芦苇湿地蒸散发测算方法及耗水预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地是多功能的独特生态系统,是自然界最富有生物多样性的生态景观和人类重要的生存环境之一,具有调节河川径流、防止水旱灾害、净化污染的功能和很高的生产力,对维持自然生态平衡和促进国民经济发展起到着不可替代的作用。受我国人口增长、工农业用水持续紧张、全球气候变化等一系列因素的影响,我国大部分湿地面临严峻考验,出现湿地面积迅速减小、生物多样性下降、敏感物种消失等严重后果,对湿地的保护、恢复工作亟待进行。水是形成和维系湿地生态系统的重要因子,湿地水量变化对湿地功能及临界状态研究具有重要意义,在湿地水循环要素中,水生植物蒸散耗水量最难直接确定,其变化规律是进行湿地水循环与水量动态变化研究的关键。本文研究了沼泽湿地原形条件下蒸散发的测量问题,通过实验测量和模型分析,评估了湿地区域主要下垫面类型芦苇沼泽和自由水面条件下不同时间尺度的蒸散耗水量,研究了湿地大型水生植物对湿地水面蒸发的影响机理及变化规律,分析了湿地区域气象因子的变化趋势及其对蒸散耗水的影响,对未来时期湿地芦苇沼泽蒸散耗水的可能变化趋势做出了预测,为全面科学的进行湿地水资源管理、制定湿地保护计划提供科学的依据。本文的研究以扎龙湿地为背景,主要研究内容和成果如下:
     (1)大型水生植物蒸散耗水量直接测定,蒸散耗水过程的数学模型描述
     对国内外不同下垫面蒸散耗水直接测量方法进行了系统的评述,研究了不同学科领域蒸散耗水的测算方法,根据扎龙湿地的实际水文地质情况,研制了“三筒补偿式蒸渗仪”,适合测量下垫面经常处于饱和状态的芦苇沼泽蒸散耗水量,其方法、装置分获两项国家发明专利授权。研究对2004年、2005年扎龙湿地芦苇生长期内的蒸散耗水量进行了对比观测,分析了湿地大型水生植物芦苇对自由水面蒸发的影响,建立了耦合当地微气象观测数据及芦苇生理指标的多元回归模型,具有很好的相关性。
     (2)扎龙湿地区域参照蒸散发估算的经验模型的构建
     对湿地周边气象站历史数据进行了整理分析,使用FAO56单系数法计算了湿地区域的参照作物蒸散量,通过统计参照蒸散量与多个气象因子的相关关系,以相关平方系数和均方误差为拟合评价指标,尝试使用不同拟合模型和气象因子组合方式建立了拟合Penman-Monteith模型结果的经验公式,该公式耦合了湿地最高气温、最低气温、降雨量、风速四个因子,能够很好地估算湿地区域逐月参照蒸散耗水量。
     (3)湿地区域蒸散耗水变化的气候学原因分析
     以扎龙湿地周边的齐齐哈尔、富裕、林甸、杜蒙、泰来五气象站1961~2000年的逐月气象数据估算了湿地区域40年的蒸散耗水量。对五站最高气温、最低气温、降雨量、风速四因子的40年变化趋势进行了分析,结果表明湿地区域最高气温具有不显著的上升趋势,最低气温具有显著的上升趋势,二者的变化是不对称的,平均风速具有显著的下降趋势,而降雨量的变化不明显。经验模型各气象因子的敏感性分析说明了最高气温、最低气温是影响湿地蒸散耗水变化的主要因子,二者的变化率决定了蒸散耗水的变化趋势。在最高气温、最低气温均上升的时期,平均气温的上升并不一定意味着蒸散耗水的增加,最低气温的显著上升会抵消最高气温对蒸散的正面影响,使蒸散量有可能呈现下降的趋势,研究给出了描述三者变化率关系的微分方程。
     (4)未来时期,扎龙湿地区域芦苇沼泽可能的蒸散耗水量预测
     利用建立的经验模型,在气象因子线性外延及HadCM3、CCSRNIES、CSIRO-Mk2、CGCM1四个大气环流模型气候情景下估算了扎龙湿地区域未来60年(2001~2060年)的蒸散耗水时间分布情况,计算了气候变化影响的蒸散耗水增加量。
Wetland is the unique multi-purpose ecosystem and the ecological landscape with biodiversity, and it is also the most important living conditions for human being. Wetlands function as the downstream receiver of water and waste from both natural and human sources, they stabilize water supplies, thus ameliorating both floods and drought, and they also have high productivity to provide multiform resource for human society, therefor, wetlands play an irreplaceable role in maintaining ecological balance and promoting national economic growth. However, affected by a series of factors, such as the rapid increasement of population in China, continuous shortage of industrial and agricultural water use, global climate change, wetlands in China have faced severe situations, as a result, many wetlands disappear at alarming rates, and considerable parts can never be resumed, whereas, wetlands protection and restoration become the foremost problem to be resolved.
