theory based on overstress, International Journal of Plasticity,2005,21(1), 145-160.
    [108]A. Galeski, Z. Bartczak, A.S. Argon, R.E. Cohen, Morphological alterations during texture-producing plastic plane-strain compression of high-density polyethylene, Macromolecules,1992,25(21),5705-5718.
    [109]A. Galeski, Z. Bartczak, T. Kazmierczak, M. Slouf, Morphology of undeformed and deformed polyethylene lamellar crystals, Polymer,2010, 51(24),5780-5787.
    [110]T. Kazmierczak, A. Galeski, A.S. Argon, Plastic deformation of polyethylene crystals as a function of crystal thickness and compression rate, polymer,2005, 46(21),8926-8936.
    [111]O.B. Salamatina, S.N. Rudnev, Z. Bartczak, A. Galeski, E.F. Oleinik, Thermodynamics of inelastic deformation of amorphous and crystalline phases in linear polyethylene, Polymer Science Series A,2011,53(9),775-786.
    [112]Z. Bartczak, P.F.M. Beris, K. Wasilewski, A. Galeski, P.J. Lemstra, Deformation of the ultra high molecular weight polyethylene melt in the plane-strain compression, Journal of Applied Polymer Science,2012,
    [113]A. Buckley, H.A. Long, The extrusion of polymers below their melting temperatures by the application of high pressures, Polymer Engineering & Science,1969,9(2),115-120.
    [114]P.W. Bridgman, The rheological properties of matter under high pressure, Journal of Colloid Science,1947,2(1),7-16.
    [115]H.L.D. Pugh, M.T. Watkins, J. McKenzie, Design considerations arising from cold extrusion research, International Journal of Machine Tool Design and Research,1962,2(2),165-199.
    [116]J. Morawiec, Z. Bartczak, T. Kazmierczak, A. Galeski, Rolling of polymeric materials with side constraints, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2001, 317(1-2),21-27.
    [117]Z. Bartczak, J. Morawiec, A. Galeski, Structure and properties of isotactic polypropylene oriented by rolling with side constraints, Journal of Applied Polymer Science,2002,86(6),1413-1425.
    [118]V.A. Beloshenko, A.V. Voznyak, Y.V. Voznyak, V.A. Glasunova, T.E. Konstantinova, Polyamide-6 structure modification by combined solid-phase extrusion, Polymer Engineering and Science,2012,52(8),1815-1820.
    [119]J.A. Gonzalez-Leon, M.H. Acar, S.W. Ryu, A.V.G Ruzette, A.M. Mayes, Low-temperature processing of 'baroplastics' by pressure-induced flow, Nature, 2003,426(6965),424-428.
    [120]T.Z.N. Sokkar, M.A. El-Bakary, A.M. Ali, The influence of mechanical cold drawing and drawing velocity on the molecular structure of isotactic polypropylene fiber, Journal of Applied Polymer Science,2013,127(2), 1105-1113.
    [121]J. Hu, T. Zhang, M. Gu, X. Chen, J. Zhang, Spectroscopic analysis on cold drawing-induced PLLA mesophase,polymer, 2012,53(22),4922-4926.
    [122]B. Wunderlich, T. Arakawa, Polyethylene Crystallized from the Melt under Elevated Pressure, Journal of Polymer Science,1964, A2,3697-3706.
    [123]B. Wunderlich, L. Melillo, Surface Recrystallization of Polyethylene Extended-Chain Crystals, Science,1966,154,1329-1330.
    [124]A. Siegmann, P. Harget, Melting and crystallization of poly(ethylene terephthalate) under pressure, Journal of Polymer Science Part B:Polymer Physics,1980,18(11),2181-2196.
    [125]J.C. Won, R. Fulchiron, A. Douillard, B. Chabert, J. Varlet, D. Chomier, Effect of the pressure on the crystallization behavior of polyamide 66, Journal of Applied Polymer Science,2001,80(7),1021-1029.
    [126]H. Frielinghaus, D. Schwahn, K. Mortensen, K. Almdal, T. Springer, Composition fluctuations and coil conformation in a poly(ethylene-propylene)-poly(ethylethylene) diblock copolymer as a function of temperature and pressure, Macromolecules,1996,29(9),3263-3271.
