活化生土基低碳节能村镇建筑材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
村镇现有的建筑材料普遍存在生产制备及使用高能耗的弊端。要想解决这一现状,就需要充分利用农村生态资源和工业废弃物,结合被动式节能优势,制备出低碳节能的建筑材料及其制品。本文在常温常压条件下,以碱激发的方式对生土和矿渣进行活化处理作为基材,通过向基材中分别掺加相变材料、农作物秸秆、发泡等方式制备了储能相变复合建筑材料、干压及湿脱模节能小砌块、多孔屋面被动蒸发降温材料。并对材料的力学性能、耐久性能、热工以及节能性能进行了实验研究与理论推导。
     在常温常压条件下,以工业水玻璃为主要激发剂,对生土与矿渣进行了无有毒有害气体放出的激发活化,制备出28d胶砂抗压强度达45MPa的活化生土基材料。该材料改变了传统农村生土建筑材料强度低、脆性大、耐水耐久性差的缺点。其耐水软化系数高达0.837;浸酸强度损失率仅为9.8%;可抵抗150次以上冻融循环;耐高温;具有优异的抗氯离子渗透性能。压汞法表明其孔隙率仅为6.76%。标准养护条件对该材料的强度发展最为有利,且生土的CaO/SiO2越大,活性指数越大,配制出的基材强度越高。但该材料干缩较严重。通过XRD、SEM、IR、DTA、NH4+容量交换分析表明,活化生土基材生成产物主要为水化硅酸钙、水化铝酸钙及沸石类产物,未发现氢氧化钙晶体。并用MS软件对生成产物进行三维生成,表明生成产物具有致密的空间三维网络键接结构,沸石产物结构中形成很多空腔,形成了特定的孔道结构。
     以工业石蜡、膨胀珍珠岩为储能载体,通过硅酸钙外壳进行封装后掺加到活化的生土基材中,制备了储能相变复合建筑材料。其干表观密度为1674kg/m3;28d抗压强度可达23MPa;耐水软化系数为0.81。同时具有很好的热工性能:导热系数0.35W/(m·K),比热容为1.58W·h/kg·K,蓄热系数为15.52W/(m2·K),热阻为1.67(m2·K)/W,热惰性指标为25.91,热扩散系数为0.132×10-3m2/s。对该材料进行了一维和三维条件下的温度和时间响应关系研究,结果表明在外界温度升高或降低时,该材料相对于传统材料温度变化小,波动平缓,且在相变点附近出现明显的恒温阶段,升温及降温总时间大大延长。节能分析表明,该材料的使用可明显降低有效热量,节能效率达55.6%。为改善相变板冬季使用时的热导率,掺加石墨作为导热改进剂,其导热效果明显改善。设计了一套相变建筑材料-太阳能蓄电系统-聚砜高分子膜-铜网电阻系统,利用太阳能转化成电能,通过电阻产生热量再源源不断传递给相变材料以维持室内温度。聚砜膜在防止相变材料渗露的同时还由于其低的传热性防止了热量的外泄,真正实现了采暖零能耗。
     向活化生土基材中掺加稻草秸秆,利用自制钢模具,在加压情况下制备出活化生土基稻草秸秆空心砌块。其表观密度为1655kg/m3;28d抗压强度高达25MPa;耐水软化系数0.80。掺加石蜡珍珠岩,制备出活化生土基储能相变空心砌块。其干表观密度降至1101kg/m3,28d抗压强度为9.6MPa。测试了活化生土基稻草秸秆空心砌块、石蜡珍珠岩填孔夹心稻草砌块、及相变砌块的热工性能。结果表明相变材料夹心处理后热阻最高,传热系数最小,保温隔热能力最好。考虑农民可自助生产且结合农村建筑特点,向活化生土基材中掺加大量稻草秸杆与向日葵瓤,利用设计的小砌块湿脱模模具(尺寸为240mm×115mm×115mm,三孔60mm×60mm×60mm)制备了湿脱模(添料后10min脱模)小砌块,用于围护结构或夏季屋顶通风,根据风压原理计算其孔洞内风压为584.5Pa,平均气流速度2.15m/s。
     向活化生土基材中掺入发泡剂进行发泡,掺入聚丙烯纤维进行增强制备了多孔屋面材料,用于收集雨水,从而发挥被动蒸发降温功能。其干表观密度为453kg/m3,28d抗压强度可达3.3MPa。单位体积吸水质量为376kg,可经受100次以上干湿循环。聚丙烯纤维的掺加起到了承受一定的外荷及假延性,降低裂缝尖端的应力强度因子,缓和应力集中程度,从而提高抗折强度的功能。采用SEM、压汞法对致密、适中、疏松孔结构进行了研究。结果表明孔结构为孔壁上有许多小洞的连通孔,孔隙率分别为51.5%、57.3%、60.3%,孔径范围分别为20um、40um、90um。结合分形理论对孔结构进行定性评价:孔的分形维数分别为2.97、2.88、2.78。且随分形维数增大,单位体积的吸水质量增大。用气候箱测试多孔材料的被动蒸发降温性能,结果表明用一层30mm的活化生土基多孔材料覆盖在屋顶时,其室内最大降温幅度可达3℃,温度延迟时间大大延长,通过屋顶的热流显著降低。经100次干湿循环后强度明显降低,但对其吸水及蒸发性能影响不是特别显著。当干表观密度为453kg/m3时,其导热系数为0.116W/(m·K),蓄热系数为3.84W/(m2·K),热阻为5.63(m2·K)/W,比热为1.08 W·h/kg·K,热惰性指标为21.62,热扩散系数为0.237×10-3 m2/s。表明该材料即使不发挥被动蒸发降温功能,也可起到保温隔热材料的功效。建立了包含孔分形维数的多孔体水分的热湿迁移数学模型,改善了原模型中孔粗糙度难以测量的弊端。
High energy consumption is always an urgent problem during the preparation and applications of building materials in rural. In order to change this condition, resource ecology, industrial waste as well as passive energy saving technology must be utilized to prepare energy saving building materials. A new form of cement was produced by mixing clay, slag and water-glass at room temperature without baking as matrix. PCM building material, dry pressure and wet demould blocks and porous roof material for passive evaporative cooling had been gained by mixed with PCM, straw and foam agent in clay matrix respectively. Mechanical properties, lasting qualities, thermal characteristics and energy conservation properties had been studied and deduced by theory.
