蒸发光散射检测器在食品安全领域的应用及与加压毛细管电色谱的联用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒸发光散射检测器(Evaprate light scattering detector, ELSD)作为一种通用型检测器,不受物质本身结构的限制,适用于绝大多数不挥发和半挥发物质的分析检测,尤其在天然产物、药物、农残及食品分析领域更具优势。随着国内外天然产物、药物及食品安全分析的迅速发展,ELSD检测器也将逐步走向普及化。
     本论文由五部分组成,主要内容包括:
     第一部分介绍了选题的背景和意义,包括ELSD的原理和应用、加压毛细管电色谱-蒸发光散射器(pCEC-ELSD联用仪)的研究意义、食品添加剂甜味剂的应用现状以及分析方法研究进展。
     第二部分的工作主要建立了HPLC-ELSD同时检测食品中安赛蜜、糖精钠、甜蜜素、三氯蔗糖和阿斯巴甜5种甜味剂的方法,此方法可用于食品安全检测。甜味剂经0.1% (v/v)甲酸缓冲液提取后,利用C18固相萃取小柱净化浓缩,以3μm C18柱为分离柱,0.1% (v/v)甲酸(氨水调节pH=3.5)-甲醇为流动相,经HPLC-ELSD分离检测。结果表明,5种甜味剂在30μg/mL - 1000μg/mL的质量范围内,具有良好的线性关系(相关性系数大于0.997);在3个添加水平下,样品的平均回收率85.6% - 109.0%,相对标准偏差小于4.0%;方法最低检出限(LOD, S/N=3)介于2.5-10μg/mL之间。该方法简单、灵敏且操作成本低,可用于不同形态食品中多种甜味剂的同时检测。
     第三部分的工作主要是建立了HILIC-ELSD同时检测无糖食品中赤藓糖醇、木糖醇、山梨糖醇、麦芽糖醇和乳糖醇5种糖醇的方法,采用超声提取样品中的糖醇,以3μm Amide-80亲水反应色谱柱作为分离柱,乙腈-水为流动相,经HILIC-ELSD分离检测。结果表明,5种糖醇在0.05-5 mg/mL的范围内,具有良好的线性关系(相关性系数大于0.998);在3个添加水平下,样品的平均回收率为92.5% - 99.7%,相对标准偏差小于3.9%;方法最低检出限(LOD, S/N=3)介于0.01-0.02 mg/mL之间。同样表明,该方法简单、灵敏且操作成本低,可用于无糖食品中多种糖醇含量的测定。
     第四部分主要介绍了加压毛细管电色谱(pressurized capillary electrochromatography, pCEC)与蒸发光散射检测器的联用,由于加压毛细管电色谱流速一般低于微升级/分钟,而传统蒸发光散射检测器是适用于流速为毫升级/分钟的常规液相色谱,所以需要通过对ELSD雾化、蒸发、检测单元及联用接口等关键技术的研究,实现ELSD与pCEC的联用。本部分工作主要是对加压毛细管电色谱与蒸发光散射检测器联用后系统的性能测试,以葡萄糖样品的检测限、重复性、线性做为考察指标,检测限为1 ng,峰面积的RSD%在0.91% - 2.84%范围内,线性范围在两个数量级左右。同时应用加压毛细管电色谱联用蒸发光散射检测器分离了3种氨基酸和5种甜味剂标准品,以考察其对混合样品的分离检测性能。另外,在第二章对甜味剂的研究基础上,建立了应用此联用技术检测蜜饯食品中的安赛蜜、糖精钠、甜蜜素3种磺胺类甜味剂的方法,分析速度较常规液相色谱快,试剂及样品消耗量少,方法简单方便且结果可靠。
Evaporative light scattering detection (ELSD) as a common detection, with the advantage of not to be limited by the substance structure, is suitable for analysis of most volatile and semi-volatile materials. The detection is commonLy used in the area of natural product, medicine, pesticide residues and food satety and analysis. With the rapid development of analysis of natural product, medicine and food safety, ELSD will become more popular.
     This thesis is divided into five parts as follows:
     The first chapter briefly introduced the background and significance of the thesis, including the theory and application of ELSD, the significance of the research of pressurized capillary electrochromatography- evaporative light-scattering detector (pCEC-ELSD), current application and analytical method of food additives.
