刺楸皂苷结构解析及其结构与活性关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对刺楸树皮进行了系统的化学成分研究,以醋酸扭体法扭体反应抑制率、延长扭体潜伏期、降低醋酸致小鼠腹腔毛细血管通透性和提高小鼠热板痛反应阈为活性筛选指标,考察了刺楸树皮75%乙醇提取物经萃取分离得到的乙醚层、氯仿层、醋酸乙酯层、正丁醇层及水层等五个提取部位的药理活性,结果显示刺楸氯仿层、醋酸乙酯层和正丁醇层是主要活性部位。根据活性筛选的结果,从不同活性部位分离得到25 个单体化合物,经光谱技术和理化方法鉴定了20 个单体成分,其中6 个为新化合物,6 个为首次从该植物中分离得到的化合物。本文采用高效液相色谱-蒸发光散射检测器联用技术首次对刺楸皂苷酸水解物中单糖种类和数量进行了分析,并采用分子力学力场推测刺楸皂苷分子的空间构型变化,探讨了皂苷分子糖链数以及糖基数对刺楸皂苷的空间结构、1H NMR 以及药理活性的影响。药理活性研究表明刺楸皂苷类成分的结构与活性之间存在一定相关性。
Saponins are abundantly distributed throughout the nature, which are composed of two main moieties: aglycone and sugar chains. Aglycones are triterpenes, steroids, and steroid alkaloids, while sugar chains are more complexity consisting of mono-saccharides that are quite simple. Because of little heed to the regulating effects on the activities of aglycone, many researches of pharmacological activities mainly focus on the aglycones rather than sugar chains over a long period of time, but numerous facts have led to a conclusion that the sugar chains of saponins play much more important roles in regulating the saponin or the aglycone in recent years. The genus Kalopanax (Araliaceae) comprises 1 species of deciduous, small to medium-sized tree that is native to China, Japan, eastern Russia, and Korea, while in China the plant was authenticated as Kalopanax septemlobus (Thunb.) Koidz.. The dried bark has been used as a traditional chinese medicine for expelling so-called wind-evil, eradicating wetness, mediating meridian, destroying intestinal parasites, also clinically been treated with paralysis caused by wind and damp, pain along the knee and spine. Korean scientists studied the cytotoxicity activities of hederagenin, δ-hederin, kalopanaxsaponin A, kalopanaxsaponin I, and sapindoside C
    in the bark of K. pictus, meanwhile their extracts are consists of aglycone, monosaccharide triterpenoid saponin, bisaccharide triterpenoid saponin, trisaccharide triterpenoid saponin, and quadsaccharide triterpenoid saponin, respectively. The results show that the cytotoxicity activity of the aglycone is low, otherwise the activities of kalopanaxsaponin A, kalopanaxsaponin I, and sapindoside C are relatively high, while the monosaccharide saponin of δ-hederin has no avail. In the in vivo experiments, kalopanaxsaponin A apparently increased the life span of mice bearing Colon 26 and 3LL Lewis lung carcinoma, those results indicated that the number of sugars linked to the aglycone is much more important in pharmacological effects. In our investigation of antiinflammatory activity fractions in the bark of K. septemlobus, 25 compounds were isolated with solvent extraction, silica gel, Sephadex LH-20, reverse phase C-18, and semipreparative HPLC, etc. Among them, 20 compounds were elucidated on the basis of chemical and spectral methods such as 1H NMR, 13C NMR, DQF-COSY, DEPT, HMQC, HMBC, TOCSY, NOESY, ESI-MS, HRESI-MS. In the dissertation , 6 new triterpenoid saponins were named as septemloside Ⅰ, septemloside Ⅱ, septemloside Ⅲ, septemloside A, septemloside B, and septemloside C; along with 6 well-known compounds: β-sitosterol , gallic acid, syringin, phenylacetic acid, p-cresol, sinapyl alcohol were separated and characterized respectively for the first time.
