基于Budyko水热耦合平衡假设的流域蒸散发研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒸散发是流域水循环和能量循环的关键环节,在一定的气候和下垫面条件下有其一定的规律。目前,在全球气候变化的研究中发现了蒸发悖反现象。由此,围绕气候变化引起的实际蒸散发变化及水文循环响应的研究,得出了不同的结论,其中以Penman蒸发正比假设和Bouchet蒸发互补假设之间的争论最为典型。为更好地理解上述差异,本文引入基于Budyko水热耦合平衡假设的傅抱璞公式,试图统一认识流域实际蒸散发与潜在蒸散发之间的关系,从水热耦合关系来探讨估算流域年实际蒸散发的新方法,并基于Budyko假设定量分析气候变化的水文响应演变趋势及区域特征。
     首先,论文分析了我国近50年气候水热状况的变化及区域特征。结果发现:蒸发悖反现象出现在1990年之前,之后逐渐消失;降水和潜在蒸发的长期趋势之间有较大差异和显著的区域特征,且降水和潜在蒸发在多年平均尺度上呈相反分布,在年尺度上呈负相关关系,而在月尺度上呈正相关关系。
     基于对我国非湿润区108个研究流域的水量平衡分析以及基于傅抱璞公式的理论分析,提出了年尺度上流域蒸散发的解释:湿润地区实际蒸发主要受潜在蒸发控制,因此两者呈正比关系;而非湿润地区的实际蒸散发主要受降水控制,这时降水与潜在蒸发间的负相关关系导致实际蒸发与潜在蒸发间呈互补关系。从而通过Budyko假设将蒸发正比假设和蒸发互补假设在年尺度上统一起来。
     针对108个研究流域的分析发现傅抱璞公式的参数与流域下垫面条件密切相关并具有显著的区域特征。通过逐步回归分析提出了估算该参数的半经验公式。验证结果表明:利用傅抱璞公式和该半经验公式一起能较准确地估算流域多年平均及逐年的实际蒸散发量。
     结合田间水热通量观测数据,分析了不同时间尺度上实际蒸散发与潜在蒸散发之间的关系并进行了理论解释。结果表明:在非湿润地区多年平均和年尺度上二者呈互补关系,而在日和小时尺度上呈正相关关系。
     基于傅抱璞公式分析了气候变化的水文响应并结合非湿润区水量平衡分析发现,非湿润区潜在蒸发对实际蒸发的控制作用在一些研究中已被夸大。通过傅抱璞公式的计算结果,揭示了我国潜在蒸发和实际蒸发之间相关关系的全貌。
Evapotranspiration links with both water and energy cycles in a watershed, plays a key role in the climate-soil-vegetation interactions under a certain climate and landscape condition. Currently, increase in air temperature and decrease in pan evaporation was found to be common worldwide during the past half century, which is termed as pan evaporation paradox. This results in controversy in view of the changes to the hydrological cycle expected by using the Penman and Bouchet hypotheses. In order to reconcile this controversy, this study introduced Fu’s analytical solutions to Budyko’s coupled water and energy balance hypothesis.
     Building on the previous investigations, this study is aimed to understanding the relationships between the actual and potential evapotranspiration, to develop a coupled water-energy balances method for watershed evapotranspiration, and to predict the hydrologic response to climate change and its regional feature.
     First of all, the change of climate condition over China from 1956 to 2005 has been examined. It has been shown that the pan evaporation paradox phenomenon occured from 1956 to 1990, whereas disappears since 1990 gradually. In the longterm trends, precipitation and potential evapotranspiration show large difference with significant regional feathers. For the whole China, they show inverse distribution at the long-term timescale, are negatively correlated at annual timescale, and positively related at the month timescale.
     Secondly, in terms of water balance analysis in 108 catchments of nonhumid regions in China and the theoritial analysis based on Fu’s equation, this study has explained the evapotranspiration at the catchment scale as: in humid regions, change in actual evapotranspiration is controlled mainly by change in potential evapotranspiration rather than precipitation, and this is identical to the Penman hypothesis; in non-humid regions, change of actual evapotranspiration is dominated mainly by change in precipitation rather than potential evapotranspiration, and the Bouchet complementary relationship between actual evapotranspiration and potential evapotranspiration comes about because actual and potential evapotranspiration are correlated via precipitation. Thus the consistency of the two opposite hypothesis has been unified into the Budyko’s hypothesis.
     Further, it has been found that besides the annual climate conditions, the regional pattern of annual water-energy balance is also closely correlated with the relative infiltration capacity, relative soil water storage, and the average slope. This enables one to estimate the parameterω|- from catchment characteristics without calibration from the long time series of water balances. By stepwise regression analysis, a semi-empirical formula for the parameterω|- in terms of the dimensionless landscape parameters is proposed. Applications of Fu’s equation together with the parameterω|- estimated by this empirical formula have shown that Fu’s equation can predict both long-term mean and annual value of actual evapotranspiration accurately. This implies that the Fu’s equation can be used for predicting the annual water balance in ungauged basins.
     Together with the experimental flux data observed at an irrigated agricultural field, the relationships in evapotranspiration are examined at different timescales, namely long-term, annual, daily and hourly timescale. It has been found that they show complementary at both the long-term annual and annual timescales, whereas at both daily and hourly timescales they show propotional relationships. This apparently paradoxal phenomenon has been explained by using the Budyko coupled water-energy balances hypothesis.
     Finally, in terms of the theoretical analysis for the hydrological response to the climate change based on Fu’s equation and the water balance analysis in nonhumid regions, it is found that the impact of potential evapotranspiration on actual evapotranspiration at the annual timescale has been magnified in previous researches. This study estimate the annual actual evapotranspiration throughout China on the basis of Fu’s equation together with the semi-empirical formula ofω|- . It is also found that the relationship in evapotranspiration is positive in humid regions and then gradually turns to negative in non-humid regions at the annual timescale.
引文
[1] Allen, M. R., and Ingram W. J. Constraints on future changes in climate and the hydrologic cycle. Nature, 2002, 419: 224-232.
    [2] Adam, J. C., E. A. Clark, D. P. Lettenmaiter, et al. Correction of Global Precipitation Products for Orographic Effects, J. Clim., 2006, 19: 15-38.
    [3] Allen, R. G., L. S. Pereira, D. Raes, et al. Crop evapotranspiration guidelines for computing crop water requirements. Food Agric. Org. U. N. FAO Irrig. Drain. Pap. 56, Rome, Italy, 1998.
    [4] Alley, W.M. On the treatment of evapotranspiration, soil moisture accounting and aquifer recharge in monthly water balance models. Water Resour. Res. 1984, 20 (8): 1137–1149.
    [5] Arora, V. K. The use of the aridity index to assess climate change effect on annual runoff. J. hydrol, 2002, 265: 164-177.