     A new form of cement was produced by mixing clay, slag with prepared water-glass activator during stirring. The preparation of the material is quite different from the normal one, which is produced just at room temperature and without poisonous gas emission. The fabrication of this energy-saving material can be favorable for lowering carbon emission by using recycled industrial wastes and resource ecology in countryside. Compressive strength of 45.3MPa, water resistant coefficient of 0.837, loss factor acid etch of 9.8%, cycle of freezing and thawing for more than 150, high ability of resistant to elevated temperatures and chloride ion, the porosity of 6.76% by mercury intrusion method can be achieved after 28 days curing. Standard curing is benefit for the mechanical properties. The more CaO/SiO2 and activity coefficient, the more strength is. The hydration products were C-S-H with less Ca(OH)2, calcium aluminum and zeolite, which were characterized by XRD, SEM, IR, DTA, NH4+ capacity conversion measurements. Three dimension products model were generated by Materials Studio soft. The results showed that all the products were three dimension reticulated bond jointing structure and there were some cavities in zeolite.
     A new type of composite for construction named LPM was prepared by mixing clay,slag, alkaline activated agent and a suitable amount of expand perlite impregnated with paraffin as form-stable phase change and latent heat energy storage material which encapsulated with calcium silicate. The dry density of 1674kg/m3, compressive strength of 23MPa, water resistant coefficient of 0.81, thermal coefficient of 0.35 W/(m·K),specific heat of 1.58 W·h/kg-K, thermal storage coefficient of 15.52W/(m2·K), thermal resistance of 1.67 (m2·K)/W, thermal inertia index of 25.91, thermal diffusivity of 0.132×10-3m2/s had been achieved. The variation of temperature with time of LPM and the corresponding traditional material used as reference material were determined. The results indicated that when the environment temperature changed, the temperature of the LPM changed more gently, the temperature fluctuation was less and the peak temperature occurs later than the corresponding traditional material. The energy conservation efficiency can be reach up to 55.6%. In order to improve the coefficient of thermal conductivity of LPM used in winter, graphite had been filling into the clay matrix materials. The zero energy consumption system of PCM building material-polysulfone film-copper net wire-solar energy accumulator had been designed successfully. The solar energy had been converted into electric for produce heat power through copper net wire and was delivered to PCM. The room temperature can be under control in frigidity winter night. The polysulfone film can not only prevent the leakage of PCM but also countercheck the thermal power loss.
     Two kinds of building blocks had been prepared by putting straw and PCM respectively into the activated clay matrix under the condition of load. The straw building block with the properties of dry density of 1655kg/m3, compressive strength of 25MPa, water resistant coefficient of 0.80 had been prepared. The second one was PCM block with dry density of 1101 kg/m3 and compressive strength of 9.6 MPa. The third one was a sandwich structure with PCM in holes. Heat flow test results showed that the third one was the best with the highest heat resistance, small heat transfer coefficient and the excellent insulation properties. In the same time, a wet demould(demould after 10 minutes) building block had been prepared by a novel designing model and straw, helianthus annuus pith blending into the clay matrix. The size was 240mm×115mm×115mm, pore size was 60mmx60mmx60mm. It can be used for exterior-protected construction and roofs ventilate applications. The calculation of pressure was 584.5Pa and average speed of gas flow through the pores was 2.15m/s.
