用户名: 密码: 验证码:
蒸汽温度系统神经元网络控制方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在火电厂热工生产过程中,整个汽水通道中温度最高的是过热蒸汽温度,蒸汽温度过高或过低,都将给安全生产带来不利影响,因此,必须严格控制过热器的出口蒸汽温度,使它不超出规定的范围。汽温调节对象是一个多容环节,它的纯迟延时间和时间常数都比较大,干扰因素多,对象模型不确定,在热工自动调节系统中属于可控性最差的一个调节系统。目前热工过程控制中,传统的控制方法如PID等得到了广泛的应用,但这种方法在系统负荷稳定时能够取得很好的控制效果,而在系统负荷有较大波动时,则难以稳定及时的对系统进行控制。随着智能控制理论的深入研究,智能控制为火电厂热工过程自动控制提供了新的方法。
     首先,本文在深入了解火电厂热工过程生产工艺的基础上,仔细分析了影响蒸汽温度变化的各种扰动因素。蒸汽温度对象的动态过程和对象模型十分复杂,扰动因素诸多,比如蒸汽流量的变化,燃烧工况的变化,锅炉给水温度的变化、进入过热器蒸汽热焓的变化等,而且这些因素还可能互相制约。在研究影响蒸汽温度变化的三个主要扰动因素即蒸汽流量、烟气流量及其温度和减温水流量变化时系统动态特性的基础上,采用机理分析方法,建立了蒸汽温度系统的仿真数学模型。
     然后,根据神经元控制理论,在探讨了基本的神经元控制算法的基础上,分析了神经元增益对控制性能的影响,根据仿真实验及实践证明,对于开环放大倍数较大的被控对象,它能起到衰减神经元的控制作用,消除系统响应超调和振荡的不利影响;对于开环放大倍数较小的被控对象则能增强神经元的控制作用,加快系统的响应速度,这就要求神经元增益具有自适应能力,借助于PID控制的思想,将PID算法用于调整神经元控制器的增益,利用实际输出和期望输出之间的误差及误差变化等信息进行线性组合来决定神经元增益,提出了PID自适应调节增益神经元控制算法,同时,给出了以输出误差平方为性能指标的神经元控制算法。本文设计了蒸汽温度系统的控制方案,为克服诸多干扰因素,采取串级控制系统,其中主控制器采用PID自适应调节增益神经元控制器,副控制器采用常规PI控制器。结合现场实际情况,通过仿真试验,将PID自适应调节增益神经元控制系统和常规PID控制系统作了对比,分别在加入内环蒸汽流量干扰、外环烟气温度干扰、对象参数发生变化等情况下进行了比较,结果证明PID自适应调节增益神经元控制器有着更好的控制效果,在抗干扰和适应工况变化方面都要优于常规的PID控制器。
     针对PID自适应调节增益神经元控制器在系统响应速度方面的不足,本文研究了PID自适应调节增益神经元控制器的两种改进算法,具有积分分离作用的神经元
    
     ws
     智能控制器和具有神经元增益为一逐步衰减函数的智能控制器,详细分析了衰减函数
     的定义及其参数对控制性能的影响,给出了神经元增益为一逐步衰减函数的智能控制
     器的算法,通过仿真试验,表明具有衰减函数增益的神经元智能控制器较常规卜*
     串级控制系统和nD 自适应调节增益神经元控制系统在动态过程的平稳性和快速性
     方面有较大改善,并且具有控制算法调整方便、设计简单等优点。然后,针对神经元
    犁套”“一’“’——””———””’——””’““——’”””’”——”““’—“”’———””’”’””—‘””’—“””’””—·-———一
    圈 基本控制算法,通过仿真实验,研究了神经元增益、学习速率、初始权值等控制参数
    7 对系统控制性能的影响,对控制器性能改善和初始参数的选择具有抬导意义。
     最后,本文研究和设计了基于模式识别的仿人变周期智能控制器,并将其与常规
     PID控制系统、具有衰减函数增益的神经元控制系统作了仿真比较,仿真结果表明,
     基于模式识别的仿人变周期智能控制器在系统响应的快速性方面优于兵有衰减函数增
     益的神经元控制器和常规PID控制器,但在系统动态过程的平稳性方面不如具有衰
     减函数增益的神经元控制器。综上所述,本文针对火屯厂过热器蒸汽温度系统,着重
     作了控制算法的研究,并对各种算法进行了仿真实验,仿真结果表明,具有衰减函数
     增益的神经元控制系统有着较好的控制效果,并且它的算法设计简单,有较好的实川
     价值。
The super-heated steam temperature is the maximal temperature in the whole steam channels at the process of thermodynamic engineering in power plant. If the steam temperature is too high or too low, it will bring on dangerous factors. We must control the super-heated steam temperature of the output of the super-heated implement to an expected range. The vapor object is a multi-container tache. It has pure lag and many disturbances. Its constant time is much bigger and its object model is not confirmable. It is the most difficult control system in the process of thermodynamic engineering. The traditional control method such as PID controller is implemented widely in the process of thermodynamic engineering now. But they work well only when the systemic load is steadily and can not work well when the systemic load is changed with a wide margin. With studying of the intelligent control theory, it provides a new control method for the process of thermodynamic engineering in power plant.
    At first, the author analyzes many disturbance factors in vapor temperature on the basis of the produce technics in power plant. The vapor object has complicated dynamic process and intricate object model. It has many disturbances. Such as vapor flux, burning medium, water temperature, vapor temperature entrance into the super-heated implements. These factors may affect on each other. On the basis of analyzing the three main disturbance factors in vapor temperature and the main dynamical characteristic of the super-heated steam temperature control system in power plant, this paper builds the vapor temperature math model for simulation by use of mechanism analyzing.
    Based on the single neuron control theory, this paper analyzes the neuron plus influence on control performance on the foundation of the basic neuron control algorithm. Simulation results prove that for the control objects which have a more large opened-loop plus, it can weaken the control effect of the neural controller and abate the system response
    