     In the second chapter, a high performance liquid chromatographic method with evaporative light scattering detection (HPLC-ELSD) which was used in the determination of food safety, has been developed for the simultaneous determination of five synthetic sweeteners (acesulfame-K, saccharin sodium, sodium cyclamic, sucralose and aspartame) in food. The procedure involves an extraction of the five sweeteners with a 0.1% (v/v) formic acid buffer solution, sample clean-up and pre-concentration using solid phase extraction cartridges (SPE) and finally, separation on a C18 column (3μm) using 0.1% (v/v) formic acid buffer (adjusting to pH=3.5 with aqueous ammonia solution) / methanol as mobile phase, then analysis and determination with HPLC–ELSD. The results showed that the reasonable linearity was achieved for all the analytes over the range of 0.6μg -20μg with the correlation coefficients r > 0.997. The trueness of the method was satisfactory with recoveries ranging from 85.6%-109.0% at three spiked concentrations, with the relative standard deviations (RSD) lower than 4.0%. The limits of detection (LOD, S/N=3) were between 0.05μg -0.2μg. It is a simple, sensitive and low cost method, and the established method has been successfully applied to the simultaneous determination of five synthetic sweeteners in food.
     In the third chapter, a method using hydrophilic interaction liquid chromatography with evaporative light scattering detection (HILIC-ELSD) was developed for the simultaneous determination of five sugar alcohol (Erythritol, Xylitol, Sorbitol, Maltitol and Lactitol) in suger-free food. We used TOSHO TSK gel Amide-80 3μm column (4.6 mm ID×15 cm), with water and acetonitrile as the mobile phase in isocratic elution, determination with ELSD. The results showed that the reasonable linearity was achieved for all the analytes over the range of 1μg-100μg with the correlation coefficients r>0.998. The trueness of the method was satisfactory with recoveries ranging from 92.5%-99.7% at three spiked concentrations, with the relative standard deviations (RSD) lower than 3.9%. The limits of detection (LOD, S/N=3) were between 0.2μg-0.4μg. It was a simple, sensitive and low cost method, which could be applied to the simultaneous determination of sugar alcohol in sugar-free food.
     The last chapter mainly introduce the pressurized capillary electro- chromatography ( pCEC) coupled with ELSD. Since the flow of the mobile phase in pCEC is below 1μL/min and ELSD is a detection fit for the common HPLC with a flow in the mL/min, the commonly used ELSD for HPLC needs to be mofified, such as the mofification of nebulization, evaporation, detection section, interface and so on. The last chapter is mainly focused on the system evaluation of pCEC-ELSD. With the LOD, repeatbility, linearity of glucose as major parameters. The results showed that the LOD is 1 ng, the RSD% of peak area of glucose is between 0.91%-2.84, linearity range is about 2 orders of magnitude. We separated 3 amino acids and 5 sweeteners standards with the pCEC-ELSD system. A method using pCEC-ELSD was also developed for the simultaneous determination of three sulfonamides sweeteners, with the advatages of high analysis speed and lower consumption of reagent and sample.
引文
[1] Stolyhwo A, Colin H, Guiochon G. Use of Light Scattering as a Detector Principle in Liquid Chromatography[J], J. Chromatogr. A 1983, 265:1.
    [2] Stolyhwo A, Study of the Qualitative and Quantitative Properties of the Light Scattering Detector[J],J. Chromatogr. A, 1984 ,288 :253.
    [3]朱业晋,张昊杰. HPLC—ELSD在药物分析中的应用进展[J].赣南师范学院学报, 2003(6).
    [4]魏泱,丁明玉,张文清.离子排斥柱分离傣发光散射检测同时测定天冬氨酸钾镁一山梨醇注射液中的天冬氨酸和山梨醇[J],色谱, 2002, 20(4): 356-358.
    [5] R Bongiovanni, BK Yamamoto, GE Jaskiw. Improved method for the measurement of large neutral amino acids in biological matrices[J]. J.Chromatogr. B, 2001, 754(2): 369-376.
    [6] P Chaimbault, K Petritis, C Elfakir, M Dreux, Ion-pair chromatography on a porous graphitic carbon stationary phase for the analysis of twenty underivatized protein amino acids[J]. J.Chromatogr. A, 2000, 870(1-2): 245-254.
