棉籽抗氧化多肽和ACE抑制多肽的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉籽蛋白氨基酸组成齐全,比例合理,营养价值接近豆类蛋白质,是一种十分重要的植物蛋白质资源。但目前对棉籽蛋白的食用功能及棉籽蛋白活性肽的生物活性方面的深入研究尚未见到较详细的报导。本课题以脱酚无毒棉籽饼粕为原料,提取棉籽蛋白,加入生物酶进行酶解,对水解物的抗氧化能力和血管紧张素转换酶(ACE)抑制活性进行分析,利用超滤、凝胶色谱、反相高效液相色谱、等方法进行产物分离纯化,并用质谱对得到的活性肽进行了结构鉴定。本论文系统研究了酶解工艺的各主要参数、产物的抗氧化活性和ACE抑制活性、抗氧化肽和ACE抑制肽的分离纯化和结构表征,为开发功能性产品提供理论依据和技术支撑。主要结果如下:
     1.利用碱法提取棉籽蛋白,正交法优化提取条件。采用SDS-PAGE测定棉籽蛋白的亚基成分,结果显示减法提取的蛋白组成较简单。氨基酸分析结果显示棉籽蛋白氨基酸组成独特,平衡良好。同时棉籽蛋白具有较好的保水性和吸油性,以及良好的乳化性和乳化稳定性,适合应用于食品中。
     2.以棉籽蛋白为底物,分别用商品酶Alcalase碱性蛋白酶、Flavourzyme风味蛋白酶、Neutrase中性蛋白酶、胰蛋白酶、木瓜蛋白酶和胃蛋白酶对其进行水解,测定了各酶解物的水解度和抗氧化能力。结果表明Neutrase中性蛋白酶水解物的抗氧化能力最强。在Neutrase中性蛋白酶水解棉籽蛋白单因素试验的基础上,采用响应面设计进行了试验优化,得到最优的酶解条件为:温度39.5℃、水解pH为7.5、水解时间5.5h,在此水解条件下,水解度可达到38.09%。
     3.利用Sephadex G-25凝胶色谱将棉籽蛋白Neutrase中性蛋白酶水解物(CPH)分成四个组分Fra.Ⅰ~Ⅳ,通过抗氧化活性分析,发现Fra.Ⅲ具有最强的抗氧化活性。采用半制备RP-HPLC将Fra.Ⅲ分成8个组分,以DPPH清除率为指标筛选出具有较强抗氧化活性的组分Fra.Ⅲ-5,经RP-HPLC鉴定为单一峰;采用MALDI-TOF-TOF二级质谱,鉴定抗氧化活性肽Fra.Ⅲ-5的相对分子量为857.4Da,最后经分析软件得出该肽的氨基酸组成及序列为HDDAPRF (His-Asp-Asp-Ala-Pro-Arg-Phe)。
     4.对棉籽蛋白的六种蛋白酶水解产物的ACE抑制能力进行了比较,结果表明木瓜蛋白酶水解产物的ACE抑制能力最高(85.61%)。在单因素试验的基础上,经响应面分析优化,得到最佳酶解条件为:水解温度为43.5℃,E/S为1.04%,pH值为7.5,该条件下制备的棉籽蛋白酶解物的水解度达到25.69%,ACE抑制率达到88.15%。利用超滤技术将木瓜蛋白酶水解物分离为四个组分,分别为:UF-Ⅰ(>30kDa), UF-Ⅱ(30~10kDa), UF-Ⅲ(10~5kDa), UF-Ⅳ(<5kDa),其中UF-Ⅳ(<5kDa)的ACE抑制能力最高(IC50=0.792±0.079mg/mL);利用Sephadex G-25凝胶色谱将超滤组分中的UF-Ⅳ分成四个组分Fra.Ⅰ-Ⅳ,发现Fra.Ⅱ具有最高的ACE抑制能力(0.159±0.007mg/mL)。利用半制备RP-HPLC将Fra.Ⅱ分成9个组分,发现组分2有最强的ACE抑制能力。经RP-HPLC再次鉴定组分2为单一组分。经过MALDI-TOF-TOF二级质谱分析鉴定ACE抑制肽Fra.Ⅱ-2的相对分子量为763.4Da,氨基酸序列为FPAIGMK (Phe-Pro-Ala-Ile-Gly-Met-Lys)。
     5.在传统方法的基础上,结合纸层析的方法改进食物源ACE抑制肽体外活性的检测方法,建立了一种在可见光区显色的马尿酸显色方法。首先确定了显色反应的最大吸收波长为459nm。并在459nm处,对反应条件进行优化,最后确定最佳的显色温度为40℃,最佳显色时间为30min,最佳的显色剂比例是0.5%。用卡托普利和棉籽ACE抑制肽作为样品进行检测验证,表明该方法能得到可信的结果,比传统方法具有更好的重复性、精确性,适合于ACE抑制肽的体外活性测定。
Cotton is not only the most important fiber crop in the world but also one of the best potential sources for plant proteins after soybean. Cottonseed protein is generally regarded as potential sources of nutrients for human and animals due to their good balance in essential amino acids composition, and low level of antinutritional factors. It has also been a subject for numerous investigations. To our knowledge, however, few investigations have been done on the antioxidant and ACE inhibitory activities of cottonseed protein hydrolysate (CPH). Therefore, the antioxidant and ACE inhibitory activities of cottonseed protein hydrolysates were investigated in this study. The antioxidant peptide and ACE inhibitory peptide were separated and analyzed by using ultrafiltration, gel filtration chromatography, RP-HPLC and MALDI-TOF-TOF. The main results are as follows.