    [127]H. Tanaka, T. Takemure, studies on the high-pressure phases of polyethylene and poly(tetrafluoroethylene) by raman-spectroscopy, Polymer,1980,12, 355-361.
    [128]Y. Miyamoto, Dielectric relaxation and the molecular motion of poly(vinylidene fluoride) crystal form Ⅱ under high pressure, Polymer,1984, 25(1),63-70.
    [129]C. Nakafuku, T. Miyaki, Effect of pressure on the melting and crystallization behaviour of isotactic polybutene-1,Polymer,1983,24(2),141-148.
    [130]L. Liangbin, H. Rui, Z. Ling, H. Shiming, A new mechanism in the formation of PET extended-chain crystal, Polymer,2001,42(5),2085-2089.
    [131]L. Li, C. Wang, R. Huang, L. Zhang, S. Hong, Morphology of high-pressure crystallized poly(ethylene 2,6-naphthalate), Polymer,2001,42(21), 8867-8872.
    [132]L. Liangbin, H. Rui, L. Ai, N. Fude, H. Shiming, W. Chunmei et al., High pressure crystallized poly(ethylene terephthalate):high crystallinity and large extended-chain crystals, Polymer,2000,41(18),6943-6947.
    [133]J. Lu, R. Huang, L.B. Li, J.B. Luo, Growth of large polymer extended-chain single crystals in a poly(ethylene terephthalate)/bisphenol A polycarbonate blend under high pressure, Macromolecular Rapid Communications,2005, 26(18),1478-1482.
    [134]Z.M. Li, L.B. Li, K.Z. Shen, W. Yang, R. Huang, M.B. Yang, Transcrystalline morphology of an in situ microfibrillar poly(ethylene terephthalate)/poly(propylene) blend fabricated through a slit extrusion hot stretching-quenching process, Macromolecular Rapid Communications,2004, 25(4),553-558.
    [1]G Strobl, Crystallization and melting of bulk polymers:New observations, conclusions and a thermodynamic scheme, Progress in Polymer Science,2006, 31(4),398-442.
    [2]G Strobl,高分子物理学——理解其结构和性质的基本概念,北京:科学出版社,2009.
    [3]何曼君,陈维孝,董西侠,高分子物理,上海:复旦大学出版社,2000.
    [4]A.G. Shtukenberg, Y.O. Punin, E. Gunn, B. Kahr, Spherulites, Chemical reviews,2012,112(3),1805-38.
    [5]P.B. Bowden, R.J. Young, Deformation mechanisms in crystalline polymers, Journal of Materials Science,1974,9,2034-2051.
    [6]Q. Zia, D. Mileva, R. Androsch, Rigid Amorphous Fraction in Isotactic Polypropylene, Macromolecules,2008,41(21),8095-8102.
    [7]L. Li, C.M. Chan, K.L. Yeung, J.X. Li, K.M. Ng, Y.G. Lei, Direct observation of growth of lamellae and spherulites of a semicrystalline polymer by AFM, Macromolecules,2001,34(2),316-325.
    [8]L. Li, C.M. Chan, J.X. Li, K.M. Ng, K.L. Yeung, L.T. Weng, A direct observation of the formation of nuclei and the development of lamellae in polymer spherulites, Macromolecules,1999,32(24),8240-8242.
    [9]R.H. Olley, D.C. Bassett, On the development of polypropylene spherulites, polymer,1989,30(3),399-409.
    [10]A. Messerschmidt, J.W. Pflugrath, Crystal orientation and X-ray pattern prediction routines for area-detector diffractometer systems in macromolecular crystallography, Journal of Applied Crystallography,1987,20(4),306-315.
    [11]Q. Zia, R. Androsch, H.-J. Radusch, E. Ingolic, Crystal morphology of rapidly cooled isotactic polypropylene:A comparative study by TEM and AFM, Polymer Bulletin,2008,60(6),791-798.
    [12]D.D. Tranchida, Z. Bartczak, D. Bielinski, Z. Kiflie, G. Andrzej, S. Piccarolo, Linking structure and nanomechanical properties via instrumented nanoindentations on well-defined and fine-tuned morphology poly(ethylene), polymer,2009,50(8),1939-1947.
