双层滤料床高温烟气干法净化一体化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双层滤料颗粒层除尘技术作为一项创新技术已成功应用于铝熔炼炉的烟气除尘中,基于该新技术,本文通过模拟试验研究了双层滤料床烟气净化一体化的新工艺。实验系统由模拟烟气发生系统、吸附剂加料系统、温控系统、双层滤料床装置和烟气分析等组成,双层滤料床放置于管式炉中,通过调节管式炉温度,控制反应温度。主要研究内容和结论为:
     1.在模型试验台上进行了钙基、钠基吸附剂在双层滤料床中的脱硫试验,研究了温度、浓度、吸附剂加入量、CO2等因素对吸附剂脱硫的影响。结果表明:温度对吸附剂Ca(OH)2脱硫的影响显著,吸附剂Ca(OH)2的脱硫穿透时间随温度的升高而增加,400℃时,穿透时间为17分钟,700℃时,穿透时间则可达30分钟;且钙利用率也随温度的升高而增加,400℃时钙利用率为30%,600℃时钙利用率将近60%。
     吸附剂需要经过多次重复吸附才能使吸附剂达到饱和,400℃时,吸附剂Ca(OH)2需要重复吸附8次,吸附剂NaHCO3需要重复吸附4次。
     CO2对吸附剂Ca(OH)2脱硫的影响明显,温度范围在400~600℃,模拟气体中增加10% CO2后,其脱硫穿透时间明显减少,且随着温度的升高穿透时间减少量增加,在600℃时穿透时间减少量达20分钟。
     温度对吸附剂NaHCO3脱硫的影响显著,在300℃以下,工业食用小苏打和分析纯小苏打的脱硫穿透时间都在10分钟以下,当温度高于400℃时穿透时间变长,工业食用小苏打在400℃时穿透时间为25分钟,500℃时穿透时间达30分钟。
     2.在模型试验台上进行了钙基、钠基吸附剂在双层滤料床中的脱氯试验,研究了温度、CO2等因素对吸附剂脱氯的影响。结果表明:温度范围在300~500℃,吸附剂Ca(OH)2的脱氯穿透时间随着温度升高而变长,在500℃,20~30分钟内出口处HCl的平均浓度为150ppm,600℃时穿透时间变短,20~30分钟内出口处HCl的平均浓度为200ppm,所以500℃是该实验条件下的脱氯最佳温度。
     吸附剂NaHCO3的脱氯穿透时间随着温度升高增加,在500℃时,前30分钟出口处HCl的浓度都为零,可见较高的温度下对脱氯有利。
     3.双层滤料床烟气净化一体化新工艺可应用于垃圾焚烧炉烟气净化、中温烟气脱硫脱硝除尘一体化、高温烟气脱硫脱硝除尘一体化三种方案。该新工艺应用于垃圾焚烧炉烟气净化时,通过与半干法脱酸反应塔加布袋除尘器工艺比较,具有工艺简单、占地少、操作管理简便、投资省、运行成本低、可同时高效脱酸、除尘和除二恶英等优点。
As a new technology, the dual-layered granular bed filter had been applied to remove dust from flue gas of aluminum smelting furnace in industry. Based on the new technology, this paper carried out experiments on integrated purification of flue gas in a dual-layer granular bed filter through. The experimental system consisted of flue gas simulation system, sorbent injection system, temperature control device, dual-layer granular bed filter reactor and gas analysis system. The reactor was put in a tube furnace in which temperature could be controlled. The main experiments and their results were as followings:
     1. Experimental research on desulphurization by calcium-based and sodium-based sorbent in a dual-layer granular bed filter was carried out to investigate the effects of such factors as temperature, SO2 concentration, lime dosage in bed, CO2 and so on. The results showed that temperature has considerable effect on desulphurization of calcium-based sorbent in the bed, and breakthrough time on desulfurization of Ca(OH)2 increased obviously with increasing of temperature, which was 30 minutes at 600℃, while at 400℃,only 17 minutes. The utilization efficiency of Ca also increased with increasing of temperature, which was 30% at 400℃, and near 60% at 600℃.
     Sorbent reached adsorption saturation by repeated adsorptions. The sorbent Ca(OH)2 needed 8 repeated adsorptions, and the NaHCO3 needed 4 repeated adsorptions at 400℃.
     CO2 had obviously effect on desulphurization of Ca(OH)2 at 400~600℃, and the breakthrough time of desulphurization obviously decreased, as added 10% CO2 was added in simulation gas.The decrease of breakthrough time reached 20 minutes at 600℃compared with that without CO2 in the simulating flue gas.