     1. The cottonseed protein isolates was prepared according to the alkaline method, and the extraction conditions were optimized by orthogonal test. The molecular weight, physical properties of cottonseed protein was investigated. Cottonseed protein has better function, including water absorption, oil absorption, emulsifying properties and emulsion stability. So cottonseed protein can be applied to the food industry.
     2. Six proteolytic enzymes, including Alcalase, Flavourzyme, Trypsin, Neutrase, Papain and Pepsin, were employed to hydrolyze cottonseed protein to produce the hydrolysates with antioxidant activity and ACE inhibitory activity. The result indicated that the cottonseed protein hydrolysate (CPH) produced by Neutrase presented stronger scavenging activity against free radicals. To achieve the maximum hydrolysis degree in the enzymolysis of cottonseed, response surface methodology was applied to determine the optimum conditions based on the single factor test. The optimum conditions were:enzymolysis temperature,39.5℃; time,5.5h; pH,7.5. Under these conditions, the hydrolysis degree reached 38.09%.
     3. Cottonseed protein hydrolysate (CPH) was prepared by Neutrase and was fractionated into four fractions (Fra.Ⅰ, Fra.Ⅱ, Fra.Ⅲ, and Fra.Ⅳ) by gel filtration on Sephadex G-25, the antioxidant potential of the CPH fractions and the CPH were investigated by using the classical methods, including the inhibiting effect on the autoxidation of linoleic acid, the scavenging ability to DPPH, hydroxyl radical, and superoxide radical. The results revealed that fractionⅢhas the highest antioxidant and free radicals scavenging activities. The peptide purified by using consecutive chromatographic methods had a molecular mass of 857.4 Da and amino acid sequence was identified as HDDAPRF (His-Asp-Asp-Ala-Pro-Arg-Phe) by MALDI-TOF-TOF analysis.
     4. Six proteolytic enzymes, including Alcalase, Flavourzyme, Trypsin, Neutrase, Papain and Pepsin, were employed to hydrolyze cottonseed protein to produce the hydrolysates of ACE inhibitory activity. Papain was the best one among six enzymes according to the ACE inhibitory activity. On the basis of single factor test, the optimum conditions for Papain reaction were determined by response surface methodology. Temperature 38.9℃, E/S ratio 1.04%, and pH 7.5 were found to be the optimal conditions to obtain high ACE inhibitory activity close to 88.15% and DH of the cottonseed protein was 25.69%. The result indicated that the cottonseed protein hydrolysate (CPH) produced by Papain had the highest ACE inhibitory activity (85.61%), and the CPH was separated into four ranges of molecular weight (UF-Ⅰ,> 30 kDa; UF-Ⅱ,30-10 kDa; UF-Ⅲ,10-5 kDa; UF-Ⅳ,< 5 kDa) by using an ultrafiltration (UF) membrane bioreactor system. Among them, UF-Ⅳshowed the highest ACE inhibitory activity (IC50=0.792 mg/mL). UF-Ⅳwas further fractionated with Sephadex G-25 gel filtration chromatography into four fractions (Fra.Ⅰ, Fra.Ⅱ, Fra.Ⅲand Fra.Ⅳ) that were composed of peptides of >2.43 kDa,2.43~0.82 kDa, 0.82 -0.35 kDa, and <0.35 kDa, respectively. Fra.Ⅱexhibited the strongest ACE inhibitory ability (IC50=0.159 mg/mL) with the yield of 41.63%. FPAIGMK (Phe-Pro-Ala-Ile-Gly-Met-Lys) had a molecular mass of 763.4 Da was separated by two step RP-HPLC from Fra.Ⅱ, and was identified by MALDI-TOF-TOF spectrometry.
     5. A modified spectrophotometric assay was developed for determination of angiotensinⅠ-converting enzyme (ACE) inhibitory activity of peptides derived from plant protein. This method relies on classical paper chromatography determination of hippuric acid (HA) content in the urine, which was based on the specific colorimetric reaction of HA with 4-(dimethylamino) benzaldehyde in the presence of pyridine and acetic anhydride. In this study, the maximum absorbance of HA was measured at 459 nm according to the modified method. The absorbance is reduced when the angiotensinⅠ-converting enzyme inhibitor is added, and the change of color in the reaction solution was measured by spectrophotometer for analyzing the ACE inhibitory activity. The method was more sensitive, more accurate and reproducible than the classical method, and it could be used for the screening of ACE inhibitory peptides derived from food proteins.
引文
[1]姜晓光,宋博,迟春萍.生物活性肽的生理功能及研究进展[J].微生物学,2006,26(5)82-85
    [2]王莉娟,陶文沂.脱脂豆粕制备高水解度大豆肽酶解条件的优化[J].食品与机械,2008,24(1):164-168
    [3]王文杰,王璋.酶膜反应器中水解大豆分离蛋白的研究[J].食品与机械,2008,24(1):16-19
    [4]Meisel H. Multifunctional peptides encrypted in milk proteins [J]. Biofactors,2004,21:55~61
    [5]岑怡红,方俊,李宗军.外源性生物活性肽的研究进展[J].中国畜牧兽医,2006,33(12):22-24.
