用于加氢制备二醇反应中的高效纳米铜基及镍基催化剂的合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙二醇(EG)是一种重要的有机化工原料,主要用来生产聚酯纤维、防冻剂、不饱和聚酯树脂、非离子表面活性剂、乙醇胺以及炸药等。传统的制备乙二醇路线是基于石油路线的环氧乙烷水合法,七十年代世界石油危机的冲击,使人们认识到石油资源的有限性,因此开发利用我国丰富的煤和天然气资源,发展碳一化工具有重要的战略意义和经济意义。非石油路线的碳一路线合成乙二醇是指经由CO氧化偶联生成草酸二甲酯(DMO),DMO再加氢合成乙二醇(EG),其中草酸二甲酯加氢制备乙二醇是实现工业化的关键步骤,具有重要的经济价值。目前,介孔材料由于其具有较大的孔径、较高的比表面积及高的热稳定性,常常用来作为催化剂载体。与普通载体相比,介孔材料负载的催化剂由于其能更好的分散和稳定活性物种,因此常常具有较高的活性、选择性以及稳定性。
     1,2-丙二醇(1,2-PDO)的用途十分广泛,可用于食品添加剂和药物溶剂,还可以用来生产不饱和树脂、药品、化妆品、涂料和防冻剂等。1,2-丙二醇的普遍合成路线是环氧丙烷水合法,但存在着成本偏高、环境污染和石油枯竭的问题。随着生物柴油的广泛兴起,甘油作为大量的副产物出现了,因此利用甘油氢解制备二醇,取代石油路线具有重要意义。本论文研究了铜基催化剂上草酸二甲酯加氢制备乙二醇和铜、镍基催化剂上甘油氢解制备二醇(即乙二醇和1,2-丙二醇),关键是催化剂的制备和结构与其催化性之间的能关系。取得的主要结果如下:
     采用简单的蒸氨法一步制备了负载量分别为20-60wt%的Cu/SBA-15催化剂,具有较高的比表面积及高的热稳定性,TEM表征发现其仍保留介孔SBA-15的长程有序结构,XRD表征其颗粒较小为17.2-27.5 nm。将这些Cu/SBA-15催化剂用于DMO加氢,发现50wt%的Cu/SBA-15催化剂的活性和EG的选择性最佳,在473 K、3 MPa、H2/E=100以及DMO LHSV=0.6 ml/gcat.h的时候,DMO转化率为100%,EG的得率为99%。作为对比,采用传统的浸渍方法制备了含量为50wt%Cu/SBA-15催化剂发现CuO的颗粒较大,为40.3 nm左右,这表明部分CuO以较大的颗粒分布在载体的外表面,几乎没有催化活性。
     我们首先用共沉淀法制备了不同Cu:A1比例的Cu/Al2O3催化剂,发现在Cu:Al为1:1的时候氢解活性最高。加入适量的Zn之后,得到高活性的Cu/ZnO/Al2O3催化剂,其中摩尔比Cu:Zn:Al2O3为4:2:4时候具有最高活性:在甘油92%的转化率条件下,乙二醇的选择性高达99%。通过BET、XRD、TEM和TPR系列表征了催化剂的物理化学性质。
     Raney Ni催化剂(骨架Ni)具有类似海绵形貌的结构,表现出较高加氢反应活性。表征结果显示,Raney Ni催化剂主要由金属态的Ni组成,颗粒大小为4.64 nm。系统研究了一种新的反应条件下Raney Ni催化剂催化甘油氢解制备二醇(EG和1,2-PDO)。反应条件温和,不需要氢气气氛,常压反应:在10wt%的甘油水溶液在453 K,0.1 MPa N2条件下极短的时间内就可以达到100%甘油转换率和58.5%的二醇得率。
Ethylene glycol (EG), an important chemical widely used in antifreeze and polyester manufacture, is universally produced from petroleum-derived ethylene via its epoxidation in the present industrial approach. However, this process is greatly restricted by the dwindling petroleum resource. In this respect, the indirect synthesis of EG from syngas via the coupling of CO with nitrite esters to obtain oxalates and then hydrogenation of oxalates to EG has huge potential both in the economic and environmental persistent development.It is well known that mesoporous materials which possess high surface area, large pore volume, regular structure, uniform pore size distribution, and relative high thermal stability have drawn much attention in the field of separation, adsorption, and drug delivery. Immobilization of nanoscopic materials in such high-surface area supports with improved catalytic activity and product selectivity is a task of great economic and environmental importance in the chemical industries.