     Temperature had also considerable effect on desulphurization of NaHCO3. The breakthrough times of desulphurization for two kind difference of sorbent NaHCO3 were all less than 10 minutes below 300℃, but increased to 25 minutes at 400℃, and 30 minutes at 500℃.
     2. Experimental study on dechloriantion by calcium-based and sodium-based sorbent in a dual-layer granular bed filter was also carried out to investigate the effects of factors as temperature, CO2 and so on. The results showed that the breakthrough time on dechloriantion of Ca(OH)2 increased with increasing of temperature at 300~500℃. The average HCl concentration in outlet gas from the reactor in the period of 20~30 minutes was 150ppm at 500℃, 200ppm while at 600℃, so 500℃may be the proper dechloriantion temperature under the experiment conditions.
     Breakthrough time of dechloriantion of NaHCO3 increased with increasing of temperature. HCl concentration in gas at exit was 0 during first 30 minutes of reaction at 500℃. It was obvious that higher temperature is favorable for dechloriantion by NaHCO3.
     3. The new technology of integrated purificationof flue gas in a dual-layer granular bed filter can be applied to three cases: purification of flue gas from MSW incineration, integrated removal of SO2, NOX and dust at medium temperature of about 400℃, and at high temperature above 700℃. When was used to purify the flue gas from MSW incineration, compared with process of semi-dry deacidification and dust removal, the new technology had the adventages of the small place occupied, low investment and operating cost as well as simple management and maintenance. And the study also focused on the feasibility of the new process in high efficiencies for simultaneous removal of SO2, dioxin and dust.
引文
[1]刘天齐.三废处理工程技术手册(废水卷)[M].北京:化学工业出版.2002
    [2]国家环保局.“1999年中国环境状况公报”.2000.56~59
    [3]国家环保局.“中国环境年鉴”.2000.25~37
    [4]贾志力,李晋生.发展洁净煤技术是可持续发展的必然选择[J].山西科技.2000 (4):32~34
    [5]胡成南,赵锡新,王克孝等.我国燃煤工业锅炉脱硫除尘现状与发展[J].中国环保产业CEPI,1997,8:15~16
    [6]蒋少军.燃煤工业锅炉烟气脱硫技术[J].化学工业与工程技术.1998,19(2):33~36
    [7]肖文德,吴志泉.二氧化硫脱除与回收[M].北京:化学工业出版社环境科学与工程出版中心.2001.178~181
    [8]张益,赵由才.生活垃圾焚烧技术[M].北京化学工业出版社.2000
    [9]王磊.焚烧城市垃圾回收新能源[J].新能源.1997,Vol.19(5):44~47
    [10] Commission of the European Communities.Towards a thematic strategy on the prevention and recyling of Waste. 2003
    [11] Information about waste managenment option in Europe Commission of the European Communicatities. A work document compiled during COST Action E9.2001
    [12] Waste incineration. Social and General Statistics House of Commons Library. 2002
    [13] Dimitrios Tsotsos. Information about waste managenment facilities in EEA member countries,European Environment Agency. 2000
    [14]汪玉林.垃圾发电技术及工程实例[M].北京化学工业出版社.2003
    [15]刘志全,宋秀杰.我国城市大气污染控制技术设备的产业化[J].环境保护.1999,9:12~16
    [16]中国环境保护产业协会,中国环境保护产业技术装备水平评价.北京:中国环境科学出版社.2000,126,108~109
    [17] Nehzat Motallebi.Winter PM2.5 and PM10 source apportionment at sacramento, California, Journal of the Air & Waste Management Association,1999,49(9):25~34
    [18] Jeffrey R. Brook. Tom F., Dann and Yvette Bonvalot, Observations and interpretations from the Canadian fine particle monitoring program, Journal of the Air & Waste Management Association, 1999,49(9):35~44