    [6]励建荣,封平.功能肽的研究进展[J].食品科学,2004,25(11):415~419
    [7]Ehud Z, Moise B. Intestinal Absorption of peptides through the enterocytes [J]. Microsc Res Techniq.2000,49:346~419
    [8]Fei M. Expression cloning of a mammaliam proton-coupled oligopeptide transporter [J]. Nature.1994,380:563~569
    [9]Marks D L, Gores G J, Larusso N F. Hepatic processing of peptides in:peptide-based drug design [M]. ACS Professional Reference Book. Washington, DC,1995,221~239
    [10]Lee HJ. Biopharmaceutical properties and pharmacokinetics of peptide and protein drugs in: Peptide-based drugs design [M]. ACS Professional Reference Book. Washington, DC,1995, 69~79
    [11]Chen H, Pan Y X. Molecular cloning and functional expression of a chicken intestinal PepTl lide transporter (cPepT1) in Xenopusoo cytes and Chinese hamster ovary cells [J]. Nutri.2002, 132,387~389
    [12]David T T, David J K, Demetrio R, et al. Simmons H+/dipeptide absorption across the human intestinal epithelium is controlled indirectly via a functional Na+/H+ exchanger [J]. Gastroenterology.2002,122(5):1322~1389
    [13]Ramaswamy K, Harig J M, Kleinam J G, et al. Sodium-proton exchange in human ileal brushborder membrane vesicles [J]. Biochim Biophys Acta,1989,981:193~195
    [14]杨星剑,王金洛,徐福洲等.抗菌肽的研究进展—基本特性及其活性影响因素[J].今日养猪业,2005,(3):38~43
    [15]Jolles P, Parker F, Migliore D, et al. Immunostimulating substances from human casein [J]. J Imumnopharm.1981,3:363~369
    [16]李勇.生物活性肽研究现况和进展[J].食品与发酵工业,2007,33(1):3-5
    [17]王梅,沈辉.食物蛋白酶解物中的生物活性肽[J].氨基酸和生物资源,1997,19(1):40-43
    [18]陈栋梁,刘莉,于兰等.白蛋白多肽对核苷酸吸收及增强小鼠细胞免疫功能的作用[J].食品科学,2004,25(1):163-166
    [19]Halliwell B, Gutteridge J M C. Free radicals in biology and medicine (3rd ed.) [M]. Oxford, UK:Oxford University Press.1999,57~166
    [20]Andres M, Herminia D, Juan C P. Antioxidant properties of ultrafiltration recovered soy protein fractions from industrial effluents and their hydrolysates [J]. Process Biochem,2006,41: 447~456
    [21]Kong B H, Xiong Y L. Antioxidant activity of zein hydrolysates in a liposome system and the possible mode of action [J]. J Agric Food Chem.2006,54:6059~6068
    [22]Senji S, Yumi T. Active oxygen scavenging activity of egg-yolk protein hydrolysates and their effects on lipid oxidation in beef and tuna homogenates [J]. Food Chem.2006,95:243~249
    [23]Chang C Y, Wu KC., Chiang S H. Antioxidant properties and protein compositions of porcine haemoglobin hydrolysates [J]. Food Chem.2007,100:1537~1543
    [24]Cumby N, Zhong Y, Naczk M, et al. Antioxidant activity and water holding capacity of canola protein hydrolysates [J]. Food Chem.2008,109:144~148
    [25]Chen H M, Muramoto K, Yamauchi F, et al. Antioxidative properties of histidine containing peptides designed from peptide fragments found in the digests of a soybean protein [J]. J Agric Food Chem,1998,46:49~53
    [26]Suetsuna K, Ukeda H, Ochi H. Isolation and characterization of free radical scavenging activities peptides derived from casein [J]. J Nutr Biochem,2000,11:128~131
    [27]Peng X, Xiong L, Kong B. Antioxidant activity of peptide fractions from whey protein hydrolysates as measured by electron spin resonance [J]. Food Chem.2009,113:196~201
    [28]章绍兵,石云,王璋等.离子交换色谱和凝胶过滤分离纯化菜籽抗氧化肽[J].中国粮油学报,2008,23(5):154-158
    [29]陈升军,熊华,周侃等.米蛋白短肽抗氧化活性研究[J].食品科技,2008,33(12):177-180
    [30]张强,周正义,马玉涵等.米糠肽抗氧化活性的研究[J].中国粮油学报,2008,23(5):9-12
    [31]范金波,任发政,孙雁等.丝胶蛋白抗氧化肽的酶法制备及功能评价[J].农业工程学报,2008,24(11):279-283
    [32]石丽梅,唐学燕,何志勇等.玉米抗氧化肽对于中式香肠的氧化稳定性的影响[J].食品科技,2008,10:135-138
    [33]Erdos E G. Angiotensin I converting enzyme [J]. Cir Res,1975,36:247~254
    [34]Ehler M R W, Riordan J F. Angiotensin converting enzyme:New concepts concerning its biological role [J]. Biochem,1989,28:5311~5318
    [35]Erdmann K, Cheung B W Y, Schroder H. The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease [J]. J Nutr Biochem,2008,47:192~198