    [13]B. Corry, D. Jayatilaka, B. Martinac, P. Rigby, Determination of the Orientational Distribution and Orientation Factor for Transfer between Membrane-Bound Fluorophores using a Confocal Microscope, Biophysical Journal,2006,91(3),1032-1045.
    [14]B. Lotz, J.C. Wittmann, A.J. Lovinger, Structure and morphology of poly(propylenes):A molecular analysis, Polymer,1996,37(22),4979-4992.
    [15]W.R. Krigbaum, I. Uematsu, Heat and entropy of fusion of isotactic polypropylene, Journal of Polymer Science Part A:General Papers,1965, 3(2),767-776.
    [16]P.W. Zhu, J. Tung, G Edward, Effects of sodium benzoate on distributions of lamellar structures of sheared isotactic polypropylene:A study using small angle synchrotron X-ray scattering, Polymer,2005,46(24),10960-10969.
    [17]E. Baer, A. Hiltner, H.D. Keith, Hierarchical Structure in Polymeric Materials, Science,1987,235(4792),1015-1022.
    [18]W. Yang, N. Kashani, X.W. Li, G.P. Zhang, M.A. Meyers, Structural characterization and mechanical behavior of a bivalve shell (Saxidomus purpuratus), Materials Science & Engineering C-Materials for Biological Applications,2011,31(4),724-729.
    [19]P. Podsiadlo, A.K. Kaushik, E.M. Arruda, A.M. Waas, B.S. Shim, J.D. Xu et al, Ultrastrong and stiff layered polymer nanocomposites, Science,2007, 318(5847),80-83.
    [20]K.S. Liu, L. Jiang, Bio-inspired design of multiscale structures for function integration, Nano Today,2011,6(2),155-175.
    [21]I. Hay, A. Keller, Polymer deformation in terms of spherulites, Colloid & Polymer Science,1965,204(1),43-74.
    [22]M. Wilkens, The determination of density and distribution of dislocations in deformed single crystals from broadened X-ray diffraction profiles, physica status solidi (a),1970,2(2),359-370.
    [23]M. Aboulfaraj, C. Gsell, B. Ulrich, A. Dahoun, In-situ observation of the plastic-deformation of polypropylene spherulites under uniaxial tension and simple shear in the scanning electron-microscope, polymer,1995,36(4), 731-742.
    [24]Z. Bartczak, A. Galeski, Plasticity of semicrystalline polymers, Macromolecular Symposia,2010,294-1,67-90.
    [25]A. Pawlak, A. Galeski, Cavitation during tensile drawing of annealed high density polyethylene, polymer,2010,51(24),5771-5779.
    [26]A.D. Drozdov, Multi-cycle viscoplastic deformation of polypropylene, Computational Materials Science,2011,50(7),1991-2000.
    [27]S. Lee, G.C. Rutledge, Plastic Deformation of Semicrystalline Polyethylene by Molecular Simulation, Macromolecules,2011,44(8),3096-3108.
    [28]A. Sedighiamiri, L.E. Govaert, J.A.W. van Dommelen, Micromechanical Modeling of the Deformation Kinetics of Semicrystalline Polymers, Journal of Polymer Science Part B-Polymer Physics,2011,49(18),1297-1310.
    [29]A. Galeski, Strength and toughness of crystalline polymer systems, Progress in Polymer Science,2003,28(12),1643-1699.
    [30]A.K. Taraiya, M.S. Mirza, J. Mohanraj, B.C. Barton, I.M. Ward, Production and properties of highly oriented polyoxymethylene by die-drawing, Journal of Applied Polymer Science,2003,88(5),1268-1278.
    [31]J. Morawiec, Z. Bartczak, M. Pluta, A. Galeski, High-strength uniaxially drawn tapes from scrap recycled poly(ethylene terephthalate), Journal of Applied Polymer Science,2002,86(6),1426-1435.
    [32]Z. Bartczak, J. Morawiec, A. Galeski, Deformation of high-density polyethylene produced by rolling with side constraints. II. Mechanical properties of oriented bars, Journal of Applied Polymer Science,2002,86(6), 1405-1412.