    [6] Bagrov, N. A. Mean long-term evaporation from land surface. Meteorol. Gidrol., 1953, 10.
    [7] Baldocchi D., Xu L., and Kiang N. How plant functional-type, wheater, seasonal drought, and soil physical properties alter water and energy fluxes of an oak-grass savannah and an annual Grassland. Agric. For. Meteor. 2004, 123: 13-39.
    [8] Barnett, T. P., J. C. Adam, and Lettenmaier D. P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 2005, 438, doi:10.1038/nature04141.
    [9] Berger, P. K., and Entekhabi D. Basin hydrologic response relations to distributed physiographic descriptors and climate, J. Hydro., 2001, 247: 169-182.
    [10] Betts, R. A., Cox, P. M., Lee, S. E. et al. Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature, 1997, 387: 796-799.
    [11] Betts, A. K. Relation between Equilibrium Evaporation and the Saturation Pressure Budget. Boundary-Layer Meteorol. 1994, 71: 235-245.
    [12] Bouchet, R. J. Evapotranspiration reele et potentielle, signification climatique. in General Assembly of Berkeley, Red Book 1963, 62: 134-142, IAHS, Gentbrugge, Belgium.
    [13] Bonan G.B. Ecological climatology: concepts and applications. Cambridge New York: Cambridge University Press, 2002.
    [14] Brutsaert, W. Indications of increasing land surface evaporation during the second half of the 20th century. Geophys. Res. Lett., 2006, 33, L20403, doi:10.1029/2006GL027532.
    [15] Brutsaert, W. Evaporation into the Atmosphere: Theory, History, and Applications, D.Reidel-Kluwer, Hingham, Mass, 1982.
    [16] Brutsaert, W. Hydrology: an Introduction. Cambridge, Cambridge University Press, New York, NY, USA, 2005.
    [17] Brutsaert, W., and Stricker H. An advectionaridity approach to estimate actual regional evapotranspiration, Water Resour. Res., 1979, 15 (2): 443-450.
    [18] Brutsaert, W., and Parlange M. B. Hydrologic cycle explains the evaporation paradox. Nature, 1998, 396: 29-30.
    [19] Budyko, M. I. Evaporation under Natural Conditions, Gidrometeoizdat, Leningrad, 1948, English translation by Isr. Program for Sci. Transl., 1963, Jerusalem.
    [20] Budyko, M. I. Climate and Life. Translated from Russian by Miller, D. H., Academic, San Diego, Calif., 1974.
    [21] Budyko, M. I. The Evolution of the Biospere, translated from Russian by M.I.Budyko, S.F.Lemeshko, V.G.Yanuta, Academic, D. Reidel publishing Company, 1986.
    [22] Budyko, M.I., and Zubenok L.I. The determination of evaporation from the land surface. Izv. Akad, Nauk SSSR, Ser. Geogr., 1961, 6: 3-17. (in Russian).
    [23] Burn, D. H., and Hag Elnur M. A. Detection of hydrologic trends and variability. J. Hydrol., 2002, 255: 107-122.
    [24] Chattopadhyay, N., and Hulme M. Evaporation and potential evapotranspiration in India under conditions on recent and future climate change. Agric. Forest Meteorol., 1997, 87: 55-73.
    [25] Che, H. Z., G. Y. Shi, X. Y. Zhang, et al. Analysis of 40 years of solar radiation data from China, 1961 – 2000, Geophys. Res. Lett., 2005, 32, L06803, doi:10.1029/2004GL022322.
    [26] Chen, D., G. Gao, C. Xu, et al. Comparison of the Thornthwaite method and pan data with the standard Penman-Monteith estimates of reference evapotranspiration in China, Clim. Res., 2005, 28: 123-132.
    [27] Chen S. B., Liu Y. F., Thomas A. Climatic change on the Tibetan Plateau: Potential evapotranspiration trends from 1961-2000, Climatic Change, 2006, 76 (3-4): 291-319.
    [28] Choudhury, B. J. Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model, J. Hydrol., 1999, 216: 99-110.
    [29] Cohen, S., A. Ianetz, and Stanhill G. Evaporative climate changes at Bet Dagan, Israel, 1964–1998. Agric. For. Meteor., 2002, 111: 83-91.
    [30] Culf, A. D. Equilibrium Evaporation beneath a Growing Convective Boundary Layer, Boundary-Layer Meteorol., 1994, 70: 37-49.
    [31] Dai, A., I. Y. Fung, and Del Genio A. D. Surface observed global land precipitation variations during 1900– 88, J. Clim., 1997, 10: 2943-2962.
    [32] Dai A., A.D. Del Genio, and Fung I.Y. Clouds, precipitation and diurnal temperature range. Nature, 1997, 386: 665-666.
    [33] Dai, A. Recent climatology, variability and trends in global surface humidity, J. Clim., 2006, 19: 3589-3606.
    [34] Daly, E., and Porporato A. Impact of hydroclimatic fluctuations on the soil water balance, Water Resour. Res., 2006, 42, W06401, doi:10.1029/2005WR004606.
    [35] DelGenio, A.D., Lacis, A.A. and Ruedy, R.A. Simulations of the effect of a warmer climate on atmospheric humidity.Nature, 1991, 351, 382-385.
    [36] Donohue, R. J., M. L. Roderick, and T. R. McVicar. On the importance of including vegetation dynamics in Budyko’s hydrological model. Hydrol. Earth Syst. Sci., 2007
    [37] Dooge, J. C. I., M. Bruen, and Parmentier B. A simple model for estimating the sensitivity of runoff to long-term changes in precipitation without a change in vegetation. Adv. Water. Resour., 1999, 23: 153-163.
    [38] Dooge, J.C.L. Hydrologic Models and Climate Change, J. Geophys. Res., 1992a, 97 (D3) : 2677-2686.
    [39] Dooge, J. C. I. Sensitivity of runoff to climate change: A Hortonian approach. Bull. Am. Meteorol. Soc., 1992b, 73: 2013-2024.
    [40] Douglas, E.M., Vogel, R.M., and Kroll, C.N. Trends in floods and low flows in the United States: Impact of spatial correlation. J. Hydrol., 2000, 240: 90-105.
    [41] Dunne, K. A., and Willmott C. J. Global distribution of plant-extractable water capacity of soil. Int. J. Climatol., 1996, 16: 841-859.
    [42] Easterling, D.R., Horton, B., Jones, P.D., et al. Maximum and minimum temperature trends for the globe. Science, 1997, 277: 364-367.
    [43] Eagleson, P. S. Climate, soil, and vegetation, 1, Introduction to water balance dynamics. Water Resour. Res., 1978a, 14(5): 705-712.
    [44] Eagleson, P. S. Climate, soil, and vegetation, 2, The distribution of annual precipitation derived from observed storm sequences. Water Resour. Res., 1978b, 14(5): 713-721.
