PI/(MMT+AlN)纳米复合薄膜结构、耐电晕特性及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物基新型纳米电介质材料因其优异的电气性能、热学性能和机械性能而广泛应用于电气绝缘、变频电机、集成电路、燃料电池和医疗卫生等领域,此类新型材料的设计与研制已成为材料科学研究的热点问题。本文利用成分、结构和电气绝缘性能与云母类似的层状MMT (蒙脱土)和球状AlN (氮化铝)纳米颗粒掺杂聚酰亚胺(PI)基体,制备具有较高耐电晕性能的纳米电介质材料。
     采用原位聚合法制备了不同组分单层、三层PI/AlN和PI/MMT+AlN四种类型聚酰亚胺基纳米复合薄膜。利用扫描电镜、透射电镜、X射线衍射、同步辐射小角X射线散射等方法研究复合薄膜微观结构。研究结果表明,AlN或MMT+AlN颗粒镶嵌在PI基体中,三层薄膜各层厚度均匀,层与层之间排列紧密。四种类型薄膜都存在相界面层,随着组分增加,相界面层厚度增加;三相纳米复合薄膜呈现多尺度的结构特征;PI/AlN单层与三层薄膜具有双分形特征,PI/MMT+AlN单层与三层薄膜存在三重分形特征。
     采用耐电晕测试方法研究不同结构复合薄膜电晕特性,结果表明,与单层PI/MMT+AlN薄膜相比,三层薄膜具有优异的耐电晕性能;组分为15wt%的薄膜耐电晕时间为242小时,是纯聚酰亚胺薄膜的80倍;单层薄膜的击穿场强普遍高于同组分的三层薄膜的击穿场强。
     利用小角X射线散射、X射线衍射、原子力显微镜、扫描电镜等测试手段,以准动态的方式研究不同电晕时间后薄膜微观结构演化;研究结果表明,随着电晕时间的增加,薄膜表面逐渐出现团簇现象,无机纳米颗粒聚集在薄膜表面,团簇数量增多,尺寸变大,形成有效放电阻挡层;同时,电晕老化引起聚合物高分子链结构变化,随着电晕时间的增加,聚合物高分子链间平均距离增加,电晕老化侵蚀改变了高分子链的柔顺性,导致聚合物分子链结构破坏并重新排列;随电晕时间的增加,薄膜界面层厚度增加,其中PI/MMT+AlN三相三层薄膜界面层厚度最大,层状MMT与球状AlN协同作用显著提高复合薄膜耐电晕性能。
     在分析大量实验结果基础上,提出了纳米颗粒、聚合物基体、界面层三者关系模型,阐明界面作用及电晕过程中微观结构演化机制,随电晕时间增加,纳米颗粒对高分子链的锚定作用减弱,内层(束缚层)厚度变小;高分子链之间平均距离变大,外层(过渡层)厚度增加,束缚层与过渡层厚度比例的变化,削弱放电阻挡层的作用,导致材料破坏。颗粒、基体、界面三者关系模型为深入研究纳米电介质耐电晕机理提供了新思路。
Novel polymer matrix nanometer dielectric materials have been widely employedfor various contemporary applications such as insulation material, frequencyconversion motor, integrated circuit, fuel cells, and medical health for theiroutstanding electrical properties, thermal properties and mechanical properties. Designand development a kind of new materials have become a hot issue in the study ofmaterial science. The nanodielectric materials doping layered MMT (Montmorillonite)and spherical AlN (aluminum nitride) which have higher corona resistanceperformance have been prepared. MMT has similar composition, structure andelectrical insulating properties as mica, and spherical AlN (aluminum nitride) has highthermal conductivity characteristics. The mixture of MMT and AlN can generatecertain cooperative effect and improve the comprehensive electrical properties of PImatrix.
     Four types of composite films were prepared by in-situ method. The relationshipbetween material microstructure and macroscopic properties has been researched byusing scanning electron microscopy(SEM), transmission electron microscopy (TEM),small-angle X-ray scattering(SAXS), the corona resistant test. The experimentalresults showed that the four types of films have phase interfacial layer, the thickness ofthe interfacial layer increase with the components increase. The three-phasenano-composite film has multi-scale structural characteristics. The PI/AlN films havedual fractal characteristics, and the PI/MMT+AlN films had trebling fractalcharacteristics.
     The three-layer films have excellent corona resistance performance. The coronaresistance time of PI/MMT+AlN films with15%content is242hours, which is80times than that of the pure polyimide film. The breakdown strength of monolayer filmis generally higher than that of the three-layer films which have the same components.