     A light weight porous material with suitable strength was developed as a roof material. This material was prepared by choosing slag and clay as raw material, activated by alkali agent and injected with foams. The gelled matrix was then strengthened by adding polypropylene fibers. This unique designed material can detain a significant amount of rainwater and be applied for passive evaporative cooling roof systems. Finally, the porous material with compress strength of 3.3kg/m3, dry density of 453kg/m3, water absorption of 376kg/m3, dry and wet cycle for more than 100 was gained when the W/C was 0.2. The functions of polypropylene can improve the flexural strength by decreasing the stress intensity factor of crack tip and release the stress concentration. The compact pore structure, moderate pore structure and loose pore structure had been studied by SEM and mercury intrusion method. The results showed that the pores structure were intercommunicating pores and the porosity were 51.5%,57.3% and 60.3%, the pore sizes were 20um,40um and 90um。The fractal geometry was applied to describe the pore structures of roof materials with different ingredient ratios. The fractal dimension was 2.97,2.88 and 2.78, which were discovered related to the evaporation cooling performance of the roofs. Larger fractal dimension materials show better water absorption ability. Variations of room temperature and heat flux transfer across porous material roof slab have been measured. The results showed that roof covered with porous material of 30mm can satisfactorily lower room temperature for about 3℃and reduce heat flux, as compared with OPC (ordinary Portland cement) roof layer simply. Covering porous material layer as roof surface can create a more effective cooling system by utilizing its water absorption and evaporation capability during canicule. Thermal coefficient of 0.116W/(m·K), specific heat of 1.08W·h/kg·K, thermal storage coefficient of 3.84W/(m2-K), thermal resistance of 5.63 (m2·K)/W, thermal inertia index of 21.62, thermal diffusivity of 0.237×10-3m2/s had been achieved when the dry density was 453kg/m3. A new mathematics model about the evaporation speed of water in porous materials had been builted combinig with fractal dimension of pore structure.
引文
[1]温家宝.十届全国人大四次会议---政府工作报告[R].北京:2006.
    [2]国家的三农政策是什么[EB/OL].2008. http://zhidao. baidu.com/question/75407903.htm.
    [3]苗慧民.村镇住宅节能屋面保温隔热系统研究[D].大连理工大学,2009.
    [4]李沁笛,单明,杨铭,等.农村建筑节能低碳化发展途径及减排潜力[J].建设科技,2010(5):40-42.
    [5]艾红梅,白雪娇.新农村生态建筑材料[J].建材技术与应用,2010(1):11-14.
    [6]常卫华,王建卫,徐福泉.村镇生土住宅结构现状研究[J].建筑结构,2010:375-378.
    [7]李秀峰,徐晓刚,刘利亚.我国农村秸秆能源消费及其预测[J].生态经济,2009(1):78-81.
    [8]彭珍凤,陈杏华,查跃华.农村秸秆处理和资源化利用技术现状与发展趋势[J].农业装备技术,2009(2):11-13.
    [9]曹颖奇,林岚岚,张利歌,等.国家“十一五”科技支撑计划项目研究课题——农村建筑装饰砌块材料应用及现状[J].建设科技,2011(1):50-53.
    [10]徐永模.绿色节能建筑的理念与示范——英、法、瑞的节能建材与应用(一)[J].混凝土世界,2010(3):70-74.
    [11]实心粘土砖[EB/OL].2011. http://baike.baidu.com/view/3138328.htm.
    [12]李惠民魏广来.村镇建筑材料[M].1986.
    [13]谢坤.外墙复合砌块传热研究[D].哈尔滨工业大学,2007.
    [14]裴贻敏.西部地区村镇小康居住体系研究[D].长安大学,2006.
    [15]何化南,熊开兵,李云贵.我国村镇混凝土住宅工程质量的现状和展望[J].混凝土,2010(5):129-131.
    [16]王立久.建筑材料学[M].北京:中国水利水电出版社,2008.
    [17]湖南大学等合.土木工程材料[M].北京市:中国建筑工业出版社,2002.
    [18]杨南如戈什,闵盘荣.水泥技术进展[M].北京市:中国建筑工业出版社,1986.
    [19]杨南如.充分利用资源,开发新型胶凝材料[J].建筑材料学报,1998(1):21-27.
    [20]代新祥.碱激发土聚水泥的制备、结构与性能[D].广州:华南理工大学,2002.
    [21]万艳华.长江中游传统村镇建筑文化研究[D].武汉理工大学,2010.
    [22]赵成,阿肯江·托呼提.生土建筑研究综述[J].四川建筑,2010(1):31-33.
    [23]靳亦冰.资源承载限度下黄土高原沟壑地区村落发展研究[D].西安建筑科技大学,2003.
    [24]刘瀚.石林地区民族建筑特征及其更新—以五棵树村为载体进行分析[D].昆明理工大学,2004.
    [25]谭良斌.西部乡村生土民居再生设计研究[D].西安:西安建筑科技大学,2007.
    [26]闫增峰.生土建筑室内热湿环境研究[D].西安建筑科技大学,2003.