    
    
    overall plus and oscillation, for the control objects which have a less smaller opened-loop plus, it can strengthen the control effect of the neural controller and quicken the system response. These request the neuron plus to have self-adjusting ability. If we can apply the regular PID algorithm and the error between practice output and expected output and its radio of its changing to decide the neural controller plus, we can design a self-adjusting plus single neural controller based on regular PID algorithm. At the same time, we also provide neuron control algorithm about the performance target based on the output error square function. The paper designs the control project about the super-heated steam system. To overcome the disturbance factors, we apply series control system to the steam system. The main controller adopts the self-adjusting plus single neural controller and the minor controller adopts the conventional PI controller. As compared with the neural controller and the conventional PID controller is simulated. The experiment shows that the effect of the neural controller is better and it is superior to the conventional controller on the condition of joining the inner loop vapor flux disturbance and outer loop smoke temperature disturbance and other conditions.
    Aimed at the problem the self-adjusting plus single neural controller based on regular PID algorithm has a slow response velocity, the author analyzed two improved algorithm of the neural controller. One is separate integral neural controller, another is attenuation function neural controller. The author analyzed some parameter influence on control performance and defined the attenuation function and its algorithm. The simulation comparisons between two neural intelligent controllers show that the attenuation function neural controller is superior to the self-adjusting plus single neural controller in response velocity, and its algorithm is simple and easy. Then, aimed at the basic neuron control algorithm, simulation experiments were made. The auth
引文
[1]孙增析等,《智能控制理论与技术》,清华大学出版社,广西科技出版社
    [2]张亮明等,《工业锅炉热工检测与过程控制》,天津大学出版社
    [3]陈来九,《热工过程自动调节原理和应用》,水利电力出版社
    [4]李士勇,《模糊控制、神经控制和智能控制论》,哈尔滨工业大学出版社,1996
    [5]容銮恩,《300MW火力发电机组丛书———燃媒锅炉机组》,中国电力出版社,1998
    [6]张乃尧等,《神经网络与模糊控制》,清华大学出版社,1998
    [7]何克忠,《计算机控制系统》,清华大学出版社,1998
    [8]杨献勇,《热工过程自动控制》,清华大学出版社,2000
    [9]张玉铎等,《热工自动控制系统》,水利电力出版社,1985
    [10]顾晓栋,《电厂热工过程自动调节》,电力工业出版社,1981
    [11]高鹗,《热力发电厂》,上海交通大学出版社,1995
    [12]热工自动化设计手册编写组,《热工自动化设计手册》,电力工业出版社,1980
    [13]刘有才等,《模糊专家系统原理与设计》,北京航空航天大学出版社,1994
    [14]张栾英等,《火电厂过程控制》,中国电力出版社,2000
    [15]王常力,罗案,《集散型控制系统选型与应用》,清华大学出版社
    [16]闻新,《Matlab神经网络应用设计》,科学出版社,2000
    [17]钱积新,《控制系统的数字仿真及计算机辅助设计》,浙江大学出版社,1993
    [18]杨志远,陆会明,自适应预估控制及其在火电厂的应用,自动化学报,1999(5)
    [19]朱刚,周贤伟,一种神经网络自学习控制结构与算法,自动化学报,2000(6)
    [20]盛万兴,戴汝为,关于智能控制,自动化学报,1999(5)
    [21]黄苏南,邵惠鹤等,智能控制的理论和方法,控制理论与应用,1994(8)
    [22]李少远,席欲庚等,智能控制的新进展,控制与决策,2000(5)
    [23]吕建虹,陈来九等,智能PID控制器的设计及其应用研究,动力工程,1995(8)
    [24]陶文伟,肖大雏等,单神经元控制器及其在过热汽温控制中的应用,自动化与仪器仪表,2000(2)
    [25]牛培峰,纯滞后汽温系统的仿人智能控制,东北电力技术,1995(11)
    [26]周洪,杨晓光等,热工过程神经元控制的设计,武汉水利电力大学学报,1996(11)
    [27]张建明,王宁等,PID自适应调整增益的神经元非模型控制,机电工程,1999(5)
    