    [33]Z. Bartczak, J. Morawiec, A. Galeski, Structure and properties of isotactic polypropylene oriented by rolling with side constraints, Journal of Applied Polymer Science,2002,86(6),1413-1425.
    [34]J. Morawiec, Z. Bartczak, T. Kazmierczak, A. Galeski, Rolling of polymeric materials with side constraints, Materials Science and Engineering α-Structural Materials Properties Microstructure and Processing,2001, 317(1-2),21-27.
    [35]Z. Bartczak, E. Martuscelli, Orientation and properties of sequentially drawn films of an isotactic polypropylene hydrogenated oligocyclopentadiene blend, Polymer,1997,38(16),4139-4149.
    [36]Z. Bartczak, A. Galeski, Plastic deformation of semicrystalline polymers:High density polyethylene (HDPE), Polimery,1996,41(6),321-333.
    [37]Y. Nozue, Y. Shinohara, Y. Ogawa, T. Sakurai, H. Hori, T. Kasahara et al., Deformation behavior of isotactic polypropylene spherulite during hot drawing investigated by simultaneous microbeam SAXS-WAXS and POM measurement, Macromolecules,2007,40(6),2036-2045.
    [38]R. Seguela, Dislocation approach to the plastic deformation of semicrystalline polymers:Kinetic aspects for polyethylene and polypropylene, Journal of Polymer Science Part B-Polymer Physics,2002,40(6),593-601.
    [39]H.H. Song, A.S. Argon, R.E. Cohen, Morphology of highly textured high-density polyethylene, Macromolecules,1990,23(3),870-876.
    [40]A. Phillips, P.W. Zhu, G. Edward, Simple shear deformation of polypropylene via the equal channel angular extrusion process, Macromolecules,2006, 39(17),5796-5803.
    [41]A. Peterlin, Molecular model of drawing polyethylene and polypropylene, Journal of Materials Science,1971,6(6),490-508.
    [42]W.W. Adams, D. Yang, E.L. Thomas, Direct visualization of microstructural deformation processes in polyethylene, Journal of Materials Science,1986, 21(7),2239-2253.
    [43]K.H. Nitta, A molecular theory of stress-strain relationship of spherulitic materials, Computational and Theoretical Polymer Science,1999,9(1),19-26.
    [44]D.R. Uhlmann, N.J. Kreidl, Glass:science and technology, New York: Academic,1983.
    [45]R. Zahlen, The Physics of Amorphous Solids, New York:Wiley,1983.
    [46]莫志深,张宏放,晶态聚合物结构和X射线衍射,北京:科学出版社,2003.
    [47]钱保功,许观藩,余赋生,高聚物的转变与松驰,北京:科学出版社,1986.
    [48]E.L.托马斯,聚合物的结构与性能,北京:科学出版社,1999.
    [49]殷敬华,莫志深,现代高分子物理学,北京:科学出版社,2001.
    [50]P.J. Flory, The configuration of real polymer chains, Journal of Chemistry and Physics,1949,17,303-310.
    [51]R. Hosemann, Crystallinity in high polymers, especially fibres, Polymer,1962, 3,349-392.
    [52]R. Hosemann, S.N. Bagchi, Direct analysis of diffraction by matter, Amsterdam:North-Holland,1962.
    [53]S.Y. Yeh, P.H. Geil, Crystallization of polyethylene terephthalate from the glassy amorphous state, Journal of Macromolecular Science:Physics,1967, B1,35-42.
    [54]V.B. Vollmert, H. Stutz, Zur frage der gegenseitigen durchdringung von polymerknaueln in konzentrierten losungen, Angewandte Makromolekulare Chemie,1968,3,182-189.
    [55]W. Pechhold, M.E.T. Hauber, E. Liska, The meander model of condensed polymers, Colloid & Polymer Science,1973,251,818-823.
    [56]M. Takayanagi, D.J. Meier, Molecular Basis of Transitions and Relaxations, New York:Gordon and Breach,1978.
    [57]K. Schmieder, K. Wolf, Mechanische Relaxationserscheinungen an Hochpolymeren, Kolloid-Zeitschrift (Colloid and Polymer Science),1953, 134(2-3),149-189.