     Microstructure evolution in the corona-progress has been studied using dynamictesting methods, such as SAXS, SEM AFM and XRD. The results show that theroughness of the surface changes and a large number of nano-particles gather in theprogress of corona with the corona aging increases. Meanwhile, the number of clustersincreases, and the effective blocking layer increases. Besides, the average distancesbetween the chains of the polymer increases, the flexibility of the chain changesbecause of the corona, the structural damagement and rearrangement of the polymermolecular chain occur. Furthermore, the chain transform from winding and spiral typeinto a linear type or transformed from regular coil gradually into ordered structure inthis condition. The thickness of the interfacial layer increase as the corona time increases, and PI/MMT+AlN films have the thicker interfacial layer. With the increaseof the corona aging time, more effective interfacial structures are caused by thecooperative effect of layered MMT and spherical AIN, which improve the coronaresistance performance of the composite films.
     The model based on the nano-particles, the polymer matrix and the interfaciallayer was established, interfacial effect and the evolutive mechanism of themicrostructure in the corona process was clarified, the evolutive rule of the interfacesis promoted. Compared with the increase of corona aging time, the anchoring effectbetween nanoparticles and the polymer chain reduces, the thickness of inner layer(bound layer) becomes thinner, the average distance between the polymer chainbecomes longer, the thickness of the outer layer (soil layer) becomes thicker. The ratioof layer thickness between bound layer and soil layer, leading to the effect ofdischarge blocking layer weaken, and the material damaged. The established modelprovides a new thought of corona resistance mechanism for nanodielectrics.
引文
[1] Fuqiang T.,Qingquan L., Xuan W., Yi W., Effect of deep trapping states on spacecharge suppression in polyethylene/ZnO nanocomposite[J].Apppied PhysicsLetters,2011,99(14):142903.
    [2] Tjong S.C. Structural and mechanical properties of polymer nanocomposites[J].Materials Science and Engineering,2006,53(3-4):73-197.
    [3]储焱.耐电晕纳米杂化聚酰亚胺的合成及表征[D].哈尔滨理工大学,2003.
    [4]丁孟贤,何天白.聚酰亚胺新型材料[M].264-267,1998.
    [5] Wang S.F., Wang Y.R., Cheng K.C and Hsaio Y.P, Characteristics ofpolyimide/barium titanate composite films[J]. Ceram. Inter,2009,35(1):265-68.
    [6] Yoo K.P., Lim L.T., Min N.K., Lee M.J., Lee C.J. and Park C.W. Novelresistive-type humidity sensor based on multiwall carbon nanotube/polyimidecomposite films, Sens Actuat B: Chem., Corected proof,2009,doi:10.1016/j.snb.2009,11,041.
    [7] Wei J.Y., Bultemeier K., Barta D. and Floryan D. Critical Factors for EarlyFailure of Wires in Inverter-Fed Motor. Conference on Electrical Insulation andDieletric Phenomena (CEIDP), Annual Report,1996,258-261.
    [8] T. Tanaka, IEEE Transactions on Dielectrics and Electrical Insulation.2005,12(5):914-928.
    [9] Zhiping S.,Terrence X., et al.Polymer Graphene Nanocomposites asUltrafast-Charge and-Discharge Cathodes for Rechargeable Lithium Batteries[J].Nano Letters,2011,12(5):2205-2211
    [10] Lewis J., Nanometric Dielectrics. IEEE Trans. Dielectr. Electr. Insul.1994,(1)812
    [11] Dang Z.M., Zhou T., Yao S.H., Yuan J.K., Zha J.W., Song H.T., and Bai J.B.,Advanced Calcium Copper Titanate/Polyimide Functional Hybrid Films withHigh Dielectric Permittivity[J], Adv. Mater.2009,21:2077.
    [12] Son M., Ha Y., Choi M.C., Lee T., Han D., Han S., Ha C.S. Microstructure andproperties of polyamideimide/silica hybrids compatibilized with3-aminopropyltriethoxysilane[J], European Polymer Journal,2008,44(7):22-36.
    [13] Thuaua D, Koutsos V, Cheung R,Electrical and mechanical properties of carbonnanotube-polyimide composites[J], Vac. Sci. Technol. B,2009,27:31-39.
    [14] Katz M., Theis R.J. New high temperature polyimide insulation for partialdischarge resistance in harsh environments[J]. IEEE Electrical InsulationMagazine,1997,13(4):24-30.