    [27]田苗.西北地区村镇住宅之材料、结构体系研究[D].长安大学,2007.
    [28]张艳明.我国村镇住宅产业化发展模式与发展战略研究[D].北京交通大学,2008.
    [29]张鹏飞,冯小平,黄伟民.苏南地区村镇住宅能耗设备现状和建筑节能调查[J].建筑节能,2010(2):71-74.
    [30]寻找适用于村镇屋面节能的材料和技术[N].中国建设报.
    [31]董娟.村镇住宅建设中基于地方材料的适宜技术[J].新建筑,2010(3):75-78.
    [32]MORI Y, KIKEGAWA Y, UCHIDA H. A model for detailed evaluation of fossil-energy saving by utilizing unused but possible energy-sources on a city scale[J]. Appled Energy, 2007,84(9):921-935.
    [33]JUSKA A, MISKINIS V. The first scientific research of energy problems in Lithuania[J]. Lithuanian Energy Institute 50,2006:108-135.
    [34]KLEVAS V, MINKSTIMAS R. The guidelines for state policy of energy efficiency in Lithuania[J]. Energy Policy,2004,32(3):309-320.
    [35]KEPPLER J H, CRUCIANI M. Rents in the European power sector due to carbon trading[J]. Energy Policy,2010,38(8):4280-4290.
    [36]VERDOLINI E, GALEOTTI M. At home and abroad:An empirical analysis of innovation and diffusion in energy technologies[J]. JOURNAL OF Environmental Economics and Management,2011,61(2):119-134.
    [37]张海文.村镇住宅节能适用技术[J].建设科技,2004(20):22-23.
    [38国外村镇建设与管理的经验及启示[EB/OL].2007. http://www.lcvlcv.com/newsInfo.do method.
    [39]AKBARI H, LEVINSON R, RAINER L. Monitoring the energy-use effects of cool roofs on California commercial buildings[J]. Energy and Buildings,2005,37(10):1007-1016.
    [40]Jo J H, CARLSON J, GOLDEN J S, et al. Sustainable urban energy:Development of a mesoscale assessment model for solar reflective roof technologies [J]. Energy Policy, 2010,38(12):7951-7959.
    [41]CASTLETON H F, STOVIN V, BECK S, et al. Green roofs; building energy savings and the potential for retrofit[J]. Energy and Buildings,2010,42(10):1582-1591.
    [42]石忆邵.国内外村镇体系研究述要[J].国际城市规划,2007(4):84-88.
    [43]王聪.碱激发胶凝材料的性能研究[D].哈尔滨工业大学,2006.
    [44]PACHECO-TORGAL F, CASTRO-GOMES J, JALALI S. Alkali-activated binders:A review-Part 1. Historical background, terminology, reaction mechanisms and hydrat ion products [J]. Construction and Buildings Materials,2008,22(7):1305-1314.
    [45]ROY D. Alkali-activated cements-Opportunities and challenges [J]. Cement and Concrete Research,1999,29(2):249-254.
    [46]FREIDIN C. Alkali-activated cement based on natural Si02-containing material:Part Ⅰ. Strength, hydration, microstructure and durability[J]. Cement and Concrete Research,2003,33(9):1417-1422.
    [47]段瑜芳.土聚水泥基材料的研究[D].河北理工学院,2004.
    [48]徐玲玲曾燕伟方永浩.化学激发胶凝材料研究进展:南京,2004[C].东南大学出版社.
    [49]李玉香.碱矿渣—粘土复合胶凝材料固化Sr、Cs的机理与性能研究[D].中国工程物理研究院,2005.
    [50]PACHECO-TORGAL F, CASTRO-GOMES J, JALALI S. Alkali-activated binders:A review. Part 2. About materials and binders manufacture [J]. Construction and Buildings Materials, 2008,22(7):1315-1322.
    [51]BUCHWALD A, SCHULZ M. Alkali-activated binders by use of industrial by-products [J]. Cement and Concrete Research,2005,35(5):968-973.
    [52]WANG S D, SCRIVENER K L, PRATT P L. Factors affecting the strength of alkali-activated slag[J]. CEMENT AND CONCRETE RESEARCH,1994,24(6):1033-1043.
    [53]PUERTAS F, MARTINEZ-RAMIREZ S, ALONSO S, et al. Alkali-activated fly ash/slag cement-Strength behaviour and hydration products[J]. Cement and Concrete Research, 2000,30(10):1625-1632.
    [54]WANG S D, SCRIVENER K L. Hydration products of alkali-activated slag[J]. Cement and Concrete Research,1995,25(3):561-571.
    [55]LIN K L, WANG K S, TZENG B Y, et al. The., hydration characteristics and utilization of slag obtained by the vitrification of MSWI fly ash[J]. Waste Mangement, 2004,24(2):199-205.
    [56]杨南如.碱胶凝材料形成的物理化学基础(Ⅰ)[J].硅酸盐学报,1996(2):209-215.