    [58]I.V. Yannas, R.R. Luise, Distinction between two molecular mechanisms for deformation of glassy amorphous polymers, Journal of Macromolecular Science, PartB,1982,21(3),443-474.
    [59]R. Luise, I.V. Yannas, "Mechanics of Strophons in Glassy Amorphous Polymers. Unified view of Stiffness, Yielding and Crazing Behavior," in Computational Modeling of Polymers, J. Bicerano, ed., New York:Marcel Dekker,1992,191-218.
    [60]Thomann, Bar, Ganter, Machutta, Mulhaupt, Combined ultramicrotomy for AFM and TEM using a novel sample holder, Journal of Microscopy,1999, 195(2),161-163.
    [61]J.S. Mijovic, J.A. Koutsky, Etching of Polymeric Surfaces:A Review, Polymer-Plastics Technology and Engineering,1977,9(2),139-179.
    [62]M. Pluta, Z. Bartczak, A. Galeski, Changes in the morphology and orientation of bulk spherulitic polypropylene due to plane-strain compression, Polymer, 2000,41(6),2271-2288.
    [63]G Machado, E.J. Kinast, J.D. Scholten, A. Thompson, T. De Vargas, S.R. Teixeira et al, Morphological and crystalline studies of isotactic polypropylene plastically deformed and evaluated by small-angle X-ray scattering, scanning electron microscopy and X-ray diffraction, European Polymer Journal,2009,45(3),700-713.
    [64]R. Seguela, Critical review of the molecular topology of semicrystalline polymers:The origin and assessment of intercrystalline tie molecules and chain entanglements, Journal of Polymer Science Part B-Polymer Physics, 2005,43(14),1729-1748.
    [65]E. Lezak, Z. Bartczak, A. Galeski, Plastic deformation of the gamma phase in isotactic polypropylene in plane-strain compression, Macromolecules,2006, 39(14),4811-4819.
    [66]E. Lezak, Z. Bartczak, Plastic deformation of the gamma phase isotactic polypropylene in plane-strain compression at elevated temperatures, Macromolecules,2007,40(14),4933-4941.
    [67]N.G McCrum, B.E. Read, G Williams, Anelastic and Dielectric Effects in Polymeric Solids, London:Wiley,1967.
    [68]I. Inamura, H. Ochiai, H. Yamamura, Effects of swelling and annealing on viscoelastic behavior of solution-crystallized and melt-crystallized samples of fractionated polypropylene, Journal of Polymer Science Part B-Polymer Physics,1976,14,1221.
    [69]N.G McCrum, Density-independent relaxations in polypropylene, Journal of Polymer Science Part B-Polymer Physics,1964,2,495.
    [70]R.L. Miller, On the existence of near-range order in isotactic polypropylenes, Polymer,1960,1,135.
    [71]E.J. Parry, D. Tabor, Effect of hydrostatic pressure and temperature on mechanical loss properties of polymers.1. polyethylene and polypropylene, Polymer,1973,14,617-623.
    [72]J.A. Sauer, R.A. Wall, N. Fuschillo, A.E. Woodward, Segmental Motion in Polypropylene, Journal of Applied Physics,1958,29,1385.
    [73]J. Schellenberg, G. Fienhold, Environmental stress cracking resistance of blends of high-density polyethylene with other polyethylenes, Polymer Engineering and Science,1998,38(9),1413-1419.
    [74]J.B.P. Soares, R.F. Abbott, J.D. Kim, Environmental stress cracking resistance of polyethylene:The use of CRYSTAF and SEC to establish structure-property relationships, Journal of Polymer Science Part B-Polymer Physics,2000, 38(10),1267-1275.
    [75]J.H. Weiner, D.H. Berman, Thermomechanical Behavior of Interacting Tie Molecules in Semicrystalline Polymers, Macromolecules,1984,17, 2015-2018.
    [76]J.J. Janimak, GC. Stevens, Inter-relationships between tie-molecule concentrations, molecular characteristics and mechanical properties in metallocene catalysed medium density polyethylenes, Journal of Materials Science,2001,36(8),1879-1884.
    [77]C. Wutz, Molecular order and phase transitions in smectic poly(ester imide)s based on trimellitimide, Polymer,2000,41(13),4957-4964.