    [15] Zhiping S., Hui Z., and Yunhong Z. Polyimides: Promising Energy-StorageMaterials[J]. Angew. Chem. Int. Ed.2010,49(45):8444–8448.
    [16] Zhiping S., Terrence X., et al. Polymer Graphene Nanocomposites asUltrafast-Charge and-Discharge Cathodes for Rechargeable LithiumBatteries[J]. Nano Letters,2011,12(5):2205-2211.
    [17]卜文斌. PI/(AlN+MMT)纳米复合薄膜的制备与介电性能[D].哈尔滨:哈尔滨理工大学,2011.
    [18]张沛红.无机纳米-聚酰亚胺复合薄膜介电性及耐电晕老化机理研究[D].哈尔滨:哈尔滨理工大学,2006.
    [19]今井淑夫,横田力男.最新聚酞亚胺一基础和应用[M].日本:NTS出版社
    [20] Bogert M.T.,Renshaw R.R.4-Amino-o-phthalic acid and some of itsderivatives[J]. J.Am.Chem.Soc.1908,30,1140-1142.
    [21] Edwards M.W., Robison I.M. Polyimides of pyromellitic acid. US Pat.,2710853,1955.
    [22] Xia Y, Yang P, Sun Y. One-dimensional nanostructures: Synthesis,eharaeterization,and applications[J]. Adv. Mater.,2003,15:353-389
    [23] Jiang X., Herricks T., Xia Y. CuO Nanowires can be synthesized by heatingcopper substrates in air [J].2002,2(12):1333-1338.
    [24]吴广宁,周凯,高波.变频电机绝缘老化机理及表征[M].科学出版社,2009.
    [25]倪星元,沈军,张志华.纳米材料的理化特性与应用[M].北京:化学工业出版社,2006.
    [26]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [27]张立德,严东生,冯端.材料新型纳米材料科学[M].湖南科学技术出版社,1997.
    [28] Ratzke S., Kindersberger J. The effect of interphase structure nanodielectrics[J].IEEE Nanocomposite Special Issue2006,26(11):1044-1049.
    [29] Techeng M., Hongwen W., Sanyan C. Synthesis and Characterization ofPolyimide/Multi-Walled Carbon Nanotube Nanocomposites[J].PolyemrComposites,200829(4):451-547
    [30] Venkatesulu B., Thomas M. J. Corona aging studies on silicone rubbernanocomposites[J]. IEEE Trans. On Dielectrics and Electrical Insulation,2010,17(2):625-634.
    [31]罗杨,吴广宁,彭佳,张依强,徐慧慧,王鹏,聚合物纳米复合电介质的界面性能研究进展[J],高电压技术,2012,38(9),2455-2464.
    [32] Lewis T. J. Interfaces: Nanometric Dielectrics[J]. Journal of Physics D: AppliedPhysics,2005,38:202-212.
    [33] Lewis T. J. Interfaces are the dominant feature of dielectrics at the nanometriclevel[J]. IEEE Trans. On Dielectrics and Electrical Insulation,2004,11(5):739-753.
    [34] Roy M, Nelson J K, MacCrone R K, et al. Polymer nanocompositedielectrics-the role of the interface[J]. IEEE Trans. on Dielectrics and ElectricalInsulation,2005,12(4):629-643.
    [35] G. J. Papakonstantopoulos, M. Doxastakis, P. F. Nealey, J. L. Barrat and J. J. dePablo. Calculation of local mechanical properties of filled polymers[J]. Phys.Rev. E2007,75:031803(1)-031803(13).
    [36] Ratzke S, Kindersberger J. The effect of interphase structure nanodielectrics[J].IEEE Nanocomposite Special Issue2006,26(11):1044-1049.
    [37] Lewis T. J.Nanometric dielectrics[J].IEEE Trans. on Dielectrics and ElectricalInsulation,1994,1(5):812-825.
    [38] Tanaka T., Kozako M., Fuse N. Proposal of a multi-core model for polymernanocomposite dielectrics[J] IEEE Tran. on Dielectrics and Electrical Insulation,2005,12(4):669-681.
    [39] Shengtao L., Guilai Y., Chen G., Jianying L., Suna B., Lisheng Z., Yunxia Z.,and Qingquan L., Short-term Breakdown and Long-term Failure inNanodielectrics: A Review[J].IEEE Transactions on Dielectrics and ElectricalInsulation,2010,17(5):1523-1535.