    Because of the difficulty in crystalization of triterpenoid saponins, the steric conformation of triterpenoid saponins cannot be determined by method of using X-ray diffraction. Our further explorations in the steric conformation of kalopanaxsaponins lies on the molecular mechanics force field (MM2). As result, the predicted geometries by MM2 for the most
    stable conformers of the kalopanaxsaponins were studied through initial molecular dynamics. Two main stable conformers were named as twist style and extension style, for two-sugar-chain kalopanaxsaponin. The twist style is the conformation that two sugar chains of C-3 and C-28 in the molecule are close to each other, while the extension style is the conformation that the two sugar chains are apart from each other on the contrary. Along with the number of saccharides increases, the two sugar chains in kalopanaxsaponins tend to transform from extension style to twist style, which is affected by the molecular concentration. The NOE was determined betweenδ6.71 of C2-OH in the terminal D-xylose at C-3 sugar chain and δ6.63 of C2-OH in the terminal D-xylose at C-28 sugar chain, but no NOE was detected among any hydroxyl bwteen the terminal D-xylose and L-rhamnose at C-28 sugar chain in septemloside Ⅲ, these suggest that the branched sugar chains at C-28 are apart from each other whereas the C-3 sugar chain is close to the C-28 sugar chain. The NOESY and COSY spectra confirmed septemloside Ⅲexist a groove which is built by C2-OH of terminal D-xylose at C-28 sugar chain with which hydroxyls close to in the space. The groove explains the reason of so low magnetic field of hydroxyl owing to the oxygen’s paramagnetic effect.
    Kalopanaxsaponins have variable steric conformations which can be transformed by changing their concentration, which was confirmed by the 1H NMR spectra. Singal can not be detected among δ6~8 at the examine concentration of 20 mg·mL-1 in pyridine-d5, while some were found among δ6~8 at the examine concentration of 50 mg·mL-1 in pyridine-d5, these phenomenon suggest the steric conformation of septemloside Ⅲmight transform to other as examine concentration changed, i.e.
引文
1. 张贵君编. 现代中药材商品通鉴. 中国中医药业出版社, 北京, 2001, P1277-1279.
    2. 中华人民共和国卫生部药典委员会编. 中华人民共和国药典. 一九七七年版, 北京, p 60-61.
    3. 江苏新医学院编. 中药大辞典. 上册, 上海科学技术出版社, 1985, p1278.
    4. 汪有科,盛义保,陈书文等. 我国野生木本蔬菜资源开发利用现状及其发展前景.西北林学院学报, 2001, 16(3):37-41.
    5. 中国科学院中国植物志编辑委员会编.中国植物志(第54 卷). 科学出版社, 北京, 1978, 76-80.
    6. Khorlin AY,Ven’yaminova AG, and Kochetkov NK. The structure of kalopanax saponin A. Dokl Akad Nauk SSSR, 1964, 155, 619-622.
    7. Khorlin AY, Ven’yaminova AG, and Kochetkov NK. Triterpene saponins. XVIII. The structure of kalopanax saponin B. Izv Akad Nauk SSSR, Ser khim, 1966, 9, 1588-1594.
    8. Yoshioka I, Kimura T, Imagawa H, et al. Studies on polyacetylenic compounds. I. Occurrence in higher plants. (1). Leguminosae, Araliaceae, Umbelliferae, and Cornaceae. Yakugaku Zasshi, 1966, 86, 1216-1220.
    9. 孔令义,邵春杰,徐景达. 皂苷分离技术的新进展. 国外医药(植物药分册), 1989, 4(2):51-54.
    10. 叶文才,王明时,赵守训. 皂苷分离和鉴定技术新进展. 国外医药(植物药分册), 1993,8(2):99-104.
    11. 刘绣华, 陈柏森, 汪汉卿. 皂苷分离和结构鉴定研究进展. 化学研究, 1997, 8(3):28-34.
    12. Aue WP, Bartholdi E, Ernst RR. Two-dimensional spectroscopy. Application to nuclear magnetic resonance. J Chem Phys, 1976, 64(5):2229-2246.
    13. Jeener J, Meier BH, Bachmann P, et al. Investigation of exchange processes by two-dimensional NMR spectroscopy. J Chem Phys, 1979, 71(11):4546-4553.
    14. Kumar A. A two-dimensional nuclear overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun, 1980, 95(1):1-6.
    15. Piantini U, Kempsell SP, Levitt MH. Elimination of Dispersion mode contributions from two dimensional NMR spectra. J Am Chem Soc, 1982, 104(24):6800-6805.