     Propylene glycol (PG), used as high value-added speciality chemical intermediates, are widely used for manufacturing polyester fibers, unsaturated polyester resins, antifreeze, pharmaceuticals and other important products. At present, PG is mainly produced from the hydration of corresponding epoxy alkanes, which are commonly derived from a petrochemical approach. However, as crude oil resource shrinks, synthesis of the two diols from biomass glycerol attracts more and more interest. In this work catalytic hydrogenation of dimethyl oxalate to glycerol and catalytic hydrogenalysis of glycerol to diols on Cu catalyst and Ni catalyst has been studied in details. Through characterizations, the effect of bulk structure and surface component of catalysts on the catalytic performance were investigated.
     Ultra-high (50%) copper contented mesoporous Cu/SBA-15 catalysts were successfully prepared through the simple ammonia-driving deposition-precipitation method. The catalyst shows high copper dispersion and perfect activity in the selective hydrogenation of DMO to EG, much better than that of the catalyst prepared by the traditional impregnation method. The catalyst with a copper content of 50 wt% also exhibited the best catalytic performance at 0.6 h-1,while the conversion of DMO was kept at 100% and the selectivity to EG was above 99%. Such promotion can be ascribed to the much smaller particle size, much higher dispersion of copper species, and more resistance to sintering.
     With the rapid development of the bio-diesel industry by transesterification of seed oils with methanol, glycerol of renewable origin, as a by-product of bio-diesel production, seems to be an attractive option as a new feedstock. Catalysts containing an active copper compound such as Cu-chromite, Cu-ZnO, Cu-SiO2 or Cu-Al2O3 are active in glycerol hydrogenation. Cu/Al2O3 and Cu/ZnO/Al2O3 catalysts with high copper content and high copper dispersion were successfully synthesized via the simple co-precipitation method that can efficiently catalyze the hydrogenolysis of glycerol to 1,2-propanediol in an autoclave. Cu/Al2O3 (molar ratio:1/1)proved as effective for the production of 1,2-propanediol because of the high selectivity (about 90.1%),but the conversion of glycerol is relative low (about 71.3%). As addition of ZnO, Cu/ZnO/Al2O3 (molar ratio:4/2/4) catalyst shows higher conversion of glycerol (about 92.5%) and keeps high selectivity (about 99.0%). The physical and chemical properties of these catalysts have been studied through various characterization methods such as BET, XRD, TEM and TPR.
     Raney-Ni catalysts (skeletal catalysts) with a ponge-like structure are one kind of well-known catalyst used in several hydrogenation processes. The prepared Raney-Ni catalysts mainly contains of metal Ni, about 4.64 nm. A new and efficient catalytic route for the production of PG and EG by catalytic combination of glycerol aqueous reforming and hydrogenation of glycerol has been developed using the Raney Ni catalyst. The reaction conditions are much milder than those previously reported, since no hydrogen was needed and the reaction can be conducted under ambient pressure. At 453 K,0.1 MPa of N2 conditions the reaction can get 58.5% diols yield and the 100% conversion of glycerol solution(10wt%).
引文
[1]沈景余.世界环氧乙烷,乙二醇生产现状及技术进展[J].石油化工,1994,23(009):611-617.
    [2]蔡启瑞,彭少逸.碳一化学中的催化作用[M].化学工业出版社,1995:1-9.