    [57]张云升.地聚合物混凝土形成机理研究[D].南京:东南大学,2004.
    [58]W. K. W. Lee J. S. J. Van. Chemical interactions between siliceous aggregates and low-Ca alkali-activated cements[J]. Cement and Concrete Research,2007,37:844-855.
    [59]SHI C J, FERNANDEZ-JIMENEZ A. Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements[J]. Journal of hazardous materials, 2006,137(3):1656-1663.
    [60]史才军,巴维尔·克利文科,黛拉·罗伊.碱-激发水泥和混凝土[M].北京市:化学工业出版社,2008.
    [61]ZHANG Y P, LIN K P, YANG R, et al. Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings[J]. Energy and buildings, 2006,38(10):1262-1269.
    [62]BAYES-GARCIA L, VENTOLA L, CORDOBILLA R, et al. Phase Change Materials (PCM) microcapsules with different shell compositions:Preparation, characterization and thermal stability [J]. Solar Energy Materials and Solar Cells,2010,94(7):1235-1240.
    [63]BAETENS R, JELLE B P, GUSTAVSEN A. Phase change materials for building applications: A state-of-the-art review[J]. Energy and Buildings,2010,42(9):1361-1368.
    [64]张仁元.相变材料与相变储能技术[M].北京市:科学出版社,2008.
    [65]闫全英,梁辰,张林.相变石蜡掺量对水泥墙传热性能的影响[J].建筑材料学报,2009(2):236-238.
    [66]程玉蓉.用于建筑节能的相变蓄热材料热性能研究[D].浙江大学,2006.
    [67]孟多.定形相变材料的制备与建筑节能应用[D].大连理工大学,2010.
    [68]LI W D, DING E Y. Preparation and characterization of a novel solid-liquid PCM: Butanediol di-stearate[J]. Materials Letters,2007,61 (7):1526-1528.
    [69]HO C J. A continuum model for transport phenomena in convective flow of solid-liquid phase change material suspensions[J]. Applied Mathematical Modelling, 2005,29 (9):805-817.
    [70]崔海亭,杨锋.蓄热技术及其应用[M].北京市:化学工业出版社,2004.
    [71]乐海林.相变墙体在北京地区的应用研究[D].北京工业大学,2006.
    [72]李海建,冀志江,辛志军,等.石蜡/膨胀珍珠岩复合相变材料的制备[J].中国建材科技,2009(3):69-71.
    [73]李海建,冀志江,辛志军,等.复合相变材料的制备[J].材料导报,2009(20):98-100.
    [74]张东,周剑敏,吴科如,等.相变储能混凝土制备方法及其储能行为研究[J].建筑材料学报,2003(4):374-380.
    [75]王彦敏.相变储能技术在采暖空调领域的应用研究[J].科技资讯,2009(30):53.
    [76]AKGUN M, AYDIN 0, KAYGUSUZ K. Experimental study on melting/solidification characteristics of a paraffin as PCM[J]. Energy Conversion and Management, 2007,48 (2):669-678.
    [77]HAWLADER M, UDDIN M S, KHIN M M. Microencapsulated PCM thermal-energy storage system [J]. Applied Energy,2003,74(1-2):195-202.
    [78]周剑敏,张东,吴科如.建筑节能新技术—相变储能建筑材料[J].房材与应用,2003(4):10-12.
    [79]艾明星,曹力强,郭向勇,等.相变蓄能建筑材料的节能评价研究[J].建筑节能,2008(4):40-44.
    [80]谭羽非.新型相变蓄能墙体的应用探讨[J].新型建筑材料,2003(2):3-5.
    [81]王馨,张寅平,肖伟,等.相变蓄能建筑围护结构热性能研究进展[J].科学通报,2008(24):3006-3013.
    [82]孟庆林等.建筑蒸发降温基础[M].北京市:科学出版社,2006.
    [83]刘才丰,冯雅,陈启高.屋面蒸发隔热及应用措施[J].重庆大学学报(自然科学版),2001(3):41-44.
    [84]周赛军,任伯帜,邓仁健,等.南方城市蓄水绿化屋面防热节能研究[J].工业建筑,2009(12):39-41.
    [85]黄健华.蓄水屋面的应用和设计中的几个问题[J].南方建筑,2000(3):62.
    [86]和国文,金勇文,刘呈平,等.不同仓型屋面智能喷水降温储粮研究[J].粮油仓储科技通讯,2008(4):23-25.
    [87]杨红霞.陶粒湿屋面热湿过程分析研究[D].西安:西安建筑科技大学,2008.
    [88]叶歆.建筑热环境[M].北京:清华大学出版社,1994.
    [89]孙惠镐等.小砌块建筑设计与施工[M].北京市:中国建筑工业出版社,2001.
    [90]孙惠镐等.混凝土小型空心砌块生产技术[M].北京市:中国建材工业出版社,2001.
    [91]等湛轩业.现代砖瓦烧结砖瓦产品与可持续发展建筑的对话[M].北京市:中国建材工业出版社,2009.