    [78]C. Wutz, N. Stribeck, D. Gieseler, Investigation of molecular order and phase transitions of smectic poly(ester imide)s by means of small-angle X-ray scattering, Colloid and Polymer Science,2000,278(11),1061-1069.
    [79]P. Bernazzani, G. Delmas, Analysis of physical and chemical networks by slow DSC and turbidimetry, Journal of Thermal Analysis,1997,49(1),449-454.
    [80]M.F. Butler, A.M. Donald, Deformation of spherulitic polyethylene thin films, Journal of Materials Science,1997,32(14),3675-3685.
    [81]F. Cser, J. Hopewell, E. Kosior, Reversible melting of semi-crystalline polymers 2. Annealing near to the melting point, Journal of Thermal Analysis and Calorimetry,1998,53(2),493-508.
    [82]M. Ishikawa, K. Ushui, Y. Kondo, K. Hatada, S. Gima, Effect of tie molecules on the craze strength of polypropylene, Polymer,1996,37(24),5375-5379.
    [83]T. Oda, S. Nomura, H. Kawai, Deformation mechanism of polyethylene spherulite, Journal of Polymer Science Part A:General Papers,1965,3(5), 1993-2008.
    [84]A. Peterlin, Plastic deformation of polymers with fibrous structure, Colloid and Polymer Science,1975,253(10),809-823.
    [85]A. Galeski, Z. Bartczak, A.S. Argon, R.E. Cohen, Morphological alterations during texture-producing plastic plane-strain compression of high-density polyethylene, Macromolecules,1992,25(21),5705-5718.
    [86]Y.F. Men, J. Rieger, G. Strobl, Role of the entangled amorphous network in tensile deformation of semicrystalline polymers, Physical Review Letters, 2003,91(9),5502-5505.
    [87]K. Hong, G Strobl, Network stretching during tensile drawing of polyethylene: A study using X-ray scattering and microscopy, Macromolecules,2006,39(1), 268-273.
    [1]R.O. Ritchie, The conflicts between strength and toughness, Nature Materials, 2011,10(11),817-822.
    [2]M.D. Demetriou, M.E. Launey, G. Garrett, J.P. Schramm, D.C. Hofmann, W.L. Johnson et al., A damage-tolerant glass, Nature Materials,2011,10(2), 123-128.
    [3]J. Liu, Z.J. Thompson, H.-J. Sue, F.S. Bates, M.A. Hillmyer, M. Dettloff et al., Toughening of Epoxies with Block Copolymer Micelles of Wormlike Morphology, Macromolecules,2010,43(17),7238-7243.
    [4]G. Strobl, The Physics of Polymers:Concepts for Understanding Their Structures and Behavior Berlin:Springer-Verlag Berlin Heidelberg,2007.
    [5]F. Song, A.K. Soh, Y.L. Bai, Structural and mechanical properties of the organic matrix layers of nacre, Biomaterials,2003,24(20),3623-3631.
    [6]H.D. Espinosa, J.E. Rim, F. Barthelat, M.J. Buehler, Merger of structure and material in nacre and bone-Perspectives on de novo biomimetic materials, Progress in Materials Science,2009,54(8),1059-1100.
    [7]N. Kroger, The Molecular Basis of Nacre Formation, Science,2009, 325(5946),1351-1352.
    [8]H.D. Espinosa, A.L. Juster, F.J. Latourte, O.Y. Loh, D. Gregoire, P.D. Zavattieri, Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials, Nature Communications,2011,2,173-179.
    [9]G.K. Xu, W. Lu, X.Q. Feng, S.W. Yu, Self-assembly of organic-inorganic nanocomposites with nacre-like hierarchical structures, Soft Matter,2011, 7(10),4828-4832.
    [10]K.S. Liu, L. Jiang, Bio-inspired design of multiscale structures for function integration, Nano Today,2011,6(2),155-175.
    [11]G.M. Luz, J.F. Mano, Biomimetic design of materials and biomaterials inspired by the structure of nacre, Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2009,367(1893), 1587-1605.
    [12]P. Podsiadlo, A.K. Kaushik, E.M. Arruda, A.M. Waas, B.S. Shim, J.D. Xu et al., Ultrastrong and stiff layered polymer nanocomposites, Science,2007, 318(5847),80-83.