    [36]Matsui T, Matsufuji H, Seki E, et al. Inhibition of angiotensin I-converting enzyme by Bacillus licheniformis alkaline protease hydrolysates derived from sardine muscle[J]. Biosci
    Biotech Biochem,1993,57:922~925
    [37]Saito Y, Wanezaki K, Kawato A, et al. Structure and activity of angiotensin I converting enzyme inhibitory peptides from sake and sake lees [J]. Biosci Biotech Biochem.1994,58: 1767~1771
    [38]Sarro Y, Wanezaki K, Kawato A, et al. Antihypertensive effects of peptides in sake and its by-products on spontaneously hypertensive rats [J]. Biosci Biotech Biochem,1994,58:812~816
    [39]Sato M, Hoskawa T, Yamaguchi T, et al. Angiotensin Ⅰ-converting enzyme inhibitory peptides derived from wakame (Undaria pinnati-fida) and their antihypertensive effect in spontaneously hypertensive rats [J]. J Agric Food Chem.2002,50:6245~6252
    [40]Okamoto, A., Matsumoto, E., Iwashita, A., Yasuhara, T., Kawamura, Y., Koizumi, Y, Yangida, F. Angiotensin I-converting enzyme inhibitory action of fish sauce [J]. Food Sci Technol Int.1995, 1:101-106
    [41]Nakagomi K, Ebisu H, Sadakane Y, et al. Properties and human origin of two angiotensin I-converting enzyme inhibitory peptides isolated from a tryptic hydrolysate of human serum albumin [J]. Biol Pharm Bull,2000,23:879~883
    [42]Yokoyama H, Chiba H, Yoshikawa M. Peptide inhibitors for angiotensin I-converting enzyme from thermolysin digest of dried bonito [J]. Biosci Biotech Biochem,1992,56:1541~1545
    [43]Matsui T, Li C H, Osajima Y. Preparation and characterization of novel bioactive peptides responsible for angiotensin I-converting enzyme inhibition from wheat germ [J]. J Pept Sci,1999, 5:289~297
    [44]Suetsuna K. Purification and identification of angiotensin I-converting enzyme inhibitors from the red alga Porphyra yezoensis [J]. J Marine Biotechnol,1998,7:163~167
    [45]Suetsuna K, Chen J R. Identification of antihypertensive peptides from peptic digest of two microalgae, Chlorella vulgaris and Spirulina platensis [J]. Marine Biotechnol (NY),2001,3: 305~309
    [46]Fujita H, Yokoyama K, Yoshikawa M. Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins [J]. J Food Sci, 2000,65:564~569
    [47]Matsui T, Li C H, Tanaka T, et al. Depressor effect of wheat germ hydrolysate and its novel angiotensin I-converting enzyme inhibitory peptide, Ile-Val-Tyr, and the metabolism in rat and human plasma [J]. Biol Pharm Bull,2000,23:427~431
    [48]Matsumura N, Fujii M, Takeda Y, et al. Angiotensin I-converting enzyme inhibitory peptides derived from bonito bowels autolysate [J]. Biosci Biotech Biochem,1993,57:695~697
    [49]Miyoshi S, Ishikawa H, Kaneko T, et al. Structures and activity of angiotensin-converting enzyme inhibitors in a-zein hydrolysate [J]. Agric Biol Chem,1991,55:1313~1318
    [50]Nakagomi K, Yamada R, Ebisu H, et al. Isolation of acein-2, a novel angiotensin I-converting enzyme inhibitory peptide derived from a tryptic hydrolysate of human plasma [J]. FEBS Lett, 2000,467:235~258
    [51]Byun H G, Kim S K. Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin [J]. Process Biochem,2001,36:1155~1162
    [52]Kim S K, Byun H G, Park P J, et al. Angiotensin I converting enzyme inhibitory peptide purified from bovine skin gelatin hydrolysate [J]. J Agric Food Chem,2001,49:2992~2997
    [53]Matsui T, Matsufuji H, Seki E, et al. Angiotensin I-converting enzyme inhibitory peptides in an alkaline protease hydrolyzate derived from sardine muscle [J]. Biosci Biotech Biochem,1994, 58:2244~2245
    [54]Kohmura M, Nio N, Kubo K, et al. Inhibition of angiotensin-converting enzyme by synthetic peptides of human a-casein [J]. Agric Biol Chem,1989,53:2107~2114
    [55]Suetsuna K, Nakano T. Identification of an antihypertensive peptide from peptic digest of wakame (Undaria pinnatifida) [J]. J Nutr Biochem,2000,11:450~454