    [19] Edwin L, Meyer, Jr and Thomas N, Braverman. PM fine standards and impliedmodeling/analysis needs. Journal of the Air & Waste Management Association. 1999,49(9):116~124
    [20] Paul A, Solomon and Karen L, Magliano, Objectives and design of central California 1995 integrated monitoring study of the California regional PM10/PM2.5 air quality study, Journal of the Air & Waste Management Association, 1999,49(9):199~215
    [21]蒋展鹏.环境工程学[M].北京:高等教育出版社,1992,272
    [22]董建勋,李成之.李振中燃煤电站氮氧化物控制技术现状与发展[J].中国科学年学术年会电力分会场暨中国电机工程学会年学术年会论文集,中国,海南.317~320
    [23] D.C,Mussatti,R.K.Srivastava,P.M.Hemmer,et al.NOx controls-selective catalytic reduction.EPA/452/B-02-001,2000
    [24] Selective catalytic reduction for NOx control on coal-fired boilers.Draft Report,prepared for the U.S.Environmental protection Agency by The Cadmus Group,Inc.,Bechtel Power Corporation,and Science Applications International Corporation.May 1998
    [25]姚强.洁净煤技术[M].北京:化学工业出版社,2005
    [26]徐明.烟气二氧化硫污染控制技术发展及现状[J].安徽师范大学学报.2001,24(2):187~189
    [27]吴国华,朴香兰等.添加剂强化石灰/石灰石烟气脱硫过程的应用及研究进展[J].环境科学,2004,(3):12~14
    [28] Karin Laursen.John R,Grace and C.Jim Lim.Enhangcement of the sulfur capture capacity of limestones by the addition of Na2CO3 and NaCl.Enviromental Science & Technology,2001,35(21):4384~4389
    [29]杨立寨,祁海鹰等.氧化铁促进石灰中温烟气脱硫的机理性研究[J].工程热物理学报,2002,23(2):241~244
    [30]侯波,祁海鹰,由长福等.燃煤烟气中的CO2和NO对中温烟气脱硫的作用[J].工程热物理学报.2004,25(6):1061~1064
    [31] W.DUO,J.P.K.SEVILL,N.F.KIRKBY and R.CLIFT.Formation of product layers in solid-gas reactions for removal of acid gases.Chemical Engineering Science,1994,49(24A):4429~4442
    [32]高翔,骆仲泱,陈亚非等.含湿Ca(oH)2颗粒脱硫反应特性的模型研究[J].环境科学学报.1999.19(4):351~356
    [33]郝吉明,王书肖,陆永琪等.燃煤二氧化硫污染控嗣技术手册[M].北京:化学工业出版社.2001:193~212
    [34] Irabien A, Cortabitarte F, Ortiz M. Kinetics offlue gas desulfurization at low temperatures:nonideal surface adsorption model [J]. Chen Eng Sei,1992.47(7):1533~1543
    [35] Kralnmer G, Reissner H K. Cyclic activation of calcium hydroxide for enhanced desulfurization. Chemical Engineering and Processing. 2002,41:463~471
    [36]刘现卓等.蒸汽水合生石灰的脱硫实验研究[J].热能动力工程,2002
    [37] JuHen S, Chiu J H. Spent sorbent reactivation using steam. Fluidized Bed Combustion-ASME. 1995,2:841~849
    [38]王世昌,徐旭常,姚强. CaO颗粒烟气脱硫反应最佳反应温度的实验研究[J].热能动力工程.2004,19(5):454~457
    [39] GARCIA MARTINEZ J,BUENO LOPEZ J,GARIA GARCIA A,etal.SO2 retention at low temperature by Ca(OH)2-derived CaO:a model for CaO regeneration[J].Fuel,2002,80:305~313
    [40]别如山,李鑫,杨厉丹,周定.含氯有机废水在流化床焚烧HCl生成与控制的实验研究[J].环境科学学报.2002,21(4):394~399
    [41] Brooke Shemwell, YiannisA, Levendis, Girard A, Simons. Laboratory study on the high-temperature capture of HCI gas by dry-injection of calcium-based sorbents [J]. Chemosphere.2001,42(5-7):785~796
    [42] Claust Weinell, Peter1.Jensen, Kim Dam-Johansen et al. Hydrogen Chioride Reaetion with lime and limestone: Kinetics and Sorption Capacity [J]. Ind. Eng. ChemRes,1992,31(1):164~171
    [43] Weinell. High-temperature scrubbing and halogenated compounds [J].Combust. Sci.Technol.116~117,317
    [44] G.Mura and A.Lallai. Reaction kinetics of gas hydyogen chloride and limestone [J].Chemical Engineering Science. 1994,49(24):4491~4500
    [45] Guilin Piao, shige Aono, shige Katsu Mori, Seiichi Deguchi. Combustion of refuse derive fuel in a fluidized bed [J].Waste Management.1998,18(6-8):509~512.