    16. Tanaka O. Application of 13C-Nuclear magnetic resonance spectrometry to structural studies on glycosides: saponins of Panax spp.and natural sweet glycosides. Yakugaku Zasshi, 1985, 105(4):323-351.
    17. 徐文豪. 光谱分析在测定苷中糖结构时的应用. 药学学报, 1987, 22(11):869-880.
    18. Davis DG. Enhanced correlations in 1H-detected heteronuclear two-dimensional spectroscopy via spin-locked 1H magnetization transfer. J Magn Reson, 1989, 84(2):417-424.
    19. Ma LB, Tu GZ, Chen SP,et al. NMR determination of the structure of ulibroside J1. Carbohydr Res, 1996 , 281(1):35-46.
    20. Kawata Y, Kizu H, Miyaichi Y, et al. Studies on the constituents of Clematis Species.Ⅷ.Triterpenoid saponins from the aerial part of Clematis tibetana Kuntz. Chem Pharm Bull, 2001, 49(5):635-638.
    21. Shao CJ, Kasai R,Xu JD,et al. Saponin from roots of Kalopanax septemlobus (THUNB.)KOIDZ.,Ciqiu: Structure of Kalopanax-saponins C,D,E and F.Chem Pharm Bull, 1989, 37(2):311-314.
    22. Shao CJ,Kasai R,Ohtani K,et al. Saponin from leaves of Kalopanax septemlobus (THUNB.) KOIDZ.. structures of kalopanax-saponins La,Lb,Lc. Chem Pharm Bull, 1989, 37(12):3251-3254.
    23. Hahn DR,Oinaka T,Kasai R,et al. Saponins from leaves of Kalopanax pictum var.maximowiczii, a Korean medicine plant. Chem Pharm Bull, 1989, 37(8):2234-2235.
    24. 孙文基,张登科,沙振方等.刺楸根皮中皂甙的化学成分研究.药学学报, 1990, 25(1):29-34.
    25. Sano K,Sanada S,Ida Y,et al. Studies on the constituents of the bark of Kalopanax pictus NAKAI. Chem Pharm Bull, 1991, 39(4): 865-870.
    26. Lee M, Hahn DR. Triterpenoidal saponins from the leaves of kalopanax Pictum var. Chinese. Arch Pharm Res, 1991,14 (2): 124-128.
    27. Porzel A,Sung TV,Schmidt J,et al. Studies on the constituents of Kalopanax septemlobus. Planta Med, 1992, 58(5):481-482.
    28. 王广树, 孙平, 邵春杰等. 新刺楸皂甙G和H的化学结构研究. 中国药学杂志, 1995, 30(6):333-336.
    29. Bulgakov VP, Basharov AYa, Alekseev SG, et al. Identification and content of triterpene glycosides in various organs of Kalopanax
    septemlobus (Thunb.)Koidz. Rastit. Resur, 1981, 17, 232-237.
    30. Lee H, Lin JY. Antimutagenic activity of extracts from anticancer drugs in Chinese medicine. Mutat Res, 1988, 204(2):229-234.
    31. Park HJ, Kim DH, Choi JW, et al. A potent anti-diabetic agent from Kalopanax pictus. Arch Pharm Res, 1998 , 21(1):24-29.
    32. Kim DH, Yu KW, Bae EA, et al. Metabolism of kalopanaxsaponin B and H by human intestinal bacteria and antidiabetic activity of their metabolites. Biol Pharm Bull, 1998, 21(4):360-365.
    33. Kim DW, Bang KH, Rhee YH,et al. Growth inhibitory activities of kalopanaxsaponins A and I against human pathogenic fungi. Arch Pharm Res, 1998, 21(6):688-691.
    34. Lee MW, Kim SU, and Hahn DR. Antifungal activity of modified hederagenin glycosides from the leaves of Kalopanax pictum var. chinese. Biol Pharm Bul , 2001, 24(6):718-719.
    35. Lee KY,Sohn IC,Park HJ,et al. Essential moiety for antimutagenic and cytotoxic activity of hederagenin monodesmosides and bisdesmosides isolated from the stem bark of Kalopanax pictus. Planta Med, 2000, 66(4):329-332.
    36. Quetin-Lecerlcq J,Elias R,Balansard G,et al. Cytotoxic activity of some triterpenoid saponins. Planta Med, 1992, 58(3):279-281.