    [56]Kim Y K, Yoon S, Yu DY, et al. Novel angiotensin I-converting enzyme inhibitory peptides derived from recombinant human alpha sl-casein expressed in Escherichia coli [J]. J Dairy Res, 1999,66:431~439
    [57]Curis J M, Dennes D, Waddell D S, et al. Determination of angiotensin converting enzyme inhibitory peptide Leu-Lys-Pro-Asn-Met (LKPNM) in bonito muscle hydrolysates by LC-MS/MS [J]. J Agric Food Chem,2002,50:3919~3925
    [58]Pihlanto-Leppa A, Koskinen P, Piilola K, et al. Angiotensin-I converting enzyme inhibitory properties of whey protein digests:concentration and characterization of active peptides [J]. J Dairy Res,2000,67:53~64
    [59]Mito K, Fujii M, Kuwahara M, et al. Antihypertensive effect of angiotensin I-converting enzyme inhibitory peptides derived from hemoglobin [J]. Eur J Pharmacol,1996,304:93~98
    [60]Wako Y, Ishikawa S, Muramoto K. Angiotensin I-converting enzyme inhibitors in autolysates of liver and mantle muscle [J]. Biosci Biotech Biochem,1996,60:1353~1355
    [61]Nakagomi K, Fujimura A, Ebisu H, et al. Acein-1, a novel angiotensin Ⅰ-converting enzyme inhibitory peptide isolated from tryptic hydrolysate of human plasma[J]. FEBS Lett,1998,438: 255~257
    [62]Yamamoto N, Akino A, Takano T. Antihypertensive effect of the peptides derived from casein by an extracellular proteinase from Lactobacillus helveticus CP790 [J]. J Dairy Sci,1994,77: 917~922
    [63]Gobbetti M, Ferranti P, Smacchi E, et al. Production of angiotensin I-converting enzyme inhibitory peptides in fermented milks started by Lactobacillus delbrueckii subsp. bulgaricus SSI and Lactococcus lactis subsp. cremoris FT4 [J]. Appl Environ Microbiol,2000,66:3898~3904
    [64]Yasuyuki T, Yoshikawa M. Introduction of enterostatin (VPDPR) and a related sequence into soybean proglycinin A1aB1b subunit by site directed mutagenesis [J]. Biosci Biotech Biochem, 2000,64(12):2731~2733
    [65]郑玉萍,佘华宁,冯朝晖等.神经短肽NAP在缺氧环境中对体外小鼠Muller细胞的保护作用[J].国际眼科杂志,2008,8(12):2404-2406
    [66]陈承祯,李小兵,谢光洪等.神经肽Y对犊牛肝细胞PEPCK mRNA丰度及其活性的影响[J]..中国兽医学报,2008,28(10):1213~1215
    [67]吴红军,吴国娟,沈红等.栝楼根提取物抗肿瘤作用初探[J].动物医学进展,2006,27(6):99-102
    [68]苏秀玲,周运鹏.茜草的药理作用及研究与应用[J].中医药研究,1991,3:54~56
    [69]邹澄,郝小江,周俊.小红参的抗癌环己肽配糖体[J].云南植物研究,1993,04:59-62
    [70]王顺新,庞书亮,牟德华等.酶工程技术在开发活性多肽方面的研究进展[J].食品工程,2007,2:13-16
    [71]Ana Q, Mercedes R, Begona M, et al. Identification of novel antihypertensive peptides in milk fermented with Enterococcus faecalis [J]. International dairy journal,2007,1(17):33~41
    [72]Je J Y, Park J Y, Jung W K, et al. Isolation of angiotensin Ⅱ converting enzyme(ACE) inhibitor from fermented oyster sauce,Crassostrea gigas [J]. Food Chem,2005,90 (4):809~814
    [73]Ewa D M, Hachiro C, Fujita H, et al. New antihypertensive peptides isolated from rapeseed [J]. Peptides,2003,24(6):791~798
    [74]Akiko O, Hiroshi H. Angiotensin I converting enzyme inhibitory activities of various fermented food [J]. Biosci Biotech.Biochem,1995,29(6):11471~1149
    [75]潘道东.抗ACE活性之瑞士乳杆菌的筛选[J].食品科学,2007,2(28):145~148
    [76]Cramer S M, Horvcith C. Biotechnology and Bioengineering [J].1989,33:344~353
    [77]Nilson, K., Mosbach, K. Biotechnology and Bioengineering [J].1984,34:1146~1154
    [78]叶巍,吕桂善,付小燕.乳源抗高血压活性肽CEI12在大肠杆菌中的表达[J].中国生物制品学杂志,2006,4(19):368-370
    [79]梁世中.生物工程设备[M].北京:中国轻工业出版社,2002,227-230
    [80]Wang X. C, Liang S P. Chromatographic behavior and purification of synthetic Huwentoxin-Ⅰ [J]. Chinese J Chromatogr,2001,19 (2):101~109
    [81]Kostel P. Purification of a crude synthetic peptide by strong cation exchange:breaking up hydrophobic complexes prior to reversed-phase [J]. Pept Proc Am Pept Symp 15th,1999, 815~819
    [82]Huang H, Wan L P, Wu L, et al. Study on the separation and purification techniques of solid-phase synthetic Thymosin al by the liquid chromatogram [J]. Chem Indus Engin,2001, 18(6):331~339