     Water is the prime factor to shape and maintain the wetland ecosystem, the change of water status is very meaningful for wetland function study and critical stage judgement. Of the water circle factors in wetland, the aquatic macrophytes evapotranspiration (ET) is very difficult to measured derectly, and it is also a key point for the study of water dynamic variety in wetland. By experimental test and model estimation, Mulit-temporal scale ET of the main underlying type in wetland, reed swamp and open water, is evaluated, the effect of aquatic macrophytes ET on open water and the change laws of ET are investigated, the climatologic characteristics that affect wetland ET is analysed, and the possible change trend of ET loss in future period is predicted. The study in this paper can provide comprehensive support for wetland hydrology management and wetland protection. Zhalong wetland is chosen for studing in this paper, the main contents and achievements are as followed:
     (1):Derect measurement for ET of aquatic macrophytes in wetland, simulation of ET process by mathematical model
     Systemic summarization is made for ET evaluating methods on different underlying types, considerable contrasts are made for different mathods, as a result, "compensatory lysimeter with three cylinders" is developed according to the characteristics of Zhalong wetland, and it is proved that this lysimeter is befitting for measuring ET loss of the saturated reed swamp, the patent applications of the measuring method and device are authorized by the State Intellectual Property Office of PRC. Contrastive experimental test is carried out in Zhalong wetland from 2004 to 2005 (during reed growing season from May 16 to Oct.16), and the function of reed ET to open water is analysed, by use of the actually observed data, a simulation equation of the ET in Zhalong reed belt is established with a high correlative coefficient, which is concerned to the factors of air temperature, wind speed, relative humidity, and reed height and leaf area.
     (2):The establishement of empirical model for evaluating reference crop ET in Zhalong wetland region
     By analyzing the relationships between FAO56 reference evapotranspiration (RET) and each meteorological variable (the data set is from eight meteorological stations around Zhalong wetland), a statistical model for estimating RET is established. The correlation coefficients (R2) and root-mean-square error (RMSR) are chosen for evaluating the fitting efficiency to RET. After selecting from the meteorological variables that influence ET processes, the essential variables are chosen and some collinearity variables are removed. Through permuting and combining, the essential variables and other candidate variables, different combinations are introduced in various fitting expressions, finally, the model couped with monthly maximum temperature (Tmax), minimum temperature (Tmin), precipitation (P) and wind speed at 2 meter height (U2) is established. Application shows that it can serve as a valuable tool for wetland ET evaluation.
     (3):The analysis of climatic reasons that affect wetland ET change
     Data set of five meteorological stations around Zhalong wetland viz. Qiqihar, Fuyu, Lindian, Dumeng and Tailai is used for wetland ET estimating in the period from 1961 to 2000, the annual ET on reed swamp shows degressive tendency, the decrease in recent 40 years is 92mm. The change trend of meteorological factors in wetland area is detected, the results show that significant increasing trend is found of Tmin in recent 40 years in the wetland, however, no significant increasing trend is found of Tmax, and their change shows asymmetry, the U2 shows significant degressive trend, and no evident change of P in study site is detected, the sensitivity analysis shows that Tmax and Tmin are two dominating factors that influence ET markedly, and the difference of rising rate between Tmax and Tmin determines the change trend of ET, the rising of average temperature does not means the increasing trend of ET, in the periods that the rising rate of Tmin exceeds that of Tmax obviously, Tmin counteracts the positive influence of Tmax to ET, the ET can show a decreasing trend as a result. The differential eguation described the change rate of ET, Tmax and Tmin is provided in this study.