    [3]许茜,王保伟,许根慧.乙二醇合成工艺的研究进展[J].石油化工,2007,36(002):194-199.
    [4]宋云英,李明.乙二醇合成技术的研究进展[J].化工科技市场,2006,29(009):23-28.
    [5]E. Van Kruchten. Carboxylates in catalytic hydrolysis of alkylene oxides [P].U. S.: 63166571,Nov.13.2001
    [6]H. Soo, B. C. Ream, J. H. Robson. Monoalkylene glycol production using mixed metal framework compositions [P].U. S.:4967018, Oct.30.1990
    [7]林青松,李素梅,周斌.环氧乙烷水合制备乙二醇的催化剂及过程[P].CN:1237481,Sep.08.1999
    [8]H. Odanaka, T. Yamamoto, T. Kumazawa. Preparation of high-purity alkylene glycol[P].JP:5690029,1981
    [9]V. S.Bhise; R. Hoch. Process for recovering ethylene oxide from aqueous solutions [P].U. S.:4500559,1983
    [10]T. Akasaki,T. Sato,H. Takahashi,M. Kimura, S.Hayashi-Preparation of alkylene glycol [P].JP:571006631,1982
    [11]孟祥宇,马中义,王宏伟,赵振波,李正.乙二醇的生产方法与市场前景概述[J].化工科技,2008,16(004):70-74.
    [12]M. Ishino, M. Tamura, T. Deguchi, S. Nakamura. Mechanistic studies on direct ethylene glycol synthesis from carbon monoxide and hydrogen 2. Homogeneous ruthenium catalyst[J].Journal of catalysis,1992,133(2):332-341.
    [13]T. Takano, T. Deguchi, M. Ishino, S. Nakamura. Effect of phosphine ligands on homogeneous hydrogenation of carbon monoxide by iridium catalysts[J].Journal of Organometallic Chemistry,1986,309(1-2):209-214.
    [14]Y. Kiso, K. Saeki. Novel effect of imidazole compounds on a homogeneous ruthenium carbonyl catalyst in hydrogenation of carbon monoxide:a new catalyst for ethylene glycol synthesis[J].Journal of Organometallic Chemistry,1986,309(1-2): C26-C28.
    [15]张旭之,王松汉,戚以政.乙烯衍生物学[M].北京:化学工业出版社,1995:214.
    [16]K. Nishimura, S. Uchiumi, K. Fujii, K. Nishihira, M. Yamashita, H. Itatani. Process for preparing a diester of oxalic acid [P].JO:77106790, Sep.07.1980
    [17]S. Tahara, K. Fujii, K. Nishihira, M. Matsuda, K. Mizutare.Process for continuous preparation of diester of oxalic acid [P].EP:46983 Al,Mar.10.1982
    [18]S. H. Brown, R. H. Crabtree. Making mercury-photosensitized dehydrodimerization into an organic synthetic method:Vapor pressure selectivity and the behavior of functionalized substrates[J].Name:Journal of the American Chemical Society,1989,
    [19]H. Yagita, K. Asami, A. Muramatsu, K. Fujimoto. Oxidative dimerization of dimethyl ether with solid catalysts [J]. Applied Catalysis,1989,53(1):L5-L9.
    [20]S. Scardigno, L. Rivolta, G. Caprara, L. Cassar. Process for preparing glycolic acid and its polymers [P].U. S.:Oct,4,1997
    [21]U. Matteoli, G. Menchi, M. Bianchi, F.Piacenti. Homogeneous catalytic hydrogenation of the esters of bicarboxylic acids:Part Ⅲ1.Ethylene glycol from dimethyl oxalate[J].Journal of Molecular Catalysis,1988,44(3):347-355.
    [22]U. Matteoli, M. Blanchi, G. Menchi, P. Prediani, F.Piacenti.Homogeneous catalytic hydrogenation of dicarboxylic acid esters[J].Journal of Molecular Catalysis, 1984,22(3):353-362.