    [7]鄢丹,韩玉梅,董小萍.反相高效液相色谱-蒸发光散射检测法同时测定阿胶中的17种未衍生氨基酸[J].色谱, 2006,24(4):359-362
    [8]董海鸥,倪钟,张津枫等.高效液相色谱蒸发光散射检测器分析糖类化合物[J].食品科学,1999,20(11):50-52、
    [9] G Karlsson, S Winge, H Sandberg, Separation of monosaccharides by hydrophilic interaction chromatography with evaporative light scattering detection[J]. J.Chromatogr. A, 2005, 1092(2): 246-249
    [10]陈琴鸣,刘文英. HPLC-ELSD在中药糖类分析中的应用[J].中草药, 2008,39(6)
    [11] Philip M. O. Linger. Sweeteners make the difference[J]. Confectionery Production, 2000, 5: 24-26.
    [12]中华人民共和国卫生部, GB2760, 2011.食品添加剂使用标准.
    [13]中华人民共和国卫生部,食品中可能违法添加的非食用物质和易滥用的食品添加剂名单(第1—5批汇总) . (2011-04-22). [2011-11-02]. http://www.moh.gov.cn/publicfiles/business/htmLfiles/mohwsjdj/s9164/201104/51441.htm
    [14] Natalia E. Llamas, María S. Di Nezio, Miriam E. Palomeque, et al. Direct determination determination of saccharin and Acesulfame-K in sweeteners and Fruit Juices Powders[J]. FoodAnalytical Methods, 2008, 1: 43–48.
    [15]张丽薇,马莹,蒋素等.气相色谱法测定葡萄酒中的甜蜜素[J].中国卫生检验杂志, 2009,19(12): 2807-2808.
    [16] Richard A. Frazier, Elizabeth L. Inns, Nicolo Dossi, et al. Development of a capillary electrophoresis method for the simultaneous analysis of artificial sweeteners, preservatives and colours in soft drinks[J]. J.Chromatogr. A, 2000, 876: 213–220.
    [17] Ana Beatriz Bergamo, Jose Alberto Fracassi da Silva, Dosil Pereira de Jesus. Stimultaneous determination of aspartame, cyclamate, saccharin and acesulfame-K in soft drinks and tabletop sweetener formulations by capillary electrophoresis with capacitively coupled contactless conductivity detection[J]. Food Chem., 2011, 124: 1714-1717.
    [18] Yan Zhu, Yingying Guo, Mingli Ye, et al. Separation and simultaneous determination of four artificial sweeteners in food and beverages by ion chromatography[J]. J.Chromatogr. A. 2005, 1085: 143–146.
    [19]宋戈,姜金斗,张秋梅.乳及乳制品中多种防腐剂和甜味剂的同时测定[J].色谱, 2010, 28(3) : 749-753.
    [20]稽超,冯峰,陈正行等,饮料中4种人工合成甜昧剂同时测定的超高效液相色谱快速检测方法[J].色谱, 2010, 28(8): 749-753.
    [21]中华人民共和国卫生部, GB/T5009.140, 2003.饮料中乙酰磺胺酸钾的测定.
    [22]中华人民共和国卫生部, GB/T5009. 97, 2003.食品中环己基氨基磺酸钠的测定.
    [23]中华人民共和国卫生部, GB/T22255, 2008.食品中三氯蔗糖的测定.
    [24]中华人民共和国卫生部, GB/T22254, 2008.食品中阿斯巴甜的测定.
    [25] Dajin, Yang, Bo Chen. Simultaneous Determination of Nonnutritive Sweeteners in Foods by HPLC/ESI-MS[J]. Food Chem.. 2009, 57(8): 3022-3027.
    [26]刘晓霞,丁利,刘锦霞等.高效液相色谱-串联质谱法测定食品中6种人工合成甜味剂[J].色谱, 2010, 28(11): 1020-1025.
    [27] Andrzej Wasik, Josephine McCourt, Manuela Buchgraber. Simultaneous determination of nine intense sweeteners in foodstuffs by high performance liquid chromatography and evaporative light scattering detection-Development and single-laboratory validation[J]. J.Chromatogr. A, 2007, 1157: 187–196.
    [28] Agata Zygler, Andrzej Wasik, Jacek Namiesnik. Retention behaviour of some high-intensity sweeteners on different SPE sorbents[J]. Talanta. 2010, 82:1742-1748.
    [29]张玉,吴慧明,王伟等.高效液相色谱蒸发光散射检测器同时测定食品中5种甜昧剂[J].食品安全质量检测学报. 2010, 27(1): 18-23.