     (4):The possible ET loss prediction of wetland in future period, the calculation of additional water consumption by ET based on climate change.
     With the empirical model and two climatic scenarios, in future period from 2001 to 2060, viz. linear extrapolation of climatic trends and the predictions of four GCMs (Hadcm3, CCSRNIES, CSIRO-Mk2 and CGCM1) are assumed to calculate the possible ET loss in Zhalong wetland.
引文
[1]吕宪国,刘红玉.湿地生态系统保护与管理.北京:化学工业出版社,2004.
    [2]陈宜瑜.中国湿地研究.长春:吉林科学技术出版社,1995.
    [3]朗惠卿,林鹏,陆健键.中国湿地研究和保护.上海:华东师范大学出版社,1998.
    [4]安树青.湿地生态工程-湿地资源利用与保护的优化模式.北京:化学工业出版社,2003.
    [5]何池全.湿地植物生态过程理论及其应用-三江平原典型湿地研究.上海:上海科学技术出版社,2003.
    [6]国家环境保护局主持.中国生物多样性国情研究报告编写组编.中国生物多样性国情研究报告.北京:中国环境科学出版社,1998.
    [7]陈克林,张小红,吕咏.气候变化与湿地.湿地科学,2003,1(1):73-77.
    [8]刘昌明,何希吾.中国21世纪水问题方略.北京:科学出版社,2001.
    [9]刘昌明,陈志恺.中国水资源现状评价和供需发展趋势分析.北京:中国水利水电出版社,2001.
    [10]高广生.应对气候变化——省级决策者能力建设培训教材.中国人民大学环境学院,2003.
    [11]SCOTT, DA. Wetland inventories and the assessment of wetland loss:a global overview. in:M Moser, Prentice, R.C. & van Vessem, J. (eds.), Waterfowl and Wetland Conservation in the 1990s-A Global Perspective. Slimbridge, U.K.:IWRB,1993.
    [12]傅国斌,李克让.全球变暖与湿地生态系统的研究进展.地理研究,2001,20(1):120-128.
    [13]徐影,丁一汇,赵宗慈.长江中下游地区21世纪气候变化情景预测.自然灾害学报,2004,13(1):25-31.
    [14]林而达,许吟隆,蒋金荷等.气候变化国家评估报告Ⅱ气候变化的影响与适应.气候变化研究进展,2006,2(3):51-56.
    [15]刘春蓁.气候变化对陆地水循环影响研究的问题 地球科学进展,2004,19(1):115-119.
    [16]施雅风,张祥松.气候变化对西北干旱区地表水资源的影响和未来趋势.中国科学(B辑),1995,25(9):968-977.
    [17]游松财,KiyoshiTakahashi, YuzuruMatsuoka全球气候变化对中国未来地表径流的影响第四纪研究,2002,22(2):148-157.
    [18]敬正书.中国水利发展报告.北京:中国水利水电出版社,2004.
    [19]刘德辉,梁珍海,李荣锦.蒸发研究的概况与进展.江苏林业科技,1998,25(4).
    [20]Penman, H.L., and I.F. Long.. Weather in wheat. Quarterly J. Roy. Meteorol. Soc,1960,86:16-50.
    [21]Philip, J.R. Plant water relations:some physical aspects. Ann. Rev. Plant Physiol,1966, (17):245-268.
    [22]Monteith, J.L. Evaporation and environment. Symposium of the Society for Experimental Biology, The State and Movement of Water in Living Organisms, Academic Press, Inc., NY.,1965,19:205-234.
    [23]Allen, J.R.L. Modern-period muddy sediments in the severn estuary (Southwestern UK)-A pollutant-based model for dating and correlation. Sedimentary Geology,1988,58(1):1.