    [23]U. Matteoli, G. Menchi, M. Bianchi, F. Piacenti. Homogeneous catalytic hydrogenation of the esters of bicarboxylic acids::Part Ⅲ1.Ethylene glycol from dimethyl oxalate[J].Journal of Molecular Catalysis,1988,44(3):347-355.
    [24]U. Matteoli, G. Menchi, M. Bianchi, F. Piacenti. Selective reduction of dimethyl oxalate by ruthenium carbonyl carboxylates in homogeneous phase Part Ⅳ1 [J]. Journal of molecular catalysis,1991,64(3):257-267.
    [25]H. T. Teunissen, C. J. Elsevier. Ruthenium catalysed hydrogenation of dimethyl oxalate to ethylene glycol [J].Chemical Communications,1997,1997(7):667-668.
    [26]J. S.Lee, J. C. Kim, Y. G. Kim. Methyl formate as a new building block in Cl chemistry [J].Applied catalysis,1990,57(1):1-30.
    [27]R.G. Wall. Catalyst for ester hydrogenation [P].U. S.:411362, Sep.12,1978
    [28]J. B. Wilkes. Hydrogenation catalyst [P].U. S.:4199479, Apr.22,1980
    [29]L. R.Zehner, R. W. Lenton. Process for the preparation of ethylene glycol [P]. US.:May.09,1978
    [30]Y. Y. Zhu, S. R. Wang, L. J. Zhu, X. L. Ge, X. B. Li, Z. Y. Luo. The Influence of Copper Particle Dispersion in Cu/SiO 2 Catalysts on the Hydrogenation Synthesis of Ethylene Glycol[J].Catalysis Letters,1-7.
    [31]F.Poppelsdorf. Process for the preparation of ethylene glycol [P].EP:60787, Mar.12,1982
    [32]W. J. Bartley. Process for the preparation of ethylene glycol [P]. US:Jul.30. 1987
    [33]W. J. Bartley. Process for the preparation of ethylene glycol by catalytic hydrogenation [P].US:4628128, Nov.9.1986
    [34]J. W. Crandall, J. E. Deitzler, L. A. Kapicak, F. Poppelsdorf. Process for the hydrolysis of dialkyl carbonates [P].US:1987-03-10
    [35]李竹霞,钱志刚,赵秀阁,肖文德.草酸二甲酯加氢Cu/SiO2催化剂前体的研究[J].华东理工大学学报:自然科学版,2004,30(006):613-617.
    [36]李竹霞,钱志刚,赵秀阁,肖文德.载体对草酸二甲酯加氢铜基催化剂的影响[J].华东理工大学学报:自然科学版,2005,31(001):27-30.
    [37]张子忠,陈秀敏.丙二醇合成新工艺[J].四川化工与腐蚀控制,1998,1(003):10-11.
    [38]W. J. Peppel. Preparation and properties of the alkylene carbonates [P].US:50, Feb.15.1972
    [39]T. Cho, T. Tamura, T. Cho, K. Suzuki. Process for preparing dialkyl carbonates [P].US:5430170, Ju.14.1996
    [40]T. Kondoh, Y. Okada, F. Tanaka, S. Asaoka, S. Yamamoto. Method of producing dialkylcarbonate [P].US:Jul.25.1995
    [41]潘鹤林,田恒水.酯交换法碳酸二甲酯生产工艺[J].上海化工,1998,23(013):34-36.
    [42]B.Casale, A. M. Gomez. Method of hydrogenating glycerol [P].US:May.25. 1993
    [42]R. Fritz,B.Guettes,R. Pretzseh,M. Reichelt, M. Schuster. Production of bromine-containing poly:ol compounds by reacting bromine-containing alcohol compounds with compounds containing at least two epoxide groups in presence of Lewis acid catalyst [P].DE:19605510AI,1997
    [43]T. A. Werpy,J. G. Frye, A. H. Zaeher.Hydrogenolysis of 6-carbon sugars and other organic compounds [P].U.S.:6841085822005,
    [44]A. Perosa,P. Tundo. Selective hydrogenolysis of glycerol with raney Nickel [J].Industrial & Engineering Chemistry Research,2005,44:8535-8537.