    [45] Eagleson, P. S. Climate, soil, and vegetation, 3, A simplified model of soil moisture movement in the liquid phase Water Resour. Res., 1978c, 14(5): 722-730.
    [46] Eagleson, P. S. Climate, soil, and vegetation, 4, The expected value of annual evapotranspiration, Water Resour. Res., 1978d, 14(5): 731-739.
    [47] Eagleson, P. S. Climate, soil, and vegetation, 5, A derived distribution of storm surface runoff. Water Resour. Res., 1978e, 14(5): 741-748.
    [48] Eagleson, P. S. Climate, soil, and vegetation, 6, Dynamics of the annual water balance. Water Resour. Res. 1978f, 14(5): 749-764.
    [49] Eagleson, P. S. Climate, soil, and vegetation, 7, A derived distribution of annual water yield. Water Resour. Res., 1978g, 14(5): 765-776.
    [50] Eagleson, P. S. Ecohydrology: Darwinian Expression of Vegetation Form and Function. Cambridge University Press, Cambridge, U.K, 2002.
    [51] FAO. FAO Map of World Soil Resources. Rome, 2003.
    [52] Farmer, D., M. Sivapalan, and Jothityangkoon C. Climate, soil, and vegetation controls upon the variability of water balance in temperate and semiarid landscapes: Downward approach to water balance analysis, Water Resour. Res., 2003, 39(2), 1035, doi:10.1029/2001WR000328.
    [53] Faybishenko, B. Climatic forecasting of net infiltration at Yucca Mountain using analogue meteorological data. Vadose Zone J., 2007, 6: 77-92, DOI: 10.2136/vzj2006.0001.
    [54] Gong L. et al. Sensitivity of the Penman–Monteith reference evapotranspiration to key climatic variables in the Changjiang basin, J. Hydrol., 2006, 329 (3-4): 620-629.
    [55] Gedney, N., P. M. Cox, R. A. Betts, et al. Detection of a direct carbon dioxide effect in continental river runoff records. Nature, 2006, 439: doi:10.1038/nature04504.
    [56] Gifford, R. M. M. L. Roderick, and Farquhar G. D. Pan evaporation: an example of the detection and attribution of trends in climate variables. Proceedings of a workshop, Australian Academy of Science, Canberra, 2004.
    [57] Golubev, V. S., J. H. Lawrimore, P. Y. Groisman, et al: Evaporation changes over the contiguous U.S. and the former USSR: A reassessment, Geophys. Res. Lett., 2001, 28(13): 2665-2668.
    [58] Granger, R.J. A complementary relationship approach for evaporation from nonsaturated surfaces, J. Hydrol., 1989a, 111: 31-38.
    [59] Granger, R.J. An examination of the concept of potential evaporation, J. Hydrol., 1989b, 111: 9-19.
    [60] Granger, R. J. Partitioning of energy during the snow-free season at the Wolf Creek Research Basin, In: Pomeroy, J.W., Granger, R.J. (Eds.), Proceedings of a Workshop held in Whitehorse, Yukon, 1998, 33-43.
    [61] Granger, R.J., and Gray D.M. Evaporation from natural nonsaturated surfaces. J. Hydrol. 1989, 111: 21-29.
    [62] Guo, S., Wang, J., Xiong, L., et al. A macro-scale and semi-distributed monthly water balance model to predict climate change impacts in China, J. Hydrol., 2002, 268: 1-15.
    [63] Hansen, J., M. Sato, R. Ruedy, K. Lo, et al. Global temperature change. P. Natl. Acad. Sci. USA, 2006, 103: 14288-14293.
    [64] Huntington, T. Evidence for intensification of the global water cycle: Review and synthesis, J. Hydrol., 2006, 319: 83-95.
    [65] Hobbins, M. T., J. A. Ram?′rez, T. C. Brown, et al. Complementary relationship in the estimation of regional evapotranspiration: The Complementary Relationship Areal Evapotranspiration and advection-aridity models, Water Resour. Res., 2001a, 37 (5): 1367-1387.
    [66] Hobbins, M. T., J. A. Ram′?rez, and T. C. Brown The complementary relationship in estimation of regional evapotranspiration: An enhanced advection-aridity model, Water Resour. Res., 2001b, 37(5): 1389-1403.
    [67] Hobbins, M. T., J. A. Ram?′rez, and Brown T. C. Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: Paradoxical or complementary? Geophys. Res. Lett., 2004, 31, L13503, doi:10.1029/ 2004GL019846.
    [68] IGBP-DIS (Global Soil Data Task: Global Soil Data Products CD-ROM ) International Geosphere-Biosphere Programme - Data and Information Services. Available online at (http://www.daac.ornl.gov/) from the ORNL Distributed Active Archive Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A., 2000.
    [69] IPCC. Climate Change 2001: The Scientific Basis, by J. T. Houghton et al., Cambridge Univ. Press, Cambridge U. K, 2001, 881 pp.
    [70] Jones, J.A.A. Global Hydrology: processes, resources and environmental management, Addison Wesley Longman, Harlow and New York, 1997, 364pp.
    [71] Jones, H. G. Plant and Microclimate - A Quantitative Approach to Environmental Plant Physiology. London and New York: Cambridge Univ. Press, 1983.
    [72] Kahler, D. M., and Brutsaert W. Complementary relationship between daily evaporation in the environment and pan evaporation, Water Resour. Res., 2006, 42, W05413, doi:10.1029/2005WR004541.
    [73] Kendall, M. G., Rank Correlation Methods, Oxford Univ. Press, New York, 1975.
    [74] Krause P., D. P. Boyle, and Base F. Comparison of different efficiency criteria for hydrological model assessment. Adv. in Geosci., 2005, 5, 89–97.
    [75] Klemes, V. Conceptualization and scales in hydrology, J. Hydrol., 1983, 65: l-23.
    [76] Koster, R. D., and Suarez M. J. A simple framework for examining the interannual variability of land surface moisture fluxes, J. Clim., 1999, 12: 1911-1917.
    [77] Labat, D., Godde′ris, Y., Probst, J.L., and Guyot, J.L. Evidence for global runoff increase related to climate warming. Adv.Water Resour. 2004, 27: 631–642.
    [78] Laio, F., A. Porporato, L. Ridolfi, and Rodriguez-Iturbe I. On the seasonal dynamics of mean soil moisture, J. Geophys. Res., 2002, 107, 4272, doi:10.1029/2001JD001252.
    [79] Lawrimore, J. H., and Peterson T. C. Pan evaporation trends in dry and humid regions of the United States. J. Hydrometeor. , 2000, 1: 543-546.
    [80] Legates, D.R., and McCabe G.J. Evaluating the use of "goodness-of-fit" measures inhydrologic and hydro-climatic model validation. Water Resour. Res., 1999, 35: 233-241.