    37. Park HJ,Kwon SH,Lee JH,et al. Kalopanaxsaponin A is a basic saponin structure for the anti-tumor activity of hederagenin monodesmosides. Planta Med, 2001, 67(2):118-121.
    38. Choi J, Huh K, Kim SH, et al. Toxicology of Kalopanx pictus extract and hematological effect of the isolated anti-rheumatoidal kalopanaxsaponin
    A on the Freunds complete adjuvant reagent-treated rat. Arch Pharm
    Res, 2001, 24(2):119-125.
    39. Choi J, Huh K, Kim SH, et al. Kalopanaxsaponin A from Kalopanax pictus, a potent antioxidant in the rheumatoidal rat treated with Freund’s complete adjuvant reagent. J of Ethnopharmaco, 2002, 79(1):113-118.
    40. Choi J, Huh K, Kim SH, et al. Antinociceptive and anti-rheumatoidal effects of Kalopanax pictus extract and its saponin components in experimental animals. J of Ethnopharmaco, 2002, 79(2):199-204.
    41. Kim DH, Bae EA, Han MJ, et al. Metabolism of kalopanaxsaponin K by human intestinal bacteria and antirheumatoid arthritis activity of their metabolites. Biol Pharm Bul , 2002, 25(1):68-71.
    42. Choi L, HanYN, Lee KT, et al. Aanti-lipid peroxidative principles from the stem bark of Kalopanax pictus Nakai. Arch Pharm Res, 2001, 24(6):536-540.
    43. Lee EB, Li DW, Hyun JE, et al. Anti-inflammatory activity of methanol extract of Kalopanax pictus bark and its fractions. J of Ethnopharmaco, 2001, 77(2):191-201.
    44. Li DW, Lee EB, Kang SS, et al. Activity-guide isolation of saponins from Kalopanax pictus with anti-inflammatory activity. Chem Pharm Bull, 2002, 50(7):900-903.
    45. Kim YK, Kim RG, Park SJ, et al. In Vitro Antiinflammatory activity of kalopanaxsaponin A isolated from Kalopanax pictus in murine macrophage RAW264.7cells. Biol Pharm Bull, 2002, 25(4):472-476.
    46. Li DW, Hyun JE, Jeong CS, et al. Antiinflammatory activity of α-hederin methyl ester from the alkaline hydrolysate of the butanol fraction of Kalopanax pictus bark extract. Biol Pharm Bull, 2003, 26(4):429-433.
    47. 郭忠武. 碳水化合物-择凝素识别的分子基础. 有机化学, 1997, 17(3):215-219.
    48. 刘美正,郭忠武,惠永正. 皂苷研究—糖链的作用. 有机化学, 1997, 17(4):307-318.
    49. Kizu H, Shimana H, Tomimori T. Studies on the constituents of Clematis species. VI. The constituents of Clematis stans Sieb. et Zucc.. Chem Pharm Bull, 1995, 43(12):2187-2194.
    50. Mizutani K, Ohtani K, Kasai R, et al. Nuclear Magnetic Resonance study on glycosyl esters: glycosyl esters of 3-O-acetyloleanolic acid and octanoic acid. Chem Pharm Bull, 1985, 33(6):2266-2272.
    51. 赵瑶兴,孙祥玉编. 有机分子结构光谱鉴定. 科学出版社, 北京, 2003, 第一版, (a) p334-340; (b) p1-4.
    52. Ohtani K, Mizutani K, Kasai R, et al. Selective cleavage of ester type glycoside-linkages and its application to structure determination of natural oligoglycosides. Tetrahedron Lett, 1984, 25(40):4537-4540.
    53. kizu A and Ri TT. Studies on the constituents of clematis species Ⅲ.On the saponins of the Root of clematis chinensis OSBECK(3) , Chem Pharm Bull, 1980, 28(12):3555-3560.
    54. 徐任生主编. 天然产物化学. 北京, 科学出版社, 1993, p510-552.
    55. Tschesche VR, Inchaurrondo F and Wulff Günter. über Triterpene, XVII. DAS AGLYKON DES CYCLAMINS , 1964, 680, 107-118.
    56. 姚新生主编. 天然药物化学. 北京, 人民卫生出版社, 2001, 第三版, p85-86.