    [83]Wang M, Dai J, Gu W Y. Determination of molecular weight distribution of oligopeptide in corn protein hydrolyzate by gel filtration chromatography[J]. Shipin Yu Fajiao Gongye,1998, 24(5):25~29
    [84]Ljevakovic D, Tomasic J, Sporec V, et al. Synthesis of novel adamantylacetyl derivative of peptidoglycan monomer-biological evaluation of immunomodulatory peptidoglycan monomer and respective derivatives with lipophilic substituents on amino group [J]. Bioorg Med Chem,2000, 8(10):2441~2449
    [85]Heller M, Loomes K M, Cooper G J. Synthesis of biologically active tritiated amylin and salmon calcitonin analogues [J]. Anal Biochem,2000,285(1):100~106
    [86]Dan N, Ganesan R, Flood K G, et al. Determination of enantiomers in a synthetic argininal peptide using capillary zone electrophoresis and high performance liquid chromatography [J]. J Chromatogr A,2000,891(1):115~119
    [87]Sanz-Nebot, V, Benavente F, Toro I, et al. Optimization of HPLC conditions for the separation of complex crude mixtures produced in the synthesis of therapeutic peptide hormones [J]. Chromatographia,2001,53:167~169
    [88]Purcell A W, Zhao G L, Aguilar M I, et al. Comparison between the isocratic and gradient retention behaviour of polypeptides in reversed phase liquid chromatographic environments [J]. J Chromatogr A,1999,852 (1):43~47
    [89]Li S Z, Yan H S, He B L. Separation and preparation of Melittin's analogues by High Performance Preparative Liquid Chromatography [J]. Chinese J Anal Chem,2002,30(12): 1459~1463
    [90]方晓红,朱涛.应用毛细管区带电泳分离分析蛋白质及多肽[J].色谱,1993,11(4):210-213
    [91]赵锐,顾谦群,管华诗.多肽物质分离与分析方法研究进展[J].中国海洋药物,2000,3:48-53
    [92]Clausen V, Frydenvang K, Koopmann R, et al. Plantanalysis by butterflies:occurrence of cyclopentenylglycines in passifloraceae, flaeourtiaceae, and TU rneraceae and diseovery of the novel nonproteinogenic amino acid 2-(3'-cyclo Pentenyl) glycine in Rinorea [J]. J Nat Prod,2002, 65:542~547
    [93]Sheih C, Fang T, Wu T K. Isolation and characterisation of a novel angiotensin I converting enzyme (ACE) inhibitory peptide from the algae protein waste [J].Food Chem,2009,115: 279~284
    [94]Rajapakse N, Mendis E, Jung W K, J et al. Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties[J]. Food Research International,2005, 38:175~182
    [95]Chen HM, Muramoto K, Yamauchi F. et al. Antioxidant activity of designed pepties based on the antioxidative peptide isolated from digests of a soybean peptide. J Agric Food Chem,1996,44: 2619~2623
    [96]Yang H Y, Yang S C, Chen J R, et al. Soyabean protein hydrolysate prevents the de velopment of hypertension in spontaneous1ly hypertensive rats [J]. Br J Nutr,2004,92(3):507~512
    [97]Wu J P,Ding X. Hypotensive and physiological effect of angiotensin converting enzyme inhibitory peptides derived from soy protein on spon taneously hypertensive rats [J]. J Agric Food Chem.2001,49(1):501~506
    [98]Yasuyuki T,Yoshikawa M.Introduction of enterostatin(VPDPR) and a related sequence into soybean proglycinin A1aB1b subunitby site directed mutagenesis [J]. Biosci Biotech Biochem, 2000,64 (12):2731~2733
    [99]Tsuruki T, Yoshikawa'M. Design of soymetide-4 derivatives to potentiate the anti-alopecia effect [J]. Biosci Biotech Biochem,2004,68 (5):1139~1141
    [100]王梅.酶解玉米黄粉蛋白制备可溶性肽[J].粮油食品科技,1999,7(1):1-3
    [101]李鸿梅.玉米功能肽的制备及其生理活性的研究[D].吉林大学硕士论文,2008
    [102]陈红漫,姜大威,阚国仕.醇溶性玉米功能肽对小鼠辐射的防护作用研究[J].食品研究与开发,2008,6:8-10
    [103]代卉,施用晖,韩芳等.小麦肽免疫活性及抗氧化作用的研究[J].天然产物研究与开发,2009,21:473-476
    [104]Motoi 29 JP06 245,790 (CA:122,8213e)
    [105]Toyama et al. JP06 16,568 (CA:120,238731K)
    [106]吴建平.一种开发米糠蛋白的新方法[J].粮食与饲料工业,1997,10:33-34
    [107]赵丰丽,麻维华.米糟蛋白酶解制备高F值寡肽的研究[J].中国酿造,2009,3:96~98
    [108]王慧溪,汪芳安,雷恒等.从米渣蛋白中制备血管紧张素转化酶抑制肽的研究[J].粮油加工,2008,10:95-97
    [109]Takahashi M, Yoshikawa M. Isolation and characterization of oryzatensin:a novel bioactive peptide with ileum—contracting and immunomodulating activites derived from rice albumin [J]. Biochem and Molecular Biol International,1994,33 (6):1151~1158