    [81] Lhomme, J.P. A theoretical basis for the Priestley–Taylor coefficient. Bound. Layer Meteorol., 1997a, 82: 179-191.
    [82] Lhomme, J.P. An examination of the Priestley–Taylor equation using a convective boundary-layer model. Water Resour. Res. 1997b, 33, 2571-2578.
    [83] Lhomme, J. P., and Guilioni L. Comments on some articles about the complementary relationship. J. Hydrol., 2006, 323: 1-3.
    [84] Liepert, B. G. Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990, Geophys. Res. Lett., 2002, 29(10), 1421, doi:10.1029/ 2002GL014910.
    [85] Liepert, B. G., J. Feichter, U. Lohmann, et al. Can aerosols spin down the water cycle in a warmer and moister world? Geophys. Res. Lett., 2004, 31, L06207, doi:10.1029/2003GL019060.
    [86] Liepert BG, Romanou A. Global dimming and brightening and the water cycle, Bull.Am. Met. Soc., 2005, 86 (5): 622-623
    [87] Linacre, E. T. Estimating U.S. Class A pan evaporation from few climate data, Water Int., 1994, 19: 5-14.
    [88] Liu, B. H., M. Xu, M. Henderson, et al. A spatial analysis of pan evaporation trends in China, 1955-2000. J. Geophys. Res. 2004, 109, D15102, doi:10.1029/2004JD004511.
    [89] Liu S., Sun R., Sun Z., Li X. and Liu C. Evaluation of three complementary relationship approaches for evapotranspiration over the Yellow River basin. Hydrol. Process., 2006, 20, 2347–2361.
    [90] Maidment et al. Handbook of hydrology, McGRAW-HILL, INC, 1993.
    [91] Mann, H. B., Nonparametric tests against trend, Econometrica, 1945, 13, 245–259.
    [92] Margulis, S.A., E.F. Wood and P.A. Troch The terrestrial water cycle: Modeling and data assimilation across catchment scales, J. Hydrometeorol., 2006, 7(3): 309-311, doi:10.1175/JHM999.1.
    [93] McNaughton, K. G. and Spriggs, T. W. A Mixed-Layer Model for Regional Evaporation, Boundary-Layer Meteorol., 1986, 34: 243-262.
    [94] McNaughton, K. G. and Spriggs, T. W. An Evaluation of the Priestley and Taylor Equation and the Complementary Relationship Using Results from a Mixed-Layer Model of the Convective Boundary Layer, in T. A. Black, D. L. Spittlehouse, M. D. Novak, and D. T. Price (eds.), Estimation of Areal Evapotranspiration, IAHS Press, Wallingford, U.K. IAHS Publication, 1989, 177: 89-104.
    [95] Mezentsev, V. S. More on the calculation of average total evaporation, Meteorol. Gidrol., 1955, 5: 24-26.
    [96] Miller, R. L., I. Tegen, and Perlwitz J. Surface radiative forcing by soil dust aerosols and the hydrologic cycle, J. Geophys. Res., 2004, 109, D04203, doi:10.1029/2003JD004- 085.
    [97] Milly, P.C.D. An analytic solution of the stochastic storage problem applicable to soil water, Water Resour. Res., 1993, 29: 3755-3758.
    [98] Milly, P. C. D. Climate, interseasonal storage of soil water and the annual water balance, Adv. Water Resour., 1994a, 17: 19-24.
    [99] Milly, P. C. D. Climate, soil water storage, and the average annual water balance, Water Resour. Res., 1994b, 30: 2143-2156.
    [100] Milly, P. C. D., K. A. Dunne, and Vecchia A. V. Global pattern of trends in streamflow and water availability in a changing climate, Nature, 2005, 438: 347-350.
    [101] Milly, P. C. D., and Dunne K. A. Trends in evaporation and surface cooling in the Mississippi River basin, Geophys. Res. Lett., 2001, 28: 1219-1222.
    [102] Milly, P. C. D., and Dunne K. A. Macroscale water fluxes, 2, Water and energy supply control of their interannual variability, Water Resour. Res., 2002, 38(10), 1206, doi: 10.1029/2001WR000760.
    [103] Milly, P. C. D., R. T.Wetherald, K. A. Dunne, and Delworth T. L. Increasing Risk of Great Floods in a Changing Climate, Nature, 2002, 415: 514–517.
    [104] Monteith, J. L. Evaporation and environment, in Proceedings of the 19th Symposium of the Society for Experimental Biology, 205-233, Cambridge Univ. Press, New York, 1965.
    [105] Moonen AC, Ercoli L, Mariotti M, et al Climate change in Italy indicated by agrometeorological indices over 122 years, Agric. Forest. Meteorol., 2002, 111 (1): 13-27.
    [106] Morton, F. I. Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology, J. Hydrol., 1983, 66: 1-76.
    [107] Morton, F. I. Evaporation research - A critical review and its lessons for the environmental sciences, Critical Rev. in. Environ. Sci. & Tech., 1994, 24(3): 237-280.
    [108] Nash, J. E., and Sutcliffe J. V. River flow forecasting through conceptual models part I- A discussion of principles. J. Hydro., 1970, 10 (3): 282–290.
    [109] Nash, J.E. Potential Evaporation and the Complementary Relationship, J. Hydro., 1989, 111: 1-7.
    [110] New, M., M. Hulme, and Jones P. Representing twentieth-century space-time climate variability. Part I: Development of a 1961-90 mean monthly terrestrial climatology. J. Climate, 1999, 12: 829-856.
    [111] New, M. G., M. Hulme, and Jones P. D. Representing twentieth-century space-time climate variability. Part II: Development of 1901– 1996 monthly grids of terrestrial surface climate, J. Clim., 2000, 13: 2217-2238.
    [112] Ohmura, A., H. Gilgen, and Wild M. Global Energy Balance Archive GEBA, WorldClimate Program—Water Project A7, Report 1: Introduction, Zuercher Geografische Schriften Nr. 34, Verlag der Fachvereine Zuerich, 1989, 62 pp.
    [113] Ohmura, A., and Wild M. Is the hydrological cycle accelerating? Science, 2002, 298: 1345–1346.
    [114] Ol’dekop, E. M. On evaporation from the surface of river basins, Trans. Meteorol. Observ. 1911, 4.
    [115] Packer, R.W., and Sangal B.P. The heat and water balance of southern Ontario according to the Budyko method. Can. Geograph., 1971, 15: 262–286.
    [116] Parlange, M. B., and Katul G. G. An advection-aridity evaporation model, Water Resour. Res., 1992, 28 (1): 127-132.
    [117] Peterson, T., V. Golubev, and Groisman P. Evaporation losing its strength, Nature, 1995, 393: 687–688.