    [45]S.Wang,H. C. Liu.Selective hydrogenolysis of glycerol to propylene glycol on Cu-ZnO catalysts[J].Journal of Catalysis Letters,2007,17(1):62-67.
    [46]E. Maris, R. J. Davis. Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts[J].Journal of Catalysis,2007 249:328-335.
    [47]J. Feng, H.Y. Fu, J.B.Wan, R.X. Li, H. Chen, X.J. Li. Hydrogenolysis of glycerol to glycols over ruthenium catalysts:Effect of support and catalyst reduction temperature[J].Catalysis Communications,2008,9(6):1458-1464.
    [48]T Miyazawa, Y Kusunoki, K Kunimori, K Tomishige. Glycerol conversion in the aqueous solution under hydrogen over Ru/C+an ion-exchange resin and its reaction mechanism[J].Journal of Catalysis,2006,240(2):213-221.
    [49]T. Miyazawa, S.Koso, K. Kunimori, K. Tomishige. Development of a Ru/C catalyst for glycerol hydrogenolysis in combination with an ion-exchange resin [J]. Applied Catalysis A:General,2007,318:244-251.
    [50]T. Miyazawa, S.Koso, K. Kunimori, K. Tomishige. Glycerol hydrogenolysis to 1,2-propanediol catalyzed by a heat-resistant ion-exchange resin combined with Ru/C [J].Applied Catalysis A:General,2007,319:30-35.
    [51]Furikado I, Miyazawa T, Koso S, Shimao A, Kunimori K, Tomishige K. Catalytic performance of Rh/SiO2 in glycerol reaction under hydrogent [J].Green Chemistry,2007,9:582-585.
    [52]C. Montassier,D. Giraud,J. Barbier,Polyol transformation by liquid-phase heterogeneous catalysis over metals[J].Bulletin de la Societe Chimique de France, 1989,2:148-155.
    [53]Runeherg J,Baiker A,Kijemki J.Copper catalyzed amination of ethylene glycol [J].Applied Catalysis,1985,17(2):309-319.
    [54]房德仁,刘中民,黎晓琼,张慧敏,许磊.加料方式对CuO/ZnO/Al2O3系催化剂前驱体性质的影响[J].燃料化学学报,2004,(06).
    [55]侯晋.超重力共沉淀法制备CuO/ZnO/Al2O3催化剂的研究[D].北京化工大学,2008.
    [56]M. Raney, Briar knife and brtjsh hook [P].U.S.:1563787 May.19.1925
    [57]P. Fouilloux, G. A. Martin, A.J. Renouprez, B.Moraweck, B.Imelik, M. Prettre, A study of the texture and structure of Raney nickel[J].Journal of Catalysis,1972, 25(2):212-222.
    [58]R. R. Davda, J. W. Shabaker, G. W. Huber, R. D. Cortright, J. A. Dumesic. Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts [J]. Applied Catalysis B:Environmental,2003,43:13-26.
    [59]J. H. Sinfelt. Specificity in catalytic hydrogenolysis by metals.[J].Advances in Catalysis,1973,23:91-119.
    [60]M. A. Vannice. The catalytic synthesis of hydrocarbons from H2/CO mixtures over the Group VIII metals:V. The catalytic behavior of silica-supported metals [J]. Journal of Ctalysis,1977,50:228-236.
    [61]C.S.Brooks, F.D. Lemkey, G.S. Golden, Raney type nickel catalysts from RSR atomization of Al-Ni powders [J]._Materials Research Society Symposia Proceedings, 1982,8:397-407.
    [62]B.N. Zong, D. Dissertation, Research Institute of Petroleum Processing of China, China,1991.