    [13]B.S. Shim, P. Podsiadlo, D.G. Lilly, A. Agarwal, J. Leet, Z. Tang et al., Nanostructured thin films made by diewetting method of layer-by-layer assembly, Nano Letters,2007,7(11),3266-3273.
    [14]Z.Y. Tang, N.A. Kotov, S. Magonov, B. Ozturk, Nanostructured artificial nacre, Nature Materials,2003,2(6),413-418.
    [15]J. Cook, J.E. Gordon, C.C. Evans, D.M. Marsh, A mechanism for the control of crack propagation in all-brittle systems, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1964,282(1391), 508-520.
    [16]J.E. Gordon, The New Science of Strong Materials, Harmondsworth:Penguin, 1971.
    [17]M. Sova, M. Raab, M. Slizova, Polypropylene composite materials oriented by solid-state drawing:low-temperature impact behaviour, Journal of Materials Science,1993,28(23),6516-6523.
    [18]A. Galeski, Strength and toughness of crystalline polymer systems, Progress in Polymer Science,2003,28(12),1643-1699.
    [19]K. Friedrich, Analysis of crack propagation in isotactic polypropylene with different morphology, Progress in Colloid and Polymer Science,1978,64, 103-112.
    [20]K. Friedrich, "Crazes and shear bands in semi-crystalline thermoplastics," in Crazing in Polymers, (no.52-53), H. H. Kausch, ed., Berlin:Springer,1983, 225-274.
    [1]O.K. Muratoglu, A.S. Argon, R.E. Cohen, M. Weinberg, Microstructural processes of fracture of rubber-modified polyamides, Polymer,1995,36(25), 4771-4786.
    [2]F.C. Chiu, S.W. Fu, W.T. Chuang, H.S. Sheu, Fabrication and characterization of polyamide 6,6/organo-montmorillonite nanocomposites with and without a maleated polyolefin elastomer as a toughener, Polymer,2008,49(4), 1015-1026.
    [3]A. Dasari, Z.Z. Yu, Y.W. Mai, Effect of blending sequence on microstructure of ternary nanocomposites, Polymer,2005,46(16),5986-5991.
    [4]A. Dasari, Z.Z. Yu, M.S. Yang, Q.X. Zhang, X.L. Xie, Y.W. Mai, Micro-and nano-scale deformation behavior of nylon 66-based binary and ternary nanocomposites, Composites Science and Technology,2006,66(16), 3097-3114.
    [5]J.J. Huang, H. Keskkula, D.R. Paul, Rubber toughening of an amorphous polyamide by functionalized SEBS copolymers:morphology and Izod impact behavior, Polymer,2004,45(12),4203-4215.
    [6]E. Navarro, L. Franco, J.A. Subirana, J. Puiggali, Nylon 65 has a unique structure with two directions of hydrogen bonds, Macromolecules,1995,28, 8742-8750.
    [7]D. Xiao, X. Cui, W. Li, D. Yan, Investigation on the Brill transition of polyamide 618, Frontiers of Chemistry in China,2007,2(1),6-12.
    [8]李强,赵竹第,欧玉春,漆宗能,王佛松,尼龙6/蒙脱土纳米复合材料的结晶行为,高分子学报,1997,(2),188-193.
    [9]乔放,李强,漆宗能,王佛松,聚酰胺/粘土纳米复合材料的制备、结构表征及性能研究,高分子通报,1997,(3),135-143.
    [10]刘立敏,乔放,朱晓光,漆宗能,熔体插层制备尼龙6/蒙脱土纳米复合材料的性能表征,高分子学报,1998,(3),304-310.
    [11]S. Bourbigot, M. Le Bras, F. Dabrowski, J.W. Gilman, T. Kashiwagi, PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations, Fire and Materials,2000,24(4),201-208.
    [12]J.W. Gilman, T. Kashiwagi, J.D. Lichtenhan, Nanocomposites:A revolutionary new flame retardant approach, Sampe Journal,1997,33(4),40-46.
    [13]T.J. Pinnavaia, T. Lan, P.D. Kaviratna, Z. Wang, H.H. Shi, Clay-Reinforced Epoxy Nanocomposites-Synthesis, Properties and Mechanism of Formation, Abstracts of Papers of the American Chemical Society,1995,210,61-PMSE.