    [118] Penman, H. L. Natural evaporation from open water, bare and grass. Proc. R. Soc. Lond., Ser. A, 1948, 193: 120–145.
    [119] Pettijohn, J. C., and Salvucci G. D. Impact of an unstressed canopy conductance on the Bouchet-Morton complementary relationship, Water Resour. Res., 2006, 42, W09418, doi:10.1029/2005WR004385.
    [120] Pinker RT, Zhang B, Dutton E. G. Do satellites detect trends in surface solar radiation? Science, 2005, 308 (5723): 850-854
    [121] Pike, J. G. The estimation of annual runoff from meteorological data in a tropical climate, J. Hydrol., 1964, 2116–2123.
    [122] Porporato, A., and Rodriguez-Iturbe I. Ecohydrology—A challenging multidisciplinary research perspective, Hydrol. Sci. J., 2002, 47(5): 811-821.
    [123] Porporato, A., F. Laio, L. Ridolfi, and Rodriguez-Iturbe I. Plants in water-controlled ecosystems: Active role in hydrologic processes and response to water stress. III. Vegetation water stress, Adv. Water Resour., 2001, 24(7): 725-744.
    [124] Porporato, A., E. Daly, and Rodriguez-Iturbe I. Soil water balance and ecosystem response to climate change, Am. Nat., 2004, 164(5): 625-632.
    [125] Potter, N. J., L. Zhang, P. C. D. Milly, et al. Effects of rainfall seasonality and soil moisture capacity on mean annual water balance for Australian catchments, Water Resour. Res., 2005, 41, W06007, doi:10.1029/- 2004WR003697.
    [126] Priestley, C. H. B., and R. J. Taylor On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev., 1972, 100(2): 81-92.
    [127] Qian, T., A. Dai, K. E. Trenberth, and Oleson K. W. Simulation of global land surface conditions from 1948-2004, Part I: Forcing data and evaluation. J. Hydrometeorol., 2006, 7 (5): 953-975.
    [128] Quintana-Gomez, R. Changes in evaporation patterns detected in northernmost South America”. Homogeneity testing. Proc. Seventh Int. Meeting on Statistical Climatology, Whisler, BC, Canada, NRCSE, 1998, 25-29.
    [129] Ramanathan,V., P. J. Crutzen, J. T. Kiehl, and Rosenfeld D. Aerosols, climate, and the hydrological cycle, Science, 2001, 294(5549): 2119-2124.
    [130] Ramanathan, V., C. et al. Atmospheric brown clouds: Impacts on south Asian climate and hydrological cycle, Proc. Natl. Acad. Sci. U. S. A., 2005, 102(15): 5326-5333.
    [131] Ramirez, J. A., M. T. Hobbins, and Brown T. C. Observational evidence of the complementary relationship in regional evaporation lends strong support for Bouchet’s hypothesis. Geophys. Res. Lett., 2005, 32, L15401, doi:10.1029/2005GL023549.
    [132] Raupach, M. R. Equilibrium evaporation and the convective boundary layer, Boundary Layer Meteorol., 2000, 96: 107-141.
    [133] Raupach, M. R. Combination theory and equilibrium evaporation. Quart. J. Roy. Meteorol. Soc., 2001, 127: 1149-1181.
    [134] Robock A, et al. The global soil moisture data bank. Bull. Amer. Meteor. Soc. 2000, 81: 1281-1299.
    [135] Robock, A., and Li H. Solar dimming and CO2 effects on soil moisture trends, Geophys. Res. Lett., 2006, 33, L20708, doi:10.1029/2006GL027585.
    [136] Roderick M. L. and Farquhar G. D. The cause of decreased pan evaporation over the past 50 years. Science, 2002, 298: 1410-1411.
    [137] Roderick, M. L., and Farquhar G. D. Changes in Australian pan evaporation from 1970 to 2002. Int. J. Climatol, 2004, 24(9): 1077-1090, doi:10.1002/joc.1061.
    [138] Roderick, M. L., and Farquhar G. D. Changes in New Zealand pan evaporation since the 1970s. Int. J. Climatol, 2005, 25: 2031-2039, doi: 10.1002/joc.1262.
    [139] Rodríguez-Iturbe, I., and Porporato A. Ecohydrology of Water- Controlled Ecosystems: Soil Moisture and Plant Dynamics, Cambridge University Press, New York, 2004.
    [140] Rodríguez-Iturbe, I., V. Isham, D. R. Cox, S. Manfreda, and Porporato A. Space-time modeling of soil moisture: Stochastic rainfall forcing with heterogeneous vegetation, Water Resour. Res., 2006, 42, W06D05, doi:10.1029/2005WR004497.
    [141] Rodríguez-Iturbe, I. Ecohydrology: A hydrologic perspective of climate-soil-vegetation dynamics, Water Resour. Res., 2000, 36: 3-9.
    [142] Rodríguez-Iturbe, I., A. Porporato, et al. Probabilistic modelling of water balance at a point: The role of climate, soil and vegetation, Proc. R. Soc. London, Ser. A, 1999, 455: 3789–3805.
    [143] Rotstayn, L. D., M. L. Roderick, and Farquhar G. D. A simple pan-evaporation model for analysis of climate simulations: Evaluation over Australia, Geophys. Res. Lett., 2006, 33,L17715, doi:10.1029/2006GL027114.
    [144] Salas, J. D., J.W. Delleur, V. Yevjevich, and W. L. Lane, Applied Modelling of Hydrologic Time Series, Water Resour. Publ., Littleton, Colo., 1980.
    [145] Sankarasubramanian, A., R. M. Vogel, et al. Climate elasticity of streamflow in the United States, Water Resources Res., 2001, 37(6), doi:10.1029/2000WR900330.
    [146] Sankarasubramanian, A., and Vogel R. M. Annual hydroclimatology of the United States, Water Resour. Res., 2002a, 38(6), 1083, doi: 10.1029/2001WR000619.
    [147] Sankarasubramanian, A., and Vogel R. M. Comment on the paper: ‘Basin hydrologic response relations to distributed physiographic descriptors and climate’, J. Hydrol., 2002b, 263: 257–261.
    [148] Schaake, J. C. From climate to flow, in Climate Change and U.S. Water Resources, edited by P. E. Waggoner, chap. 8, 177-206, John Wiley, New York, 1990.
    [149] Sellers, P. J., et al. Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate, Science, 1996, 271: 1402-1406.
    [150] Shuttleworth, W. J. Evaporation. In Handbook of Hydrology, edited by D.R. Maidment 4.1-4.53. McGraw-Hill, New York, 1993.
    [151] Shuttleworth, W. J., and Calder I.R. Has the Priestley-Talyor equation any relevance to forest evaporation, J. Appl. Meteorol., 1979, 18: 639-646.