    [24]Shuttleworth, W.J., Wallace,J.S. Evaporation from sparse crops-an energy combination theory. Quarterly J. Roy. Meteorol. Soc,1985,111:839-855.
    [25]于贵瑞.不同冠层的陆地植被蒸散发模型研究进展.资源科学,2001,23(6):72-84.
    [26]张有芷.我国水面蒸发实验研究概况.人民长江,1999,30(3):6-8.
    [27]赵家义.用水利蒸发器测定农田蒸发的试验研究.地理集刊,1980,(12).
    [28]刘昌明等.用零通量面法计算土壤蒸发的探讨.中国地学会第四次全国水文学术会议文集,北京,1989
    [29]梁海珍,刘德辉等.苏北沿海防护林对林地土壤蒸发的影响研究.南京大学学报,1996,(1).
    [30]孙宏勇,刘昌明,张永强等.微型蒸发器测定土面蒸发的试验研究.水利学报,2004,(8):114-118.
    [31]中国科学院禹城综合试验站.农田水分与能量试验研究.北京:科学出版社,1990.
    [32]左大康,谢贤群.农田蒸发研究.北京:气象出版社,1991
    [33]施成熙,卡毓明,朱晓原.确定水面蒸发模型.地理科学,1984,(3).
    [34]刘昌明,窦清晨.土壤-植物-大气连续体模拟中的蒸散发计算.水科学进展,1992,3(4):255-263.
    [35]刘绍民,刘志辉.用Priestley-Taylor公式估算作物农田蒸散量的研究.高原气象,1997,16:191-196.
    [36]邱新法,曾雁,缪启龙等.用常规气象资料计算陆面年实际蒸散量.中国科学(D辑),2003,33(3):281-288.
    [37]魏小平,王根轩,吴冬秀.干旱和CO2浓度升高对不同春小麦光合作用和气孔阻力及水分蒸腾效率的影响.兰州大学学报(自然科学版),2005,41(6):42-46.
    [38]康燕霞,蔡焕杰,王健等.夏玉米日蒸发蒸腾量计算方法的试验研究干旱地区农业研究,2006,24(2):110-113.
    [39]孙睿,刘昌明,李小文.利用累积NDVI估算黄河流域年蒸散量.自然资源学报,2003,18(2):155-160.
    [40]潘志强,刘高焕.黄河三角洲蒸散的遥感研究.地球信息科学,2003,(3):91-96.
    [41]吴炳方,邵建华.遥感估算蒸腾蒸发量的时空尺度推演方法及应用.水利学报,2006,37(3):286-292.
    [42]Frederick, K.D., Major,D.C. Climate change and water resource. Climatic Change,1997,37:7-23.
    [43]Aida M.Jose, R.V.Francisco, N.A.Cruz. A Study on Impact of Climate Variablity/Change on Water Resources in the Philippines. Chemosphere,1996,33(9):1687-1704.
    [44]Najjar, R.G. The water balance of the Susquehanna River Basin and its response to climate change. Journal of Hydrology,1999,219:7-19.
    [45]郭生练.气候变化与水面蒸发计算.武汉水利电力大学学报,1994,27(1).
    [46]黄贤庆,刘新仁.大尺度蒸发模型研究.河海大学学报,2000,28(4):14-18.
    [47]佟玲,康绍忠,粟晓玲.石羊河流域气候变化对参考作物蒸发蒸腾量的影响.农业工程学报,2004,20(2):15-18.
    [48]荣艳淑,屠其璞.天津地区蒸发演变及对本地气候干旱化影响的研究.气候与环境研究,2004,9(4):575-583.
    [49]Stanhill G, Cohen S.. Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences Agricultural and Forest Meteorology,2001,107:255-278.
    [50]Chattopadhyay N, Hulme M. Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agric. Forest Meteorol,1997,87:55-72.
    [51]殷永元,王桂新.全球气候变化评估方法及其应用.北京:高等教育出版社,2004.
    [52]IPCC. Climate Change 2001:Impacts,Adaptation, and Vulnearability.Summary for Policy Makers. A report of Working Group Ⅱ of the Intergovernmantal Panel on Climate Change. Geneva,Switzerland:2001.