    [92]王军,吕东军.走向生土建筑的未来[J].西安建筑科技大学学报(自然科学版),2001(2):147-149.
    [93]陈绍龙.矿渣微粉生产工艺技术[J].
    [94]杨南如.碱胶凝材料形成的物理化学基础(Ⅱ)[J].硅酸盐学报,1996(4):459-465.
    [95]盛天保.水玻璃模数调整的几个问题[J].建筑工人,2007(11):36-38.
    [96]史非.常压干燥制备SiO_2气凝胶及其结构、性能研究[D].大连理工大学,2007.
    [97]王培铭,许乾慰.材料研究方法[M].北京市:科学出版社,2005.
    [98]杨南如,岳文海.无机非金属材料图谱手册[M].武汉市:武汉工业大学出版社,2000.
    [99]PALACIOS M, PUERTAS F. Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes[J]. Cement and Concrete Research, 2007,37(5):691-702.
    [100]PALACIOS M, PUERTAS F. Effect of superplasticizer and shrinkage-reducing admixtures on alkali-activated slag pastes and mortars[J]. Cement and Concrete Research, 2005,35(7):1358-1367.
    [101]周永元,朱耀台,钱晓倩.混凝土干缩的物理力学机制描述[J].施工技术,2005:21-23.
    [102]杨南如.碱胶凝材料形成的物理化学基础(2)[J].硅酸盐学报,1996,24(4).
    [103]王培铭,许乾慰主.材料研究方法[M].北京市:科学出版社,2005.
    [104]郑娟荣,胡洁.碱激发胶凝材料及其固化Pb-(2+)的试验研究[J].环境工程学报,2009(4):733-738.
    [105]PENTTALA V, AL-NESHAWY F. Stress and strain state of concrete during freezing and thawing cycles[J]. Cement and Concrete Research,2002,32(9):1407-1420.
    [106]W. MICAH HALE S F F B. Examining the frost resistance of high performance concrete [J]. Construction and Building Materials,2008,23(2):878-888.
    [107]曹万智,孙庆霞,周茗如,等.胶凝材料与骨料品种对混凝土耐高温性能的影响规律研究[J].新型建筑材料,2009(3):17-20.
    [108]郑德明,钱红萍主.土木工程材料[M].北京市:机械工业出版社.
    [109]谷坤鹏,李漠.粉煤灰与表面涂层对混凝土抗氯离子侵蚀能力的影响[J].腐蚀与防护, 2008(7):385-388.
    [110]ASTM 1202-97 Standard test method for electrical indication of concrete ability to resist chloride ion penetration[S].1997.
    [111]陈乔,丛钢,杨长辉.碱矿渣混凝土氯离子渗透及钢筋锈蚀性能[J].混凝土,2009(6):59-61.
    [112]季晓霞,霍俊芳,李金帅.粉煤灰掺量对混凝土抗氯离子渗透性的影响[J].内蒙古工业大学学报(自然科学版),2010(2):149-153.
    [113]POPOVICS S. Effect of curing method and final moisture condition on compressive strength of concrete[J]. Journal of the American Concrete Institute, 1986,83 (4):650-657.
    [114]YAZICI H. The effect of curing conditions on compressive strength of ultra high strength concrete with high volume mineral admixtures [J]. Building and Environment, 2007,42(5):2083-2089.
    [115]张仁元.相变材料与相变储能技术[M].北京市:科学出版社,2008.
    [116]马保国,蹇守卫,金磊,等.无机/相变定型储能材料的制备研究进展[J].材料导报,2008(12):36-39.
    [117]戴彧,唐黎明.相变储热材料研究进展[J].化学世界,2001(12):662-665.
    [118]MESALHY 0, LAFDI K, ELGAFY A, et al. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix [J]. Energy Conversion and Management,2005,46(6):847-867.
    [119]ZHANG D, TIAN S L, XIAO D Y. Experimental study on the phase change behavior of phase change material confined in pores[J]. Solar Energy,2007,81(5):653-660.
    [120]NOMURA T, OKINAKA N, AKIYAMA T. Impregnation of porous material with phase change material for thermal energy storage[J]. Materials Chemistry and Physics, 2009,115(2-3):846-850.
    [121]石蜡[EB/OL]. (2011-03-05)http://baike.baidu.com/view/56312.htm.
    [122]膨胀珍珠岩[EB/OL]. (2010-12-22)http://baike.baidu.com/view/529210.htm.
    [123]管俊芳,陆琦,于吉顺.珍珠岩的加工和综合利用[J].化工矿物与加工,2003(4):6-9.
    [124]梁金生,梁广川,梁秀红,等.相变调温复合材料稳定性的检测方法:1462876[P].2003/12/24.
    [125]DALE P B R T. Potential applications of phase change materials in concrete technology[J]. Cement and Concrete Composites,2007,29:527-532.