    [40] J.K. Nelson,J.C. Fothergill. Internal Charge Behavior of Nanocomposites[J].Nanotechnology,2004,15,586-595.
    [41] P.C. Irwin,Y. Cao,A. bansal,L.S. Schadler,Thermal and Mechanical Propertiesof Polyimide Nanocomposites[C]. Conf. Electr. Insul. Dielectr. Phenomena,2003:120-123.
    [42] T.Takada,Y. Hayase,Y. Tanaka. Space charge trapping in electrical potentialwell caused by permanent and induced dipoles for LDPE/MgOnanocomposite[C], IEEE Trans. on DEI,2008,15(1),152-160.
    [43] Yano K, Usuki A, Okada A. Chem. Synthesis and properties of polyimide-clayhybrid [J]. Polym. Sci. Polym. J,1993,31:2493-2498.
    [44]李鸿岩,郭磊,刘斌.聚酰亚胺/纳米氧化钛复合薄膜的介电性能研究[J].绝缘材料,2005,30(6):30-35.
    [45]王德生,吴俊涛,胡爱军,范琳,杨士勇.蒙脱土/聚酰亚胺复合薄膜的电击穿破坏特性[J].绝缘材料,2005,5:31-34.
    [46]刘俊,范勇等,二氧化硅/聚酰亚胺纳米复合薄膜[J],绝缘材料,2009,4(46).
    [47]衷敬和,张明艳,范勇等,聚酰亚胺/氧化硅-氧化铝杂化薄膜的制备[J],化工新型材料,2010,11(21).
    [48]陈昊,范勇等.纳米氧化铝改性聚酰亚胺薄膜的制备与表征[J],哈尔滨理工大学学报,2009,2(14).
    [49] Dang Z.M., Lin Y.Q., Xu H.P., Shi C.Y., Li S.T., and Bai J.B., Fabrication andDielectric Characterization of Advanced BaTiO3/Polyimide NanocompositeFilms with High Thermal Stability[J], Adv. Funct. Mater.2008,18,1509.
    [50]宋玉侠,刘立柱等.聚酰亚胺/纳米氧化铝三层复合薄膜的制备与表征[D],第十届绝缘材料与绝缘技术学术交流会论文集.
    [51]曹振兴,刘立柱等.纳米氮化铝/聚酰亚胺复合薄膜的制备与性能研究[J],绝缘材料,2011,44(3):10-13.
    [52] Tian F.Q., Bu W.B., Yang C., et al. Study on physical and chemical structurechanges of polyimide caused by corona ageing[C]. IEEE9th InternationalConference on the Properties and Applications of Dielectric Materials, Harbin,China,2009:1076-1079.
    [53] Tian F.Q., Bu W.B., Shi L., et al. Theory of modified thermally stimulatedcurrent and direct determination of trap level distribution[J]. Journal ofElectrostatics,2010,69(1):7-10.
    [54] Qingquan L., Fuqiang T., Chun Y., et al. Modified isothermal discharge currenttheory and its application in the determination of trap level distribution inpolyimide films[J]. Journal of Electrostatics,2010,68(3):243-248.
    [55] Katz M. and Theis R.J. New high temperature polyimide insulation for partialdischarge resistance in harsh environments. IEEE Electrical InsulationMagazine1997,13(4):24~30.
    [56] Wei J.Y., Bultemeier K., Barta D. and Floryan D. Critical Factors for EarlyFailure of Wires in Inverter-Fed Motor. Conference on Electrical Insulation andDieletric Phenomena (CEIDP), Annual Report,1996:258~261.
    [57]尹毅,肖登明,屠德民.空间电荷在评估绝缘聚合物电老化程度中的应用研究[J].中国电机工程学报,2002,22(1):43-48.
    [58] G. N. Wu, J. D. Wu, L. R. Zhou, B. Gao, K. Zhou. Microscopic View of AgingMechanism of Polyimide Film under Pulse Voltage in Presence of PartialDischarge[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2010,17(1):125-131.
    [59] Takada T., Hayase Y., Tanaka Y., et al. Space Charge Trapping in ElectricalPotential Well Caused by Permanent and Induced Dipoles for LDPE/MgONanocomposite[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(1):152-160.
    [60] Zhang Y.H., Fu S.Y., Li R.K., et al. Investigation of polyimide-mica hybrid filmsfor cryogenic applications[J]. Composites science and technology,2005,65(11-12):1743-1748.