    [152] Schreiber, P. Uber die Beziehungen zwischen dem Niederchlag und der Wasserfuhrung der Flusse in Mittelleuropa. Z. Meteorol. 1904, 21: 441-452.
    [153] Seneviratne, S.I., D. Lüthi, M. Litschi, and Sch?r C. Land-atmosphere coupling and climate change in Europe. Nature, 2006, 443, 205-209, doi:10.1038/nature05095.
    [154] Shen Y, et al. Measurement and analysis of evapotranspiration and surface conductance of a wheat canopy, Hydrol. Processes, 2002, 16: 2173-2187.
    [155] Shen Y. Study on Hydrological Processes Of Land And Atmospheric System In Semiarid Agricultural Region [PhD Dissertation]. Chiba University, Japan, 2004.
    [156] Sivapalan, M. Downward approach to hydrological prediction, Hydrol. Proc., 2003, 17: 2101-2111.
    [157] Sivapalan, M. Representative Elementary Area (REW) Approach to Distributed Hydrologic Modeling at the Catchment Scale: What Next, International Symposium on Flood Forecast and Water Resources Assessment, 28th-30th September 2006, Beijing China
    [158] Slatyer, R. O. and McIlroy I. C. Evaporation and the principle of its measurement. In: Practical Meteorology, CSIRO (Australia) and UNESCO, Paris, 1961.
    [159] Stanhill G. Is the class A evaporation pan still the most practical and accurate meteorological method for determining irrigation water requirements? Agric. For.Meteorol., 2002, 112: 233-236.
    [160] Stanhill, G., and Cohen S. Global dimming: A review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agric. For. Meteorol., 2001, 107: 255-278.
    [161] Sugita, M., et al. Complementary relationship with a convective boundary layer model to estimate regional evaporation, Water Resour. Res., 2001, 37(2): 353-365.
    [162] Sun F., D. Yang, and Liu Z. Changes in the hydroclimatology over northern China during the last half century, Proceedings of the 3rd APHW Conference on Wise Water Resources Management Towards Sustainable Growth and Poverty Reduction, Thailand, Oct. 16-18, 2006.
    [163] Szilagyi, J., G. G. Katul, and Parlange M. B. Evapotranspiration intensifies over the conterminous United States, J. Water Resour. Plann. Manage, 2001, 127: 354-362.
    [164] Szilagyi, J. On the inherent asymmetric nature of the complementary relationship of evaporation, Geophys. Res. Lett., 2007, 34, L02405, doi:10.1029/2006GL028708.
    [165] Szilagyi J. On Bouchet’s complementary hypothesis. J Hydrol., 2001, 246: 155-158
    [166] Tebakari, Taichi; Junichi Yoshitani; Suvanpimol C. Time-Space Trend Analysis in Pan Evaporation over Kingdom of Thailand, J. Hydrol. Eng., 2005, 10(3): 205-215
    [167] Thom, A.S. Momentum, mass and heat exchange of plant communities in Vegetation and the atmosphere: Principles Volume 1, J. L. Monteith et al., Eds. (Academic Press, London ), 1975, 57-109.
    [168] Thom A S, and Oliver H R. On Penman's equation for estimating regional evaporation, Q. J. R. Meteorol. Soc., 1977, 103:345 - 357.
    [169] Thom, A. S., J. L. Thony, and Vauclin M. On the proper employment of evaporation pans and atmometers in estimating potential transpiration, Q. J. R. Meteorol. Soc., 1981, 107: 711-736.
    [170] Thomas, A. Spatial and temporal characteristics of potential evapotranspiration trends over China, Int. J. Climatol., 2000, 20: 381-396.
    [171] Thomas, H. A. Improved methods for national water assessment, report, Contract WR 15249270, U.S. Water Resour. Council, Washington, D. C, 1981.
    [172] Thomthwaite, C.W. An approach toward a rational classification of climate, Geographical review, 1948, 38: 55-94.
    [173] Trenberth, K.E. Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change, 1999, 42: 327-339.
    [174] Turc, L. Le bilan d'eau des sols Relation entre la pr_ecipitation, l'_evaporation et l'_ecoulement, Ann. Agron., 1954, 5: 491-569.
    [175] van Genuchten, M. Th. A closed form equation for predicting the hydraulic conductivity ofunsaturated soils, Soil Sci. Soc. Am. J., 1980, 44: 892-898.
    [176] Vogel, R. M., I. Wilson, and Daly C. Regional regression models of annual streamflow for the United States, J. Irrig. Drain. Eng., 1999, 125(3): 148-157.
    [177] von Storch, H., Misuses of statistical analysis in climate research, in Analysis of Climate Variability: Applications of Statistical Techniques, edited by H. V. Storch and A. Navarra, pp. 11– 26, Springer-Verlag, New York, 1995.
    [178] Walter, M. T., D. S. Wilks, J.-Yves. Parlange, et al. Increasing Evapotranspiration from the Conterminous United States, J. Hydrometeorol., 2004, 5: 405-408.
    [179] Walter I. A., R. G. Allen, et al. ASCE's standardized reference evapotranspiration equation. In: Evans R L (ed.).Proceedings of the 4th Decennial Symposium, National Irrigation Symposium. Michigan: American Society of Civil Engineers, 2000, 1-6.
    [180] Wild M, Ohmura A, Gilgen H, Rosenfeld D. On the consistency of trends in radiation and temperature records and implications for the global hydrological cycle, Geophys. Res. Lett., 2004, 31 (11): L11201, doi:10.1029/2003GL019188.
    [181] Wild, M., Gilgen, H., Roesch, A., Ohmura, A.,et al. From Dimming to Brightening: Decadal Changes in Solar Radiation at Earth's Surface, Science, 2005, 308: 847-850.
    [182] Wolock, D. M., and McCabe G. J. Explaining spatial variability in mean annual runoff in the conterminous United States, Clim. Res., 1999, 11: 149-159.
    [183] Wright, J.L. and Jensen M.E. Peak water requirements of crops in southern Idaho. J. Irrig. And Drain. Div., ASCE, 1972, 96 (IR1):193-201.
    [184] Xiong, L., and Guo S. Two-parameter water balance model and its application. J. Hydrol., 1999, 216: 315–347.
    [185] Xu, C.Y., Singh, V.P. A review on monthly water balance models for water resources investigations. Water Resour. Mgmt., 1998, 12, 31-50.
    [186] Xu, C. Y., and Singh V.P. Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions, J. Hydrol. 2005, 308: 105-121.
    [187] Xu, C. Y, L. Gong, T. Jiang, D. Chen, and Singh V. P., Analysis of spatial distribution and temporal trend of reference evapotranspiration in Changjiang catchment, J. Hydrol., 2006, 327: 81-93.