    57. Sakurai N, Inoue T and Nagai M.Studies on the Chinese Crude Drug “shoma”,IV. Structure of Acetyl Shengmanol Xyloside, a probable precursor of some known Cimicifuga Glycosides. Chem Pharm Bull, 1979, 27(1):158-165.
    58. Yasioka I, Imai K and Kitagawa I. On genuine sapogenins of horse chestnut saponins by means of soil bacterial hydrolysis and a new minor sapogenin: 16-desoxy-barringtogenol C. Tetrahedron Lett, 1967, 27(6):2577-2580.
    59. Yasioka I, Fujio M, Osamura M, et al. A novel cleavage method of saponin with soil bacteria, intending to the genuine saponin: on senega and panax saponins. Tetrahedron Lett, 1966, 50(12): 6303-6308.
    60. Kitagawa I, Yoshikawa M, Im KS, et al. Saponin and Sapogenol XIX. selective cleavage of the Glucuronide. Linkage in Saponin by Lead Tetraacetate Oxidation followed by Alkali Treatment. Chem Pharm Bull, 1977, 25(4):657-666.
    61. Kitagawa I, Ikenishi Y, Yoshikawa M, et al. Saponin and Sapogenol. XX.selective cleavage of the Glucuronide Linkage in Saponin by Acetic Anhydride and pyridine Treatment. Chem Pharm Bull, 1977, 25(6):1408-1416.
    62. Higuchi R, Tokimitsu Y, Hamada N, et al. A new cleavage method for the Sugar-Aglycone linkage in saponin. Liebigs Ann Chem, 1985, 6, 1192-1201.
    63. Klyne W. Determination of organic structures by physical methods. Academic Press, New York. 1955, p73.
    64. Schweer H. Gas chromatographic separation of carbohydrate enantiomers as (–)-menthyloxime pertrifluoroacetates on silicone OV-225. J Chromatogr, 1982, 243, 149-152.
    65. Bishop CT. Gas-liquid chromatography of carbohydrate derivatitves. Adv Carbohydr Chem, 1964, 19, 95-147.
    66. Mingquan G, Fengrui S, Yu B,et al. Rapid analysis of a triterpenoid saponin mixture from plant extracts by electrospray ionization multi-stage tandem mass spectroscopy (ESI-MSn). Analytical Sci, 2002, 18(4):481-484.
    67. 崔勐. 天然产物和生物小分子的质谱研究. 中国科学院博士学位研究生学位论文, 2001, 6, 34-40.
    68. Higuchi R, Komori T and Kawasaki T. Massenspektren Von Triterpensaponin-permethylat des Oleanautyps. Chem Pharm Bull, 1976, 24(11):2610-2618.
    69. 吴凤锷,朱子清. 中药竹节香附化学成分的研究. 化学学报,1985, 43(7):692-697.
    70. Komori T, Maetani I, Okamura N, et al. Zur Analogie der Zuckerabspaltung aus oligoglykosideschen Naturstoffen bei der S?urehydrolyse and der Felddesorptions-Massenspektrometrie. Liebigs Ann Chem, 1981, 4, 683-695.
    71. Liu HW and Nakanishi K. The structures of balanitins, potent molluscicides isolated from balanites, aegyptiaca. Tetrahedron, 1982, 38(4):513-519.
    72. Price K R,Eagles J,Fenwick G R. Saponin composition of 13 varieties of legume seed using fast atom bombardment mass spectrometry. J Sci Food Agric, 1988, 42, 183-193.
    73. Mann M, Talbo G. Development in matrix-assisted laser desorption/ionization peptide mass spectrometry. Curr Opinion in Biotech, 1996, 7(1):11-19.
    74. 尹建元, 卫永弟, 周雨. 野山参茎叶中皂甙类成分分析. 中国中药杂志,1998, 23(2):99-100.
    75. Catherine L,Laurence V,Georges M. Saponins from the stem of filicium decipiens. Phytochemistry, 1998, 47(3):441-445.
    76. 杨崇仁, 李兴丛, 王德祖. 核磁共振新技术在天然有机化合物结构解析中的应用, 昆明:云南新闻出版社, 1990, 98-102。
    77. Baykal T, Bedir E, Calis I,et al. Two oleanene glycosides from the aerial parts of Caltha polypetala. Phytochemistry, 1999, 51(8):1059-1063.