    [110]曹志辉.棉花副产品加工与综合利用技术资料汇编[M].1985,214~217
    [111]赵贵兴.棉籽蛋白的营养特性和生产应用研究[J].黑龙江农业科学,2002,4:41~43
    [112]杜长安,陈复生.植物蛋白工艺学[M].北京:中国商业出版社,1995
    [113]周瑞宝译.大豆蛋白食品与工艺[M].郑州:郑州粮食学院,1982
    [114]黄德祖,华聘聘.棉籽蛋白的开发利用[J].粮油食品,2001,70(2):54~56
    [115]江爱芝,王燕.米糠蛋白提取方法的研究进展[J].农产品加工,2009,10:35~36
    [116]刘剑利,曹向宇,李其久.小米蛋白提取方法比较研究[J].食品工业,2009,3:30-31
    [117]吴谋成.食品分析与感官评定[M].北京:中国农业出版社,2002,67-73
    [118]黄伟坤等.食品检验与分析[M].北京:轻工业出版社,1989,17-18
    [119]吴广臣.食品分析[M].北京:中国计量出版社;2006,62~65
    [120]吴标,麻成金,黄群等.脱脂猕猴桃籽粕蛋白质提取工艺条件研究[J].四川食品与发酵,2007,5:35-38
    [121]陆扬.浊度/分光光度法和毛细管等电点聚焦法测定明胶等电点及其分布的比较研究[J].明胶科学与技术,2006,26(1):44-46
    [122]木泰华.甘薯可溶性蛋白的分离提取及特性研究[J].食品研究与开发,2005,26(5):16-20
    [123]陶健.碱萃取酸等电沉淀制备荞麦蛋白[J].中国食品学报,2006,6(3):49~54
    [124]Rao A, Shallo H E, Ericson A P, et al. Characterization of soy Protein concentrate Produced by membrane ultrafiltration[J]. Food chem,2002,67 (4):1412~1418
    [125]徐志宏,魏振承,张雁等.几种蛋白质功能性质的比较研究[J].食品科学,2006,(12):249-251
    [126]Moskovitz J, Yim K A, Choke P B. Free radicals and disease [J]. Archives of Biochemistry and Biophysics,2002,397:354~359
    [127]Peng X, Xiong Y, Kong B. Antioxidant activity of peptide fractions from whey protein hydrolysates as measured by electron spin resonance[J]. Food Chemistry,2009,113:196~201
    [128]蛋白酶活力测定法.中华人民共和国专业标准,SB/T10317-1999
    [129]余勃,陆兆新.微生物发酵法生产大豆多肽液水解度的测定[J].食品科学,2005,4(26):104-107
    [130]Shimada K, Fujikawa K, Yahara K, et al. Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrin emulsion[J]. Journal of Agricultural and Food Chemistry,1992,40:945~948
    [131]Kanatt S R, Chander R, Sharma A. Antioxidant potential of mint (Mentha spicata L.) in radiation-processed lamb meat[J]. Food Chemistry,2007,100:451~458
    [132]De Avellar 1 G, Magalhaes M M, Silva A B, et al. Reevaluating the role of 1,10-phenanthroline in oxidative reactions involving ferrous ions and DNA damage [J]. Biochimicaet BiophysicaActa,2004,1675:46~53
    [133]Box G P, Behnken D W. Some new three level design for the study of quantitative variables [J]. Technometrics,1960,2:456~475
    [134]Alder-Nissen J. Enzymic hydrolysis of food proteins. New York:Elsevier Applied Science Publisher.1986,122~124
    [135]Monica L, Roberto G, Fabiano T, et al. Study of the DPPH-scavenging activity: Development of a free software for the correct interpretation of data [J]. Food Chemistry,2009, 114:889~897
    [136]Liu J Z, Weng L P, Zhang Q L. Optimization of glucose oxidase Production by Aspergillus niger in a benchtop bioreactor using response surface methodology[J]. Mierobiol Bioteehnol,2003, 19:317~323
    [137]余勃.枯草芽孢杆菌发酵豆粕生产大豆活性多肽的研究[D].南京农业大学博士论文,2006,50-66
    [138]汪家政,范明主编.蛋白质技术手册[M].北京:科学出版社.2001
    [139]卞则梁,王光辉.质谱与生命科学[M].化学通报.1994,7:40-46
    [140]Irvine G B.High-performance size-exclusion chromatography of peptides [J]. J Biochem Biophys Methods,2003,56:233-242
    [141]赵永芳.生物化学技术原理及应用[M].武汉:武汉大学出版社,1994.
    [142]任顺成,丁霄霖,史新慧.玉米须黄酮类的抗氧化活性[J].河南工业大学学报:自然科学版,2005,25(6):5-8
    [143]Labuza T D. Kinetics of lipid oxidation in foods [J]. Crit Rev Food Technol,1971(7): 355~395
    [144]Kim SY, Je JY, Kim SK. Purification and characterization of antioxidant peptide from hoki(Johnius belengerii)frame protein by gastrointestinal digestion[J]. J Nutr Biochem.2007, 18(1):31~38
    [145]Yu L, Haley S, Perret J, et al. Free radical scavenging properties of wheat extracts [J].J Agric Food Chem.2002,50(6):1619~1624
    [146]Jao C L, Ko W C.1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging by protein hydrolyzates from Tuna cooking juice [J]. Fisheries Sci.2002,68(5):114-117
    [147]Lee J, Koo N, Min D B. Reactive oxygen species, aging, and antioxidant nutraceuticals [J]. Comprehensive Rev Food Sci Food Safety.2004,3(1):21~33
    [148]赵保路.氧自由基和天然抗氧化剂[M].科学出版社,1999,7-13.