    [63]艾珍朱林.合成气合成乙二醇的研究进展[J].化工时刊,2008,22(1):64-66.
    [64]侯志扬.合成气路线生产乙二醇技术进展[J].精细化工原料及中间体,2008,4:35-39.
    [65]P.T. Tanev, T.J. Pinnavaia. A Neutral Templating Route to Mesoporous Molecular Sieves [J].Science,1995,267(5199):865-867.
    [66]S.Inagaki, Y. Fukushima, O. Terasaki. Novel Mesoporous Materials with a Uniform Distribution of Organic Groups and Inorganic Oxide in Their Frameworks [J].Journal of American Chemical Society,1999,121(41):9611-9614.
    [67]J.Y. Ying, C.P. Mehnert, M.S. Wong. Synthesis and Applications of Supramolecular-Templated Mesoporous Materials [J].Angewandte Chemie International Edite,1999,38:56-77.
    [68]K. W. Gallis, J. T. Araujo, K. J. Duff, J. G Moore, C. C. Landry. The Use of Mesoporous Silica in Liquid Chromatography[J].Advanced Materials,11(17): 1452-1455.
    [69]DY. Zhao, J. Feng, Q. Huo, N. Melosh, GH. Fredrickson, BF. Chmelka, GD.S tucky.Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50to 300 Angstrom Pores [J].Science,1998,279:548.
    [70]S.Brunauer, P. H. Emmett, E. Teller.Adsorption of gases in multimolecular layers [J]. Journal of Amercian Chemistry Society,1938,60:309-319.
    [71]Robertson S. D. Anderson R. B. The structure of Raney nickel:IV. X-ray diffraction studies [J]. Journal of American Chemical Society,1971,23(2):286-294.
    [73]L.F. Chen, P.J. Guo, M.H. Qiao, S.R. Yan, H.X. Li, W Shen, H.L. Xu. Cu/SiO2 catalysts prepared by the ammonia-evaporation method:Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol [J]. Journal of catalysis,2008,257:172-180.
    [74]A. Sayari, P. Liu, M. Kruk, M. Jaroniec. Application of Large Pore MCM-41 Molecular Sieves To Improve Pore Size Analysis Using Nitrogen Adsorption Measurements[J].Langmuir,1997,13 (23):6267-6273.
    [75]A. Vinu, DP. Sawant, K. Ariga, KZ.Hossain, SB. Hossain, SB.Halligudi, M. Hartmann, Benzylation of benzene and other aromatics by benzyl chloride over mesoporous AlSBA-15 catalysts [J] Microporous and Mesoporous Materials,2005, 80(1-3):195-203.
    [76].CM. Yang, HA. Lin, B. Zibrowius, B.Spliethoff, F.Schuth, SC. Liou, MW. Chu, CH. Chen. Selective Surface Functionalization and Metal Deposition in the Micropores-of Mesoporous Silica SBA-15[J].Chemistry of Materials,2007,19 (13):3205-3211.
    [77]R. Schmidt, EW. Hansen, M. Stocker, D. Akporiaye, O.H. Ellestad. Pore size determination of MCM-41 mesoporous materials by means of 1H NMR spectroscopy, N2 adsorption, and HREM. A preliminary study [J]. Journal of American Chemical Society,1995,117(14):4049-4056.
    [78]J. Ling, R. John, Regalbuto.The synthesis of highly dispersed noble and base metals on silica via strong electrostatic adsorption:I. Amorphous silica[J].Journal of Catalysis,2008,260(2):329-341.
    [79]D.A. Simonetti, J.R. Hansen, E.L. Kunkes, R.R. Soares, and J.A. Dumseic, Coupling of glycerol processing with Fischer-Tropsch synthesis for production of liquid fuels [J].Green Chemistry,2007,9:1073-1083.
    [80]GJ. Suppes, M.A. Dasari, E.J. Doskocil, P.J. Mankidy and M.J. Goff, Transesterification of soybean oil with zeolite and metal catalysts[J].Applied Catalysis A:General,2004,257(2):213-223.