    78. Bax A,Szeverenyi N M,Maciel G E. Correlation of isotropic shifts and chemical shift anisotropies by two-dimensional fourier-transform magic-angic hopping NMR spectroscopy. J Am Chem Soc, 1983, 105, 147-151.
    79. Sohn K, Opekka S J. Detection of 1H homonuclear NOE between amide sites in proteins with 1H/15N heteronuclear correlation spectroscopy. J Magn Reson, 1989, 82(1):193-197.
    80. Ivanka K, Dragomir D, Gudrun H R, et al. Two new sulfated furostanol saponins from Tribulus terrestris. Verlag der Zeitschrift für Naturforschung, 2002, 57c, 33-38.
    81. Leavitt AL and Sherman WR. Direct gas-chromatographic resolution of DL-myo-inositol 1-phosphate and other sugar enantiomers as simple derivatives on a chiral capillary column, Carbohydr Res, 1982, 103(2):203-212.
    82. 蒸发光散射检测器的应用报告及论文集. 科达科技有限公司上海代表处. p21-25.
    83. Jeffrey GA, Saenger W. Hydrogen bonding in biological structures. Springer-Verlag Berlin Heidelberg, New York, 1991, 1-5.
    84. Pauling L. The nature of the chemical bond. Cornell Univ Press, Ithaca, New York, 1939, 1-9.
    85. Pauling L, Corey RB, Branson HR, et al. Proc Nat Acad Sci USA. 1951, 37, 205-211.
    86. Watson JD, Crick FHC. A structure for Deoxyribose Nucleic Acid. Nature, 1953, 171, 737-738.
    87. 封继康. 超分子体系弱相互作用的量子化学计算. 化学通报,1995, 10, 25-28.
    88. Duax WL, Cody V, Griffin J, et al. Steroid structure and function-II. Conformational transmission and receptor binding of medroxyprogesterone acetate. J Steroid Biochem, 1978, 9(10):901-907.
    89. Sebag AB, Friel CJ, Hanson RN, et al. Conformational studies on (17α, 20Z)-21-(X-phenyl)-19-norpregna-1,3,5(10), 20-tetraene -3, 17β-diols using 1D and 2D NMR spectroscopy and GIAO calculations of 13C shieldings. J Org Chem, 2000, 65(23):7902-7912.
    90. Allinger NL, Yuh YH and Lii JH. Molecular mechanics. The MM3 force field for hydrocarbons.1. J Am Chem Soc, 1989, 111(23): 8551-8566.
    91. Lii JH and Allinger NL. Molecular mechanics. The MM3 force field for hydrocarbons.2. vibrational frequencies and thermodynamics. J Am Chem Soc, 1989, 111(23):8566-8575.
    92. Ageta H, Shiojima K, Suzuki H, et al. NMR spectra of triterpenoids.I. Conformation of the side chain of hopane and isohopane, and their derivations. Chem Pharm Bull, 1993, 41(11):1939-1943.
    93. Ageta H, Arai Y, Suzuki H, et al. NMR spectra of triterpenoids.III. Oleanenes and migrated oleanenes. Chem Pharm Bull, 1995, 43(2): 198-203.
    94. Lehn J-M.(沈兴海等译). 超分子化学—概念和展望. 北京大学化学出版社, 2002, 北京, p168-187.
    95. Bhattachurya PK, Lawson HJ and Barton JK. 1H NMR studies of nickel (II) complexes bound to oligonucleotides: a novel technique for distinguishing the binding locations of metal complexes. Inorg Chem, 2003, 42(26):8811-8817.
    96. Williams DH and Fleming I.(王剑波, 施卫峰译). 有机化学中的光谱方法. 北京大学出版社, 2001, 北京, p79-98.
    97. Perdomo-Lopez I, Rodriguez-Perez AI, Yzquierdo-Peiro JM, et al. Effect of cyclodextrins on the solubility and antimycotic activity of sertaconazole: experimental and computational studies. Effect of cyclodextrins on the solubility and antimycotic activity of sertaconazole: experimental and computational studies. J Pharm Sci, 2002, 91(11): 2408-2415.
    98. Jagannadh B, Reddy SS and Thangavelu RP. Conformational preferences

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700