    [46] Guilin Piao, Shige Aono, Motoehiro kondoh. Combudtion test of refuse derived fuel [J].Waste Management.2000,20(5-6):443~447
    [47]綦升辉.荷电干式吸收剂喷射脱硫系统[J].中国电力.1997(8):54~55
    [48]徐息.电子束脱硫技术应用分析[C].全国火力发电技术学术年会论文集.1995
    [49] C.David Livengood. Combined NOx/SO2 reduction. US DOE Rep.1989, 1-3
    [50] R.Martinelli, J.B.Doyle, K.E.Redinger. SO2-NOx-Rox-Box technology review and global commercial opportunities.Presented to 4th Annual Clean Coal Technology Conference,Sep,5-8,1995,Denver,Colorado,U.S.A
    [51] U.S.Department of Energy.“SO2-NOx-Rox-Box flue gas clean-up demonstration”,Final Report,U.S.DOE,September,1994
    [52]杨国华,周江华.双层滤料过滤床的压降特性研究[J].热能动力工程.2007,Vol.22,267~269
    [53]杨国华,周江华.双层滤料颗粒床过滤除尘新方法的研究[J].2005,Vol.25,891~894
    [54]王世昌,徐旭常,姚强.CaO颗粒烟气脱硫反应最佳反应温度的试验研究[J].热能动力工程.2004,19(5):454~457
    [55] Liang D T, Anthony E J, Loewen B K. Halogen capture by limestone during fluidized bed combustion[R].In the Proc. of the 11th Int. Conf. on Fluidized Bed Combustion,ASME,1991,2: 917~922
    [56] C.E.Weinell, P.I.Jensen, K.D.Johansen, et al. Hydrogen chloride reaction with lime and limestone: kinetics and sorption capacity.Ind.Eng.Chem.Res. 1992,Vol.31:164~171
    [57] B.Shemwell, Y.A.Levendis, G.A.Simons. Laboratory study on the high-temperature capture of HCl gas by dry-injection of calcium-based sorbents.Chemosphere, 2001,Vol.42(5):785~796
    [58]林瑜.垃圾焚烧烟气高温干式净化及其机理研究[D].学位论文.上海:同济大学机械工程学院,2006
    [59] M.Matasuka, K.Takeda, T.Miyatani and K.Ueyama. Simutaneous chlorination and sulphation of calcined limestone [J]. Chemical Engineering Science. 1996,51(11):2529~2534
    [60]李威武.废弃物焚烧中含氯有害物质的生成和控制研究[D].杭州.浙江大学热能工程研究所
    [61] A.D.Lawrence, J.Bu. The reactions between Ca-based solids and gases representative of those found in a fiuidized bed incinerator [J]. Chemeal Engineering Scienee. 2000,55:6129~6137
    [62]蒋旭光,李琦,李香排.燃煤过程中钙基及镁基吸收剂对HCl吸收作用的试验研究[J].煤炭学报.2003,28(5):626~630
    [63] M. Daoudi, J.K. Walters. A thermo gravimetric study of the reaction of hydrogen chloride gas with calcined limestone: determination of kinetic parameters. Chemical Engineering Journal. 1991,Vol.47(11):1~9
    [64] M. Daoudi, J.K.Walters. The reaction of HCl gas with calcined commercial limestone particles: the effect of particle size. Chemical Engineering Journal,1991, Vol.47(11):11~16
    [65] W.Wuyin, Y.Zhicheng, I.Bjerle, et al.The kinetics of the reaction of hydrogen chloride with fresh and spent Ca-based desulphurization sorbents. Fuel,1996,Vol.75(2):207~212
    [66] G.Mura, A.Lallai. On the kinetics of dry reaction between calcium oxide and gas hydrochloric acid.Chem.Eng.Sci.,1992,Vol.47(9-11):2407~2411
    [67] H.Munzner. Fluorine and Chlorine emissions from FBC.Eighth international conference on FBC,1985,Vol.8:1219~1226
    [68] D.T.Liang. Halogen capture by limestone during fluidized bed combustion.11th international conference on FBC,1991,Vol.2:917~922
    [69] B.K.Gullett, W.Jozewicz, L.A.Stefanski. Reaction kinetics of Ca-based sobents with HCl.Ind.Eng.Chem.Res. 1992,Vol.31:2437~2446
    [70]吴西宁,田洪海,庞菊玲等.催化氧化脱除垃圾焚烧烟气中二恶英的研究[J].工业催化.2004,12(9):47~50
    [71] Selctive catalytic reduction reduction for NOx control on coal-fired boilers. Draft Report, prepared for the U.S.Environmental Protection Agency by The Cadmus Group,Inc.,Bechtel Power Corporation,and Science Application International Corporation.May 1998
    [72]侯波,祁海英,由长福,徐旭常.CO2对中温烟气脱硫过程的影响[J].清华大学学报.2004,44(11)1571~1574

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700