    [126]KARAIPEKLI A, SARI A. Capric-myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage[J]. RENEWABLE ENERGY, 2008,33 (12):2599-2605.
    [127]BENTZ D P, TURPIN R. Potential applications of phase change materials in concrete technology[J]. Cement& Concrete Composites,2007,29(7):527-532.
    [128]王智宇,樊先平,钱国栋,等.相变石蜡复合膨胀珍珠岩保温隔热干粉砂浆[J].建材发展导向,2009(1):48-50.
    [129]KUZNIK F, VIRGONE J, NOEL J. Optimization of a phase change material wallboard for building use[J]. Applied Thermal Engineering,2008,28(11-12):1291-1298.
    [130]刘念雄,秦佑国.建筑热环境[M].北京市:清华大学出版社,2005.
    [131]孙丹.石蜡/膨胀珍珠岩复合相变材料制备及性能研究[D].大连理工大学,2010.
    [132]班广生主.建筑围护结构节能设计与实践[M].北京市:中国建筑工业出版社,2010.
    [133]GB50176-93民用建筑热工设计规范[S].北京:1993.
    [134]鲁辉,张雄,张永娟.脂肪酸/膨胀珍珠岩/石蜡复合相变材料的制备及其在建筑节能中的应用[J].新型建筑材料,2010(2):21-23.
    [135]LIANG D W, MONTEIRO L F, TEIXEIRA M R, et al. Fiber-optic solar energy transmission and concentration[J]. Solar Energy Materials and Solar Cells,1998,54(1-4):323-331.
    [136]XIAO W, WANG X, ZHANG Y P. Analytical optimization of interior PCM for energy storage in a lightweight passive solar room[J]. Applied Energy,2009,86(10):2013-2018.
    [137]ONG H C, MAHLIA T, MASJUKI H H. A review on energy scenario and sustainable energy in Malaysia[J]. Renewable & Sustainable Energy Reviews,2011,15(1):639-647.
    [138]WEINLADER H, BECK A, FRICKE J. PCM-facade-panel for daylighting and room heating[J]. Solar Energy,2005,78(2Sp. Iss. SI):177-186.
    [139]HAMMOU Z A, LACROIX M. A new PCM storage system for managing simultaneously solar and electric energy[J]. Energy and Buildings,2006,38(3):258-265.
    [140]SINGH R, TUNDEE S, AKBARZADEH A. Electric power generation from solar pond using combined thermosyphon and thermoelectric modules[J]. Solar Energy, 2011,85(2):371-378.
    [141]ODEH S D, BEHNIA M, MORRISON G L. Performance evaluation of solar thermal electric generation systems[J]. Energy Conversion and Management,2003,44(15):2425-2443.
    [142]LIU D P, LI W, FENG Z Q, et al. Plasma enhanced CVD of f luorocarbon films by low-pressure dielectric barrier discharge[J]. Surface & Coatings Technology, 2009,203(9):1231-1236.
    [143]JIANG H, HONGL G, VENKATASUBRAMANIAN N, et al. The relationship between chemical structure and dielectric properties of plasma-enhanced chemical vapor deposited polymer thin films[J]. Thin Solid Films,2007,515(7-8):3513-3520.
    [144]韩俊男.杂萘联苯聚芳醚砜中空纤维纳滤膜的研究[D].大连:大连理工大学,2011.
    [145]中华人民共和国国家标准.GB/T4111-1997混凝土小型空心砌块试验方法[S].北京:1997.
    [146]杨世铭,陶文铨.传热学[M].北京市:高等教育出版社,2006.
    [147]MAJED M A. Analysis of coupled natural convection-conduction effects on the heat transport through hollow building blocks[J]. Energy and buildings, 2006,38:515-521.
    [148]谢坤,刘唯广,齐旭东.复合砌块传热研究[J].新型建筑材料,2008(9):62-65.
    [149]贺平,孙刚,王飞等.供热工程[M].北京市:中国建筑工业出版社,2009.
    [150]郭恩震.砌块传热分析与合理应用[J].建筑技术开发,2002(2):33-35.
    [151]闵国华,陈东明.小砌块生产与农房建筑[M].合肥市:安徽科学技术出版社,1986.
    [152]中华人民共和国国家标准.普通混凝土小型空心砌块[S].北京:1997.
    [153]建筑热环境[EB/OL].2010. http://jckx.hncj.edu.cn.
    [154]被动式节能,和空调暖气说再见[EB/OL].2006. http://zzhz.zjol.com.cn/05zzhz/system/2006/06/29/007708222.shtml
    [155]高温席卷中国[EB/OL].2010. http://www.cctv.com.
    [156]STEPHANIE K. MEYN T R 0. Heat fluxes through roofs and their relevance to estimates of urban heat storage[J]. Energy and buildings,2009,41(7):745-752.
    [157]QINGLIN MENG W H. Roof cooling effect with humid porous medium [J]. Energy and Buildings, 2005,37(1):1-9.