    [188] Xu, J., S. Haginoya, K. Saito and Motoya K. Surface heat and water balance trends in eastern Asia in the period 1971-2000, Hydrol. Process, 2005, 19 (11): 2161-2186.
    [189] Yang, D., C. Li, H. Hu, Z. Lei, et al. Analysis of water resources variability in the Yellow River of China during the last half century using historical data, Water Resour. Res., 2004a, 40, W06502, doi:10.1029/2003WR002763.
    [190] Yang, D. H. Zhang, Z. LIU et al. Chinese Perspectives on PUB and Working GroupInitiative, IAHS PUB Workshop, 2004, St. Catherine's College, Univ. of Western Australia (UWA), Perth, Western Australia, 2-5 February 2004b.
    [191] Yang D. and Sun F. Towards understanding the climate and landuse change impacts on hydrological cycle and water resources, International Symposium on Hydrology delivering Earth System Science to Society, Feb.28th-Mar.2nd, 2007, Tsukuba (Invited Lecture).
    [192] Yang, D., F. Sun, Z. Liu, et al. Interpreting the complementary relationship in non-humid environments based on the Budyko and Penman hypotheses, Geophys. Res. Lett., 2006, 33, L18402, doi:10.1029/2006GL027657.
    [193] Yang D., F. Sun, Z. Liu, et al. Analyzing spatial and temporal variability of annual water-energy balance in non-humid regions of China using the Budyko hypothesis, Water Resour. Res., 2007, 43, W04426, doi:10.1029/2006WR005224.
    [194] Yang, K., and Koike T. A general model to estimate hourly and daily solar radiation for hydrological studies, Water Resour. Res., 2005, 41 (10): Art. No. W10403.
    [195] Yue, S., P.Pilon, B. Phinney, and Cavadias G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Processes, 2002, 16: 1807-1829.
    [196] Zhang, L., W. R. Dawes, and Walker G. R. Response of mean annual evapotranspiration to vegetation changes at catchment scale, Water Resour. Res., 2001, 37: 701-708.
    [197] Zhang, L., K. Hickel, W. R. Dawes, F. H. S. Chiew, A. W. Western, and Briggs P. R. A rational function approach for estimating mean annual evapotranspiration, Water Resour. Res., 2004, 40, W02502, doi:10.1029/2003WR002710.
    [198] 陈志华. 1957-2000 年中国地面太阳辐射状况的研究[硕士学位论文]. 北京: 中国科学院研究生院, 2005.
    [199] 陈丽华, 余新晓. 森林流域蒸发散的计算. 水土保持学报, 1992, 6(3): 87-90.
    [200] 程渭钧. 地表水量、热量平衡关系探讨, 地理, (2): 56-62.
    [201] 崔启武, 孙延俊. 论水热平衡联系方程. 地理学报, 1979, 34(2): 169-178.
    [202] 傅抱璞. 论陆面蒸发的计算. 大气科学, 1981a , 5(1): 23-31.
    [203] 傅抱璞. 土壤蒸发的计算. 气象学报, 1981b, 39(2): 226-236.
    [204] 傅抱璞. 山地蒸发的计算. 气象科学. 1996, 16 (4): 328-335.
    [205] 高歌, 陈德亮, 任国玉等. 1956~2000 年中国潜在蒸散量变化趋势. 地理研究, 2006, (03) .
    [206] 高国栋, 陆渝蓉.中国地表面辐射平衡与热量平衡. 北京: 科学出版社, 1982.
    [207] 高国栋, 陆渝蓉.中国的热量平衡, 中国科学 B 辑, 1982 , (10): 951-961
    [208] 高国栋, 陆渝蓉, 李怀瑾. 我国陆面蒸发量和蒸发耗热量的研究. 气象学报, 1980, 38 (2): 165-176.
    [209] 高国栋, 陆渝蓉. 中国物理气候图集. 北京: 农业出版社, 1985.
    [210] 郭生练, 朱英浩. 互补相关蒸散发理论与应用研究. 地理研究, 1993, 12(4): 32-38.
    [211] 郭生练, 程肇芳. 平原水网区陆面蒸发的计算. 水利学报, 1992, 10, 68-72.
    [212] 黄聿刚. 干旱区绿洲四水转化模型及其应用[博士学位论文]. 北京: 清华大学, 2006.
    [213] 黄河水利委员会. 黄河规划志(黄河志卷 6). 郑州: 河南人民出版社, 1991.
    [214] 黄河水利委员会. 黄河水利水电工程志(黄河志卷 9). 郑州: 河南人民出版社, 1996.
    [215] 胡和平, 李民, 杨诗秀, 何长德, 周凯, 艾尼瓦尔. 用直接估算法确定区域潜水蒸发量.灌溉排水, 1999, 18(2): 22-25.
    [216] 胡和平, 叶柏生, 周余华, 田富强. 考虑冻土的陆面过程模型及其在青藏高原GAME/Tibet 试验中的应用. 中国科学 D 辑: 地球科学, 2006, 36 (8): 755~766.
    [217] 雷志栋, 杨诗秀, 谢森传. 土壤水动力学. 北京: 清华大学出版社, 1988.
    [218] 雷志栋, 杨诗秀, 谢森传. 潜水稳定蒸发的分析与经验公式. 水利学报, 1984, (8),60-64.
    [219] 雷志栋, 胡和平, 杨诗秀, 田富强. 塔里木盆地绿洲耗水分析. 水利学报, 2006, 37(12), 1470-1475.
    [220] 李晓文, 李维亮, 周秀骥. 中国近 30 年太阳辐射状况研究. 应用气象学报, 1998, 9(1):24-31.
    [221] 刘昌明等. 农田蒸散量计算: 农田蒸发测定与计算. 北京: 气象出版社, 1991.
    [222] 刘昌明. 黄河流域水循环演变若干问题的研究. 水科学进展. 2004, 15(5): 608-614.
    [223] 刘春蓁, 田玉英. 用改进的非线性水量平衡模型研究气候变化对径流的影响. 水科学进展. 1991, 2(2):120-126.
    [224] 刘蕾, 夏军, 丰华丽. 陆地系统生态需水量计算方法初探. 中国农村水利水电, 2005, (2): 32-35.
    [225] 刘绍民, 孙睿, 孙中平, 李小文, 刘昌明. 基于互补相关原理的区域蒸散量估算模型比较. 地理学报, 2004, 59(3), 331-340.
    [226] 刘晓英, 林而达, 刘培军. 干旱气候条件下 Priestley-Taylor 方法应用探讨. 水利学报, 2003, (9): 31-38.
    [227] 刘钰, Pereira L. S, Teixeira J. L.参照腾发量的新定义及计算方法对比. 水利学报, 1997, (6): 27-33.
    [228] 刘钰, Pereira L. S. 气象数据缺测条件下参照腾发量的计算方法. 水利学报, 2001, (3): 11-17.