    [61] Maity P., Basu S., Parameswaran V., et al. Degradation of polymer dielectricswith nanometric metal-oxide fillers due to surface discharges[J]. IEEETransactions on Dielectrics and Electrical Insulation,2008,15(1):52.
    [62] Fuse N., Ohki Y., Kozako M., et al. Possible mechanisms of superior resistanceof polyamide nanocomposites to partial discharges and plasmas[J]. IEEETransactions on Dielectrics and Electrical Insulation,2008,15(1):161-169.
    [63] Kozako M., Fuse N., Ohki Y., et al. Surface degradation of polyamidenanocomposites caused by partial discharges using IEC (b) electrodes[J]. IEEETransactions on Dielectrics and Electrical Insulation,2004,11(5):833-839.
    [64]田付强,杨春,何丽娟等.聚合物/无机纳米复合电介质介电性能及其机理最新研究进展[J].电工技术学报,2011,26(3):1-12.
    [65] Murugaraj P., Mainwaring D., Mora-Huertas N. Dielectric enhancement inpolymer-nanoparticle composites through interphase polarizability[J]. Journal ofApplied Physics,2005,98:54304.
    [66] Nelson J.K, Y. Hu. Nanocomposite dielectrics-properties and implications[J],Applied Physics.2005,38:213-222.
    [67] T.Tanaka, Effects of Nonofiller Loading on Moleculer Motion and CarrierTransport in Polyamide[J]. IEEE Transactions on Dielectrics and ElectricalInsulation.2009,16(2):524-529.
    [68] S.Sinha, R.M. Okamoto, Polymer/layered silicate nanocomposites: a reviewfrom preparation to processing[J]. Prog. Polym.2003,28,1539-1641.
    [69] T.J.Lewis, Interfaces are the dominant feature of dielectrics at the nanometriclevel[J]. IEEE Trans. Dielectr. Electr. Insul.,2004,11,739-753.
    [70] T.Tanaka, G.C. Montanari, R.Mülhaupt, IEEE Trans. Dielectr. Electr. Insul.,2004,11:763-784.
    [71]朱育平编著,小角X射线散射——理论、测试、计算及应用[D],化学工业出版社,北京,2008年.
    [72] B. Reinhold et al., In Situ and Ex Situ SAXS Investigation of ColloidalSedimentation onto Laterally Patterned Support. Langmuir[J],2009,25(2):814-819.
    [73] N. Stribeck et al., SAXS Study of Oriented Crystallization of Polypropylenefrom a Quiescent Melt[J]. Macromolecules,2007,40(13):4535-4545.
    [74] Jiuhua Chen, Helene Couvy, Haozhe Liu, In situ X-ray study of ammoniaborane at high pressures. International Journal of hydrogen energy[J],2010,35:11064-11070.
    [75] M. Sugiyama, et al., Structural Analysis of Polyelectrolyte Film AbsorbingMetal Ion by SAXS Utilizing with X-ray Anomalous Dispersion Effect[J]. TheJournal of Physical Chemistry B,2007,111(29):8663-8667.
    [76] Shingo Ikeda, Hiroshi Yanagimoto, Kensuke Akamatsu, Hidemi Nawafune.Copper/Polyimide Heterojunctions: Controlling Interfacial Structures Throughan Additive-Based, All-Wet Chemical Process Using Ion-Doped Precursors[J].Advanced Functional Materials,2007,17:889-897.
    [77] D. Scott Thompson, Luke M. Davis, David W. Thompson, Robin E. Southward.Single-Stage Synthesis and Characterization of Reflective and ConductiveSilver-Polyimide Films Prepared from Silver (I) Complexes with ODPA/4,4-ODA[J]. Applied Materials&Interfaces,2009,1(7):1457-1466.
    [78] David Grosso, Florence Babonneau, Pierre-Antoine Albouy. An in Situ Study ofMesostructured CTAB-Silica Film Formation during Dip Coating UsingTime-Resolved SAXS and Interferometry Measurements[J], Chem. Mater,2002,14:931-939.
    [79]汪冰,荆隆,丰伟悦,邢更妹,吴忠华等,核技术,颗粒在分散介质中的尺寸和形态[J].2007年32(7):576-579.
    [80]刘晓旭,殷景华,利用SAXS研究组分对PI/Al2O3纳米杂化薄膜界面特性与分形特征的影响[J],物理学报,2011,60(5):056101
    [81]孟昭富,小角X射线散射理论及应用[D].吉林科学技术出版社,长春,1996年8月.