    [53]沈大军,刘昌明.水文水资源系统对气候变化的响应.地理研究,1998,17(4):435-443.
    [54]张建云,章四龙,李岩.水文科学面临的气候变化问题.2004年全国水文学术讨论会,2004.
    [55]石缎花,李惠民.气候变化对我国水文水资源系统的影响研究.环境保护科学,2005,31(132):59-61.
    [56]Carter, T.R. Climate Change:Preliminary Guidelines for Assessing Impacts of Climate Change. ECU/CGER,1992.
    [57]N.W., Arnell. Factors controlling the effects of climate change on riverflow regimes in a humid temperate environment. Journal of Hydrology,1992,132:321-342.
    [58]Segal, M.et.al. Some assessment of the potential 2xCO2 climatic effects on water resources components in the eastern Mediterranean. ClimaticChange,1994,27:351-371.
    [59]Annemieke, I.Gardenas, Per-Erik Jansson. Simulated water balance of Scots pine stands in Sweden for different climate change scenarios. Journal of Hydrology,1996,166:107-125.
    [60]W. Zeng, J. L. Heilman. Sensitivity of evapotranspiration of cotton and sorghum in west Texas to changes in climate and CO2 Theoretical and Applied Climatology 1997,57(3-4):245-254
    [61]N.Chattopadhyay, M, Hulme. Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agric. Forest Meteorol,1997,87:55-73.
    [62]金之庆等.应用GCMS和历史气候资料生成我国在C02浓度倍增时的气候情景.中国农业气象,1992,(5):13-20.
    [63]王绍武等.未来50年中国气候变化趋势的初步分析.应用气象学报,1995,(3):334-341.
    [64]张翼.气候变化及其影响.北京:气象出版社,1996.
    [65]Yu P S, Yang T C, Chou C C. Effects of climate on evapotranspiration from paddy fields in southern TAIWAN. Climatic Change,2002,54:165-179.
    [66]Fulu Tao, Masayuki Yokozawa, Yousay Hayashi.et.al. Future climate change, the agricultural water cycle, and agricultural production in China Agriculture, Ecosystems and Environment,2003,95:203-215.
    [67]刘晓英,林而达.气候变化对华北地区主要作物需水量的影响.水利学报,2004,35(2):77~87.
    [68]Idso S, Brazel A. Rising atmospheric carbon dioxide may increase stream flow. Nature,1984,312: 51-53.
    [69]Havholm, K.G. and G. Kocurek. A preliminary study of the dynamics of a modern DRAA, Algodones, Southeastern California, USA. Sedimentology,1988,35(4):649.
    [70]白莉萍,林而达.CO2浓度升高与气候变化对农业的影响研究进展.中国生态农业学报,2003,11(2):132-134.
    [71]杜华明.气候变化对农业的影响研究进展.四川气象,2005,25(4):18-20.
    [72]张劲松,孟平,尹昌君.植物蒸散耗水量计算方法综述.世界林业研究,2001,14(2):23-27.
    [73]司建华,冯起,张小由等.植物蒸散耗水量测定方法研究进展.水科学进展,2005,16(3):450-459.
    [74]Mac Nish, R.D., Unkrich, C.L., Smythe, Evelyna.et al. Comparison of riparian evapotranspiration estimates based on a water balance approach and sap flow measurements Agricultural and Forest Meteorology 2000,105(1-3):271-279.
    [75]Michael, T.Hobbins, Jorge A.Ramirez, Thomas C.Brown. The complementary relationship in estimation of regional evapotranspiration:An enhanced Advection-Aridity model. Water Resources Res, 2001,37(5):1389-1403.
    [76]Michael, T.Hobbins, Jorge A.Ramirez, Thomas C.Brown. The Complementary Relationship In Regional Evapotranspiration: The CREA Model And The Advection -Aridity Approach. hydrology Days, 1999:1-15.