    [81]GW. Huber, S. Iborra, A. Corma. Synthesis of Transportation Fuels from Biomass:Chemistry, Catalysts, and Engineering [J].Chemical. Review.2006,106(9): 4044-4098.
    [82]M. Pagliaro, R. Ciriminna, H. Kimura, M. Rossi and C.D. Pina. From Glycerol to Value-Added Products[J].Angewandte Chemie International Edition,2007,46(24): 4434-4440.
    [83]J. N. Chheda, G.W. Huber, J. A. Dumesic. Liquid-Phase.Catalytic Processing of Biomass-Derived Oxygenated Hydrocarbons to Fuels and Chemicals[J].Angewandte Chemie International Edition,2007,46(38):7164-7183
    [84]R. R. Soares, D. A. Simonetti, J. A. Dumesic. Glycerol as a Source for Fuels and Chemicals by Low-Temperature Catalytic Processing[J].Angewandte Chemie International Edition,2006,45(24):3982-3985.
    [85]A. Behr, J. Eilting, K. Irawadi, J. Leschinski, F. Lindner. Improved utilisation of renewable resources:New important derivatives of glycerol[J].Green Chemistry, 200810:13.
    [86]IUPAC Recommendations[J].Pure Applied Chemistry,1985,57:603.
    [87]F. Rouquerol, J. Rouquerol, K.Sing. Adsorption by powders & porous solids, Academic Press:San Diego,1999
    [88]T. Ressler, B.L. Kniep,I. Kasatkin,R. Schleul. The Microstructure of Copper Zinc Oxide Catalysts:Bridging the Materials Gap [J].Angewandte Chemie International Edition,2005,44(30):4704-4707.
    [89]B.Bems, M. Schur, A. Dassenoy, H. Junkes, D. Herein, R. Schlogl, Relations between synthesis and microstructural properties of copper/zinc Hydroxycarbonates [J] Journal of Chemistry Europe,2003,9(9):2039-2052.
    [90]B.L. Kniep, T. Ressler, A. Rabis, Girgsdies, F. Baenitz, M. Steglich, F. Schlogl. Rational design of nanostructured copper-zinc oxide catalysts for the steam reforming ofmethanol [J],Angewandte Chemie International Edite,2004,116(1):114-115.
    [91]B.L. Kniep, F. Girgsdies,T. Ressler. Effect of precipitate aging on the microstructaral characteristics of Cu/ZnO catalysts for methanol steam reforming[J]. Journal of Catalysis,2005,236(1):34-44.
    [92]D.M. Whittle, A. A. Mirzaei,J. S.J. Hargreaves,R,W, Joyner, C. J. Kiely,S. H. Taylor, G.J. Hutchings,Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation:effect ofprecipitate ageing on catalyst activity[J].Journal of Physical Chemistry,2002,4(23):5915-5920.
    [93]R. J. Covort, H. Adkins. Nickel by the Raney process as a catalyst of hydrogenation[J].Journal of American Chemistry Society,1932,54:4116-4117.
    [94]H. Adkins, A. A. Pavlic. Hydrogenation of Esters to alcohols over Raney nickel [J].Journal of the American Chemical Society,1947,69:3039-3041.
    [95]A. A. Pavlic, H. Adkins. Preparation of a Raney nickel catalyst[J].Journal of the American Chemical Society,1946,68:1471.
    [96]H. Adkins, H. R. Billica. The preparation of Raney nickel catalysts and their use under conditions comparable with those for platinum and palladium catalysts[J]. Journal of the American Chemical Society,1948,70:695-698.
    [97]J. Petro, A. Bota, K. Laszlo, H. Beyer, E. Kalman, I. Dodony. A new alumina-supported, not pyrophoric Raney-type Ni-catalyst [J]. Applied Catalysis A: General,2000,190:73-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700