    [82] Hongyi Zhou and G. L. WilkesComparison of lamellar thickness and itsdistribution determined from d.s.c., SAXS, TEM and AFM for high-densitypolyethylene films having a stacked lamellar morphology[J], Polymer,1997(38):5735-5747.
    [83] B. Goderis, H. Reynaers, R. Scherrenberg and H. J. Koch. TemperatureReversible Transitions in Linear Polyethylene Studied by TMDSC andTime-Resolved, Temperature-Modulated WAXD/SAXS[J], Macromolecules2001(4):1779-1787.
    [84] TY J. Prosa, B. J. Bauer, E. J. Amis. A SAXS Study of the Internal Structure ofDendritic Polymer Systems[J], Part B: Polymer Physics,1997(35):2913–2924.
    [85] Tingzi Yan, Baijin Zhao, Liangbin Li, etc. Critical Strain for Shish-KebabFormation[J], Macromolecules,2010(43):602–605.
    [86] Liu X. X., Yin J. H., Small angle x-ray scattering study on the nanostructure ofpolyimide Films[J], Chinese Physics Letters,2010,27,096103.
    [87]刘晓旭. PI/(TiO2+MMT)纳米复合薄膜的微结构与性能[D].哈尔滨:哈尔滨理工大学,2011.
    [88] Xiaoxu Liu, Jinghua Yin, Minghua Chen, Wenbin Bu, Weidong Cheng,Zhonghua Wu,Effect of content on microstructure and dielectric performance ofPI/Al2O3hybrid Films[J], Nanoscience and Nanotechnology Letters,2011(3):1-4.
    [89]周浩然,赵德明,刘新刚,林飞,范勇,无机纳米氧化铝/聚酰亚胺复合膜的表征[J].光谱学与光谱分析,2008,28(3):707-710.
    [90]何明鹏,刘俊,陈昊,等.纳米氧化铝改性聚酰亚胺薄膜的制备与研究[J].绝缘材料,2010,(1):1-3.
    [91]王维,小角X射线散射研究贵金属纳米颗粒的长大行为[D].2009:中国科学院研究生院博士学位论文.
    [92] Konarev P.V., et al., PRIMUS: a Windows PC-based system for small-anglescattering data analysis[J].Journal of Applied Crystallography,2003,36(5):1277-1282.
    [93]李志宏, SAXS方法及其在胶体和介孔材料研究中的应用[D].2002:中国科学院研究生院博士学位论文.
    [94] Corbett M.C., et al., Conformational Differences between Azotobactervinelandii Nitrogenase MoFe Proteins as Studied by Small-Angle X-rayScattering[J].Biochemistry,2007,46(27):8066-8074.
    [95]刘立柱,宋玉侠,翁凌等.聚酰亚胺/纳米Al2O3三层复合薄膜的制备[J].功能材料,2009,40(2):236~238.
    [96]于晓慧,新型高性能聚酰亚胺超薄薄膜的结构设计、制备及研究[D].2011:吉林大学博士学位论文.
    [96] Tanaka T., Montanari G.C., Mulhaupt R. Polymer nanocomposites as dielectricsand electrical insulation-perspectives for processing technologies, materialcharacterization and future applications[J]. IEEE Transactions on Dielectricsand Electrical Insulation,2004,11(5):763-784.
    [97] Tian F., Bu W., Yang C., et al. Study on physical and chemical structurechanges of polyimide caused by corona ageing[C]. IEEE9th InternationalConference on the Properties and Applications of Dielectric Materials, Harbin,China,2009:1076-1079.
    [98] Minghua Chen, Jinghua Yin, Xiaoxu Liu, Bo Su, Qingquan Lei. MicrostructureChanges of Polyimide/MMT-AlN Composite Hybrid Films under CoronaAging[J]. Applied Surface Science,2012(263):302-306.
    [99] R.Tannenbaum, M. Zubris, K. David, D. Ciprari, K. Jacob, I. Jasiuk, N. Dan,FTIR Characterization of the Reactive Interface of Cobalt Oxide NanoparticlesEmbedded in Polymeric Matrices[J], J Phys Chem B,2006,110(5):2227-2232.
    [100] King S.; Hyunh K.; Tannenbaum R. Kinetics of Nucleation, Growth, andStabilization of Cobalt Oxide Nanoclusters[J], J. Phys. Chem. B2003,107,12097-12104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700