    [14]A. Usuki, A. Koiwai, Y. Kojima, M. Kawasumi, A. Okada, T. Kurauchi et al., Interaction of Nylon-6 Clay Surface and Mechanical-Properties of Nylon-6 Clay Hybrid, Journal of Applied Polymer Science,1995,55(1),119-123.
    [15]N.K. Borse, M.R. Kamal, Melt processing effects on the structure and mechanical properties of PA-6/clay nanocomposites, Polymer Engineering and Science,2006,46(8),1094-1103.
    [16]A. Chandra, S.Q. Gong, M.J. Yuan, L.S. Turng, P. Gramann, H. Cordes, Microstructure and crystallography in microcellular injection-molded polyamide-6 nanocomposite and neat resin, Polymer Engineering and Science, 2005,45(1),52-61.
    [17]D.S. Homminga, B. Goderis, V.B.F. Mathot, G. Groeninckx, Crystallization behavior of polymer/montmorillonite nanocomposites. Part III. Polyamide-6/montrnorillonite nanocomposites, influence of matrix molecular weight, and of montmorillonite type and concentration, Polymer,2006,47(5), 1630-1639.
    [18]I. Kelnar, J. Kratochvil, J. Mikesova, Shear flow effect on the crystalline forms in polyamide 6/Montmorillonite nanocomposites, Journal of Applied Polymer Science,2007,106(5),3387-3393.
    [19]M. Kristofic, N. Karabcova, P. Alexy, J. Ryba, I. Vassova, Modification of PA 6 by comonmers and layered silicate, Fibres & Textiles in Eastern Europe, 2005,13(6),33-35.
    [20]L.M. Liu, Z.N. Qi, X.G. Zhu, Studies on nylon 6 clay nanocomposites by melt-intercalation process, Journal of Applied Polymer Science,1999,71(7), 1133-1138.
    [21]L.M. Liu, F. Qia, X.G. Zhu, Z.G. Qi, GQ. Chen, Preparation and properties of Nylon 6 montmorillonite nanocomposites by melt intercalation process, Acta Polymerica Sinica,1998, (3),304-310.
    [22]X.H. Liu, Q.J. Wu, L.A. Berglund, H. Lindberg, J.Q. Fan, Z.N. Qi, Polyamide 6/clay nanocomposites using a cointercalation organophilic clay via melt compounding, Journal of Applied Polymer Science,2003,88(4),953-958.
    [23]L. Meszaros, T. Czvikovszky, Polyamide-6 nanocomposites with electron-beam-treated clay, Radiation Physics and Chemistry,2007,76(8-9), 1329-1332.
    [24]V.A. Mollet, M.R. Kamal, Quantitative characterization of exfoliation in polyamide-6/layered silicate nanocomposites, Journal of Polymer Engineering, 2006,26(8-9),757-782.
    [25]何曼君,陈维孝,董西侠,高分子物理,上海:复旦大学出版社,2000.
    [26]W.R. Krigbaum, I. Uematsu, Heat and entropy of fusion of isotactic polypropylene, Journal of Polymer Science Part A:General Papers,1965, 3(2),767-776.
    [27]P. W.R. Beaumont, P.D. Anstice, A failure analysis of the micromechanisms of fracture of carbon fibre and glass fibre composites in monotonic loading, Journal of Materials Science,1980,15(10),2619-2635.
    [28]J.N. Reddy, A generalization of two-dimensional theories of laminated composite plates, Communications in Applied Numerical Methods,1987,3(3), 173-180.
    [29]N.D. Phan, J.N. Reddy, Analysis of laminated composite plates using a higher-order shear deformation theory, International Journal for Numerical Methods in Engineering,1985,21(12),2201-2219.
    [30]J.K. Wells, P.W.R. Beaumont, Debonding and pull-out processes in fibrous composites, Journal of Materials Science,1985,20(4),1275-1284.
    [31]P.D. Anstice, P.W.R. Beaumont, Direct observations of the failure and toughness of hybrid composites, Journal of Materials Science Letters,1983, 2(10),617-622.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700