    [158]MARCEL FUCHS E D. Eugene Presnov. Evaporative cooling of a ventilated greenhouse rose crop[J]. Agricultural and Forest Meteorology,2006,138(1-4):203-215.
    [159]H. BARROW C W P. Droplet evaporation with reference to the effectiveness of water-mist cooling[J]. Applied energy,2007,84(4):404-412.
    [160]SURAKHA WANPHEN K N. Experimental study of the performance of porous materials to moderate the roof surface temperature by its evaporative cooling effect [J]. Building and environment,2009,44(2).
    [161]0. KASKA R Y. Comparison of experimental and theoretical results for the transient heat flow through multilayer walls and flat roofs[J]. Energy,2008,33(12):1816-1823.
    [162]C. ATZENT G P U S. A fractal model of the porous microstructure of earth-based materials[J]. Construction and building materials,2008,22(8):1607-1613.
    [163]F. PUERTAS T A A F. Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres[J]. Cement and concrete research, 2003,33(12):2031-2036.
    [164]Guoqiang Li Venkata D. Muthyala. A cement based syntactic foam [J]. Materials science and engineering A,2008,478(1-2):77-86.
    [165]F. K. AKTHAR J R G E. High porosity (>90%) cementitious foams [J]. Cement and Concrete Research,2010,40 (2):352-358.
    [166]沈荣熹等.新型纤维增强水泥基复合材料[M].北京市:中国建材工业出版社,2004.
    [167]Li G Q, MUTHYALA V D. A cement based syntactic foam[J]. Materials Science and Engineering A-Sructural Materials Properties Microstructure and Processing, 2008,478(1-2):77-86.
    [168]AKTHAR F K, EVANS J. High porosity (>90%) cementitious foams[J]. Cement and Concrete Research,2010,40 (2):352-358.
    [169]JUST A, MIDDENDORF B. Microstructure of high-strength foam concrete[J]. Materials Characterization,2009,60(7Sp. Iss. SI):741-748.
    [170]NAMBIAR E, RAMAMURTHY K. Influence of filler type on the properties of foam concrete [J]. Cement & Concrete Composites,2006,28(5):475-480.
    [171]曹巨辉.玻璃纤维增强水泥基材料耐久性能研究[D].重庆:重庆大学,2004.
    [172]黄功学.聚丙烯纤维混凝土(砂浆)物理力学性能试验研究[D].郑州:郑州大学,2005.
    [173]NAMBIAR E, RAMAMURTHY K. Models for strength prediction of foam concrete [J]. Materials and Structures,2008,41(2):247.
    [174]E. K. KUNHANANDAN NAMBIAR K R. Influence of filler type on the properties of foam concrete[J]. Cement and Concrete Composites,2006,28(5):475-480.
    [175]CROSS S S. The application of fractal geometric analysis to microscopic images [J]. Micron,1994,25(1):101-113.
    [176]PERFECT E, KAY B D. Applications of fractals in soil and tillage research:A review[J]. Solid & Tillage Research,1995,36(1-2):1-20.
    [177]谢和平,薛秀谦.分形应用中的数学基础与方法[M].北京市:科学出版社,1997.
    [178]褚武扬等.材料科学中的分形[M].北京市:化学工业出版社,2004.
    [179]ZENG Q A, LI K F, FEN-CHONG T, et al. Surface fractal analysis of pore structure of high-volume fly-ash cement pastes [J]. Applied Surface Science,2010,257(3):762-768.
    [180]WANG Y T, DIAMOND S. A fractal study of the fracture surfaces of cement pastes and mortars using a stereoscopic SEM method [J]. Cement and Concrete Research, 2001,31(10):1385-1392.
    [181]谭晓倩.结合分形理论的水泥絮凝研究[D].大连理工大学,2006.
    [182]廖建国MgO-C砖气孔组织和热导率的关系[J].国外耐火材料,2004,29(4):53-57.
    [183]章熙民,任泽霈,梅飞鸣.传热学第5版[M].北京市:中国建筑工业出版社,2007.
    [184]苏向辉.多层多孔结构内热湿耦合迁移特性研究[D].南京航空航天大学,2002.
    [185]卢涛.毛细多孔介质干燥过程中传热传质模型研究及应用[D].大连:大连理工大学,2003.
    [186]杨邦杰.土壤蒸发过程的数值模型及其应用[M].学术书刊出版社,1989.
    [187]张雅静,申向东,李晓丽.耕作地表土壤粒径分布与空气动力学粗糙度关系的研究:2005年中国农业工程学会学术年会,中国广东广州,2005[C].
    [188]杨邦杰,隋红建.土壤水热运动模型及其应用[M].北京市:中国科学技术出版社,1997.
    [189]李振山,陈广庭.粗糙度研究的现状及展望[J].中国沙漠,1997(1):101-104.
    [190]侯占峰,鲁植雄,赵兰英.耕作土壤地表不平度的分形特性[J].农业机械学报,2007(4):50-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700