    [77]Yu-Lin Li, Jian-Yuan Cui, Tong-Hui Zhang et.al Measurement of evapotranspiration of irrigated spring wheat and maize in a semi-arid region of north China Agricultural Water Management,2003,61: 1-12.
    [78]Sanchez-Carrillo, S.. A simple method for estimating water loss by transpiration in wetland. Hydrological Sciences-Journal,2001,46(4).
    [79]司建华,冯起,张小由.热脉冲技术在确定胡杨幼树干液流中的应用.冰川冻土,2004,26(4):503-508.
    [80]Edward, R.German. Regional Evaluation of Evapotranspiration in the Everglades. U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 00-4217,2000.
    [81]Ewel, K.C., J.E. Smith. Evapotranspiration from Frorida pond cypress swamps. Water Resources Bulletin,1992,28:299-304.
    [82]Peter Bauer., George Thabeng, Fritz Stauffer.et al. Estimation of the evapotranspiration rate from diurnal groundwater level fluctuations in the Okavango Delta, Botswana Journal of Hydrology,2004,288: 344-355.
    [83]吴家兵,关德新,张弥等.涡动相关法与波文比-能量平衡法测算森林蒸散的比较研究——以长白山阔叶红松林为例.生态学杂志,2005,24(10):1245-1249.
    [84]杨建锋.地下水-土壤水-大气水界面水份转化综述.水科学进展,1999,10(2):183-189.
    [85]康绍忠,熊运章,王振镒.土壤-植物-大气连续体水分运移力能关系的田间试验研究.水利学报,1990,(7).
    [86]Thornthwaite, C. W. An approach toward a rational classification of climate. Geogr Rev,1948,38: 55-94.
    [87]Hargreaves, G. H. and Samni, Z. A. Reference Crop Evapotranspiration from Temperature. TRANSACTION of the ASAE,1985.
    [88]陈云浩,李晓兵,史培军.非均匀陆面条件下区域蒸散量计算的遥感模型气象学报,2002,60(4):508-512.
    [89]陈刚起,吕宪国,杨青等.三江平原沼泽蒸发研究.in:陈刚起,牛焕光,吕宪国,三江平原沼泽研究.北京:科学出版社,1996:5-11.
    [90]Pauliukonis, Nijole, Schneider, Rebecca Temporal patterns in evapotranspiration from lysimeters with three common wetland plant species in the eastern United States Aquatic Botany 2001,71(1):35-46.
    [91]Mathias Herbst, Ludger Kappen.. The ratio of transpiration versus evaporation in a reed belt as influenced by weather conditions. Aquatic Botany,1999,63:113-125.
    [92]Jacobs, Jennifer M., Myers, David A.,Anderson, Martha C.et al. GOES surface insolation to estimate wetlands evapotranspiration Journal of Hydrology 2002,266(1-2):53-65
    [93]Abtew, W. and J. Obeysekera Lysimeter study of evapotranspiration of cattails and comparison of three estimation methods. Transactions of the ASAE 1995,38(1):121-129.
    [94]I. Goodwin, A. M. Boland,雷廷武等.中国条件下果树蒸渗仪的设计与应用,果树调亏灌溉密植节水增产技术的研究与开发.北京:北京农业大学出版社,1994.
    [95]刘士平,杨建锋,李宝庆等.新型蒸渗仪及其在农田水文过程研究中的应用.水利学报,2000,(3):29-36.
    [96]赵明,郭志中,李爱德等.渗漏型蒸渗仪对梭梭和柠条蒸腾蒸发的研究.西北植物学报,1997,17(3):305~314.
    [97]Marek, T. H., A.D. Schneider, T.A. Howell, and L.L. Ebeling. Design and construction of large weighing monolithic lysimeters. Trans. ASAE,1988,31(2):477-484.
    [98]康跃虎,赵爱国,刘士平等.田间农作物吊挂式称重电测蒸渗仪 中国,实用新型,CN02240064.8.2003.
    [99]雷廷武,詹卫华,黄兴法压吸气排水式蒸渗仪.中国,实用新型,CN03236025.8.2004.
    [100]李银芳.窗式排水蒸渗仪.中国,实用新型,CN98244556.3.1999.