    [229] 刘振兴. 论陆面蒸发量的计算. 气象学报, 1956, 27(4): 337-344.
    [230] 刘志武. 阿克苏平原绿洲腾发遥感模型研究 [博士学位论文]. 北京: 清华大学, 2005.
    [231] 陆渝蓉, 高国栋. 中国的水分平衡. 南京大学学报: 自然科学版, 1984 , (03):577-592.
    [232] 陆渝蓉, 高国栋. 中国的辐射平衡. 中国科学: B 辑, 1982, (09): 850-860.
    [233] 鞠晓慧, 屠其璞, 李庆祥. 我国太阳总辐射气候学计算方法的再讨论. 南京气象学院学报, 2005, 28(04): 516-521.
    [234] 贾仰文, 王浩, 倪广恒, 杨大文, 王建华, 秦大庸. 分布式流域水文模型原理与实践.北京: 中国水利水电出版社, 2005.
    [235] 康绍忠, 刘晓明, 熊运章. 土壤-植物-大气连续体水分传输理论及其应用. 北京: 中国水利电力出版社, 1994.
    [236] 毛晓敏. 干旱区绿洲潜水-土壤-植被-大气系统水热传输模拟研究[博士学位论文]. 北京: 清华大学, 1998.
    [237] 潘家铮, 张泽祯. 中国可持续发展水资源战略研究报告集(第 8 卷): 中国北方地区水资源的合理配置和南水北调问题. 北京: 中国水利水电出版社, 2001.
    [238] 秦大河, 丁一汇, 苏纪兰, 等. 中国气候与环境演变, 北京: 科学出版社, 2005.
    [239] 邱新法, 刘昌明, 曾燕. 黄河流域近 40 年蒸发皿蒸发量的气候变化特征. 自然资源学报, 2003a, 18(04): 437-442.
    [240] 邱新法, 曾燕, 缪启龙, 等. 用常规气象资料计算陆面年实际蒸散量. 中国科学: D 辑, 2003b, 33(3): 281-288.
    [241] 任国玉, 郭军. 中国水面蒸发量的变化. 自然资源学报, 2006, 1: 31-43.
    [242] 芮孝芳. 水文学原理. 北京: 中国水利水电出版社, 2004.
    [243] 施雅风. 中国气候与海面变化及其趋势和影响(卷 4): 气候变化对西北华北水资源的影响. 山东: 山东科学技术出版社, 1995.
    [244] 盛琼. 近 45a 来我国蒸发皿蒸发量的变化及原因分析[硕士学位论文]. 南京: 南京信息工程大学, 2006.
    [245] 孙福宝, 杨大文, 刘志雨, 等. 基于 Budyko 假设的黄河流域水热耦合平衡规律研究.水利学报, 2007, 38(4), 27-35.
    [246] 孙福宝, 杨大文, 刘志雨, 等. 海河及西北内陆河流域的水热平衡研究. 水文, 2007, 27(2) , 7-10.
    [247] 谭冠日, 王宇, 方锡林, 等. 陆面蒸发公式的检验. 气象学报, 1984, 42 (2),231~237.
    [248] 王艳君, 姜彤, 许崇育. 长江流域蒸发皿蒸发量及影响因素变化趋势. 自然资源学报, 2005a, 20(5): 864-870.
    [249] 王艳君, 姜彤, 许崇育, 施雅风. 长江流域 1961-2000 年蒸发量变化趋势研究. 气候变化研究进展, 2005b, (03) .
    [250] 王浩, 王建华, 秦大庸, 贾仰文. 基于二元水循环模式的水资源评价理论方法. 水利学报, 2006, 37(12), 1496-1502.
    [251] 王海锋. 干旱区水资源利用模式与社会经济格局相互影响机制研究: [博士学位论文]. 北京: 清华大学, 2005.
    [252] 吴厚水. 新水热平衡联系方程的建立及其在水文学应用的可能途径. 地理科学, 1983,8(2): 102-108.
    [253] 吴绍洪, 尹云鹤, 郑度, 等. 近 30 年中国陆地表层干湿状况研究. 中国科学:D 辑: 地球科学, 2005, 35 (3): 276-283.
    [254] 夏军. 水文非线性系统理论与方法. 武汉: 武汉大学出版社, 2002.
    [255] 夏军, 刘孟雨, 贾绍凤, 宋献方, 罗毅, 张士峰. 华北地区水资源及水安全问题的思考与研究. 自然资源学报, 2004, 19(5): 550-560.
    [256] 夏军, 刘德平. 湖北平原水网区水文水资源系统模拟研究. 水利学报,1995, 11, 46-55.
    [257] 夏军, 谈戈. 全球变化与水文科学新的进展与挑战. 资源科学, 2002, 24(3): 1-7.
    [258] 夏军, 左其亭. 国际水文科学研究的新进展. 地球科学进展, 2006, 21(3), 256-261.
    [259] 熊立华, 郭生练. 分布式流域水文模型. 北京: 中国水利水电出版社, 2004.
    [260] 徐宗学, 和宛琳. 黄河流域近 40 年蒸发皿蒸发量变化趋势分析. 水文, 2005, 25(6): 6-11.
    [261] 杨大文, 楠田哲也. 水资源综合评价模型及其在黄河流域的应用. 北京: 中国水利水电出版社, 2005.
    [262] 杨大文, 李翀, 倪广恒, 等. 分布式水文模型在黄河流域的应用.地理学报, 2004, 59(1): 143-154.
    [263] 杨远东. 多年平均陆面蒸发量的计算. 地理研究, 1987, 6(4): 62-69.
    [264] 曾燕. 黄河流域实际蒸散分布式模型研究[博士学位论文]. 北京: 中国科学院地理科学与资源研究所, 2004.
    [265] 翟盘茂, 任福民. 中国近四十年最高最低气温变化. 气象学报, 1997, 55(4): 418-429.
    [266] 张永强. 土壤-植被-大气系统水、热传输机理及区域蒸散发模型[博士学位论文]. 北京: 中国科学院研究生院, 2004.
    [267] 中野秀章. 森林水文学. 东京: 共立出版, 1976.
    [268] 朱岗崐. 中国各流域水量平衡的初步分析. 气象学报, 1957, 28(01): 27-40.
    [269] 朱岗崐. 自然蒸发的理论及应用. 北京: 气象出版社, 2000.
    [270] 左洪超, 李栋梁, 胡隐樵等. 近四十年中国气候变化趋势及其同蒸发皿观测的蒸发量变化的关系. 科学通报, 2005, 50(11): 1125-1130.
    [271] 左洪超, 鲍艳, 张存杰等. 蒸发皿蒸发量的物理意义、近 40 年变化趋势的分析和数值试验研究. 地球物理学报, 2006 , 49 (3) :680-688.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700