    [149]Kim SK, Kim YT, Byun HG, Nam KS, Joo DS and Shahidi F, Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska pollack skin. J Agr Food Chem,2001, 49:1984~1989
    [150]Li B, Chen F, Wang X, Ji B and Wu Y, Isolation and identification of antioxidative peptides from porcine collagen hydrolysate by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chem,2007,102:1135~1143
    [151]Wang J S, Zhao M M, Zhao Q Z and Jiang Y M, Antioxidant properties of papain hydrolysates of wheat gluten in different oxidation systems [J]. Food Chem,2007,101: 1658~1663
    [152]Yergey A L, Coorssen J R, Backlund P S, et al. De novo sequencing of peptides using MALDI/TOF-TOF [J]. J Am Soc Mass Spectrom,2002,13:784~781
    [153]Wu H C, Chen H M,Shiau C Y. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus) [J]. Food Res Int,2003,36: 949~957
    [154]Je J Y, Park J Y, Jung W K, Park P J, Kim S K. Isolation of angiotensin I converting enzyme (ACE) inhibitor from fermented oyster sauce. Crassostrea gigas [J]. Food Chem,2005,90: 809~814
    [155]Carey R M, Siragy H M. Newly recognized components of the renin-angiotensin system: Potential roles in cardiovascular and renal regulation [J]. Endocrine Reviews.2003,24:261~271
    [156]Fitzgerald R J, Meisel H. Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme [J]. Br J Nutr.2000,84:33~37
    [157]Ferreira S H, Bartelt D C, Greene L J. Isolation of bradykinin-potentiating peptides from Bothrops jararaca venom [J]. Biochem,1970,9:2583~2593
    [158]Guo Y, Pan D, Tanokura M. Optimisation of hydrolysis conditions for the production of the angiotensin-I converting enzyme (ACE) inhibitory peptides from whey protein using response surface methodology [J]. Food Chem,2009,114:328~333
    [159]Mullally M M, Meisel H, Fitzgerald R J. Angiotensin-I-converting enzyme inhibitory activities of gastric and pancreatic proteinase digests of whey proteins [J]. Int Dairy J,1997,7: 299~303
    [160]Liu J Z, Weng L P, Zhang Q L. Optimization of glucose oxidase Production by Aspergillus niger in a benchtop bioreactor using response surface methodology[J]. Mierobiol Bioteehnol,2003, 19:317~323
    [161]蒲首丞,王金水,王亚平.响应面法对酶水解谷朊粉制备生物活性肽的优化研究[J].粮食与饲料工业,2005,5:23-25
    [162]Li L, Wang JS, Zhao MM, et al. Artificial neural network for production of antioxidant peptides derived from Bighead Carp Muscles with Alcalase [J].Food Tech Biotech,2006, 44(3):441~448
    [163]程云辉,王璋,许时婴.酶解麦胚蛋白制备抗氧化肽的研究[J].食品科学,2006,27(6):147-150
    [164]Dinakar P, Arvn K. Enhancing the functionality of food proteins enzyomtic modification [J].Trends in Food Science and Technology,1996,7 (4):120~125
    [165]王湛.膜分离技术基础[M].北京:化学化工出版社,2000.
    [166]Jung W K, Je J Y, Mendis E, Park P J, Son B W, Kim H C, Choi Y K, Kim S K. Angiotensin 1-converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats [J]. Food Chem,2006,94:26~32
    [167]Li GH, Lea GW, Shi YH, et al. Angiotensin Ⅰ-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects [J]. Nutrition Research,2004,24:469~486
    [168]Cushman D W, Cheung H S. Spectrophotometric assay and properties of the angiotensin I-converting enzyme of rabbit lung [J]. Biochemical Pharmacology,1971,20:1637~1648
    [169]Zhang J H, Tatsumi E, Ding C H, et al. Angiotensin -converting enzyme inhibitory peptides in douchi, a Chinese traditional fermented soybean product [J]. Food Chem,2006,98:551~557
    [170]Elbl G and Wagner H. A new method for the in vitro screening of inhibitors of angiotensin converting enzyme (ACE), using the chromophore and flourophore-labelled substrate, dansyltriglycine [J]. Planta Med,1994,57:134~141
    [171]Wu J, Ding X. Characterization of inhibition and stability of soy-protein-derived angiotensin Ⅰ-converting enzyme inhibitory peptides [J]. Food Research International,2002,35:367~375
    [172]Zhang R Z, Xu X H, Chen T B. An assay for angiotensin converting enzyme inhibitory activity [J]. Anal Biochem,2001,291:84~88
    [173]Wu J, Aluko R E, Muir A D, Improved method for direct high-performance liquid chromatography assay of angiotensin-converting enzyme-catalyzed reactions [J]. J Chromatogr A, 2002,950:125~130
    [174]Gaffney G W, et al. The quantitative determination of hippuric acid [J]. J Biol. Chem.1954, 206:695~699.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700