    [101]Wright, I.R. A Lysimeter for the Measurement of Evaporation from High Altitude Grass, in: Improved Methods of Hydrological Measurements in Mountain Area. Wallingford:IAHS Press,1990.
    [102]李兴春,张延坤,赵立华等.扎龙湿地水资源规划生态环境需水量专题研究报告.松辽水环境科学研究所,2003年6月.
    [103]Priestley, C. H. B., Taylor, R. J. On the Assessment of the Surface heat Flux and Evaporation using Large-scale Parameters. Monthly Weather Review,1972,100:81-92.
    [104]Morton, F. I. Operational estimates of areal evaportranspiration and their significance to the science and practice of hydrology. J. Hydrol.,1983,66:1-76.
    [105]Jensen, M.E., R.D. Burman, and R.G. Allen (eds.). Evaporation and irrigation water requirements. ASCE Manuals and Reports on Eng. Practices No.70., Am.Soc. of Civil Eng., NY,1990:360 pp.
    [106]Suat Irmak, Dorota Z. Haman. Evapotranspiration: Potential or Reference? http://edis.ifas.ufl.edu/AE256.
    [107]Burman, R.D., R.H. Cuenca, and A. Weiss. Techniques for estimating irrigation water requirements. In D. Hillel (ed.). Advances in Irrigation.Academic Press, Inc., NY.,1983,1:335-394.
    [108]Wright, J.L.. New evapotranspiration crop coefficients. J. Irrig. and Drain. Div.,Am. Soc. of Civil Eng,1982,108(IR1):57-74.
    [109]Walter I A, Allen R G, Elliott R,et al. ASCE standardized reference evapotranspiration equation. In: Evans R G. National Irrigation Symposium,ASAE. Phoenix,ASCE,2000:1-6.
    [110]Peter Doroogers, Richard G. Allen. Estimating reference evapotranspiration under inaccurate data conditions. Irrigation and Drainage Systems,2002,16:33-45.
    [111]Brutsaert, W., and H. Stricker. An advection-aridity approach to estimate actual regional evapotranspiration. Water Resources Res,1979,15(2):443-450.
    [112]Katul, G.G., and Parlange, M.B. A penman-Brutsaert model for wetsurface evaporation. Water Resources Res,1992,28:121-126.
    [113]C.-Y.XU, V.P SINGE. Cross Comparison of Empirical Equations for Calculating Potential Evapotranspiration with Data from Switzerland Water Resources Management,2002,16:197-219.
    [114]Penman, H.L. Natural evaporation from open water, bare soil, and grass. Proceedings of the Royal Society of London,1948,193:120-146.
    [115]S. Alexandris, P. Kerkides. New empirical formula for hourly estimations of reference evapotranspiration Agricultural Water Management,2003,60:157-180.
    [116]Hargreaves G.L., Hargreaves G.H., Riley J.P.. Agricultural benefits for Senegal River basin. J.Irrig. and Drain. Engrg. ASCE,1985,111(2):113-124.
    [117]藤素珍.数理统计.大连:大连理工大学出版社,2000.
    [118]魏凤英.气象统计分析方法.北京:气象出版社,1999.
    [119]Libiseller, Claudia Visual Basic Program for Multivariate and Partial Mann-Kendall tests. http://www.mai.liu.se/-cllib/welcome/Mann-Kendall.xls,2005-8-8.
    [120]钱易,汤鸿霄.西北地区水资源配置生态环境建设和可持续发展战略研究—水污染防治卷—西北地区水污染防治对策研究.北京:科学出版社,2004.
    [121]宗蓓华.战略预测中的情景分析方法.预测,1994,2:50-53.
    [122]Akio KITOH, Masahiro HOSAKA, Yukimasa ADACHI, et.al. Future Projections of Precipitation Charateristics in East Asia Simulated by the MRI CGCM2 Advances in Atmospheric Sciences,2005,22(4): 467-478.
    [123]杨昕,王明星,黄耀.地-气间碳通量气候响应的模拟研究Ⅱ.未来气候变化.生态学报,2002,22(6):817-821.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700