    [30]武金忠,钟其顶,王昌禄等. UPLC-ELSD同时测定白酒中六种甜味剂方法初探[J].酿酒. 2008, 35(1): 65-68.
    [31]鲁琳,杭义萍,高燕红.高效液相色谱-蒸发光检测器测定食品中的三氯蔗糖[J].中国热带医学. 2008, 8(9): 1628-1629.
    [32] British Standards Institution. BS EN 2011: 15911, 2011. Foodstuffs- Simultaneous determination of nine sweeteners by high performance liquid chromatography and evaporative light scattering detection.
    [33]王关斌,赵光辉.无糖食品真无糖[J].食品与生活, 2005 (8): 47.
    [34] Jeon J, Wilian.Analyzing food for mutrition labeling and hezardon contaminants[M]. New York: Macel Dekker, 1995:80.
    [35]甘宾宾,马彦,叶志云.反相高效液相色谱法测定山梨醇和甘露醇[J].化学世界,1999(2): 99.
    [36]李黎,刘玉峰等.高效液相色谱法测定食品中的糖醇[J].食品科学,2007, (6): 278-280.
    [37]高国琰,董责章.气相色谱法尿半乳糖醇及其他糖醇的测定[J].中国医科大学学报,1995, 24(3): 23.
    [38]陈晨,朱建良,欧阳平凯.稀水溶液中糖和糖醇的气象色谱分析[J].南京化工大学学报, 1997, 19(2): 79.
    [39]唐坤甜,林立,梁立娜等.无糖和低糖食品中糖和糖醇同时分析的因离子交换色谱-脉冲安培检测法研究[J].食品科学, 2008, 29(29): 327-331.
    [40]史海良,杨红梅,王浩等,高效液相色谱-蒸发光散射法测定无糖食品中糖醇[J].分析实验室, 2009,28: 294-296.
    [41]曹英华,贾丽,钱春燕等,蒸发光散射液相色谱测定无糖酸奶中糖醇[J].食品研究与开发, 2011, 32(2): 117-119.
    [42] Charles Masi, Tim Studt. The Future of Chromatography White Paper. [2009-07-03]. http://www.rdmag.com/ShowPR.aspx?PUBCODE=014&ACCT=1400000100&ISSUE=0404&RELTYPE=EX&PRODCODE=00000000&PRODLETT=AL&CommonCount=.
    [43]江英桥,王强,魏国,等.高效液相色谱蒸发激光散射检测器分析西洋参中的人参皂苷.中国药科大学学报, 2001, 32 (1): 41.
    [44] Sung W K, Sang B. H.. Liquid Chromatography Determination of Less Polar Ginsenosides inProcessed Ginseng[J]. J.Chromatogr. A , 2001 ,921 :335.
    [45]秦少容,余佳文,岳廷哲等.高效液相色谱法-蒸发光散射检测器法测定红参及育精胶囊中人参皂苷Rg1和Re的含量[J].中国中药杂志, 2001, 26 (8): 544.
    [46] James N. A., Evaporative light scattering detection for microcolumn liquid chromatography [J]. Microcolumn Swparations, 1998, 10(6): 491-502.
    [47] Magnus B. O. Anderson, Lars G. Blomberg. A miniaturized evaporative light scattering detector for application with packed microcolumn high-performance liquid chromatography[J], J. Microcolumn Separations, 1998,10(3): 249-254.
    [48] Karen G.audin, Arlette Baillet, Pierre Chaminade. Adaptation of an evaporative light-scattering detector to micro andcapillary liquid chromatography and response assessment[J], J.Chromatogr. A, 2004, 1051: 43-51.
    [49] Loc Q., Karen G., Arlette B., Pierre C., Microanalytical systems for separations of stratum corneum ceramides[J], J. Sep. Sci. 2006, 29: 390-398.
    [50]戎江瑞, 3种不同前处理方法在HPLC测定果冻中苯甲酸、山梨酸和糖精钠的实验比较中国卫生检验杂志, 2005, 15(7): 885.
    [51] Official Journal of European Communities, 1994, L237.Directive 94/35/EC of European Parliament and of the Council of 30 June 1994 on sweeteners for use in foodstuffs.
    [52]王玉红,刘芳,赵卉等.微纳级蒸发光散射检测器的研制及评价.投稿中.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700