    
    [28]万百五,大系统智能控制的进展,控制理论与应用,1995(1)
    [29]钟庆昌,谢剑英等,变参数PID控制器,信息与控制,1998(8)
    [30]张学东,姜宏洲等,一种前馈神经网络的快速算法,信息与控制,2000(1)
    [31]张晓兰,王永骥等,一种改进的单个神经元控制算法,控制与决策,1994(11)
    [32]姜学智等,600MW火电机组控制系统全仿真模型及建模研究,系统仿真学报,1997(6)
    [33]赵英凯,李胜,大纯滞后对象的智能控制方法,南京化工大学学报,2000(7)
    [34]佟绍成,李庆国,基于神经网络的一类非线性系统自适应输出跟踪,自动化学报,2000(5)
    [35]张颖超,串级控制系统抗二次干扰能力提高的诠释,工业仪表与自动化装置,1996(3)
    [36]何同祥,牛玉广等,过热汽温Smith串级控制系统及参数整定,华北电力大学学报,1998(10)
    [37]刘永红,神经网络理论的发展与前沿问题,信息与控制,1999(2)
    [38]杨智,高靖,神经元自适应预测PID控制器及实现,信息与控制,1999(10)
    [39]王永骥,徐桂英等,一类工业过程的神经元智能控制,华中理工大学学报,1994(12)
    [40]杨晓飞,陈铁军等,基于模式识别的人变周期控制器及其应用,郑州工业大学学报,2001(12)
    [41]王东云,一种仿人智能的智能控制方法,郑州纺织工学院学报,1996(2)
    [42]刘禾,李农庄等,大迟延过程的预测智能控制,华北电力大学学报,1998(10)
    [43]贵忠华,刘振凯,智能混合系统研究综述,信息与控制,2000(2)
    [44]薛定宇,《控制系统计算机辅助设计——MATLAB语言及应用》,清华大学出版社,1997
    [45]朱晓东,《模糊控制理论在水位系统中的仿真研究》,郑州工业大学研究生毕业论文
    [46]王宁,神经元控制与两种优化控制方法的比较,仪器仪表学报,1995,16(1)
    [47]陶永华,尹怡欣等,《新型PID控制及其应用》,机械工业出版社,1999
    [48]Unbehauen H. Experimently modeling and adaptive power control of a 750MW once-through boiler. In: Proc. Of 11th IFAC World Congress. 1990(6)
    [49]Zhiyuan Yang, Zijun Shen. Model reference adaptive prediction control of steam temperature processes in power plants. In: Proc. Of 11th IFAC World
    
    Congress. 1990 (6)
    [50] Derrick H,Nguyen. Neural networks for self-learning control systems. Control Syst.Mag. 1990(3)
    [51] Hant K J,R Haus,R Murray Smith. Neural networks for control systems-A surrey.Automatica.1992 (6)
    [52] Hornik K,M Stinchcombe,H White. Multilayer feed-forward networks are universal approximators. Neural Networks, 1998(2)
    [53] Atrom,K J, Anton J J,Arzen K E. Expert control.Automatica. 1986(2)
    [54] G.N. Saridis. Analytic for mulation of the principle of increasing precision with decreasing intelligence for intelligent machines. Automatica, 1989(3)
    [55] P.J. Anlsaklis. An introduction to intelligent and autonomous control. Kluwer Academic Publishers. 1993
    [56] Holden,A.D.C. and Suddarth,S.C. Combined Netural-Net/knowledge-Based Adaptive Systems for large-Scale Dynamical Control. Internatimal Journal of Pattern Recognition and Artificial Intelligence.1991(5)
    [57] Widrow B er.al. Neural Networks, Application in Industry, Business and Science. Communication of the ACM,37,1994:93-105
    [58] Special Issue on Application of Neural Networks. Proc.IEEE, 1996,84(10)
    [59] Kung S Y et al, Neural Networks for Intelligent Multimedia Processing ,Proc. IEEE,1998,86:1244-1272
    [60] Antsaklis P J. Special Section on Neural Networks for Control System.. IEEE Control System Magzine,1990,10(3) :3-87
    [61] Wang N.,,J. Chen and J. Wang , Neuron Intelligent Control For Hydraulic Turbine Generators, Proc . of IEEE international conference on industrial technology, Guangzhou,94TH06559-3,1994,288-292
    [62] Miller W T. Real-time Application of Neural Networks for Sensor-based Control of Robots. With Vision ,IEEE, Trans.Syst.,Man,Cybern,I989,(19) :825-831
    [63] BnlsariA. Some Analytical Solutions to the General Approximation Problem for Feedforward Neural Networks. Neural Networks 1993,(6) :991-996
    [64] Hertz J,et al. Introduction to Theory of Neural Compution. Sant Fee Complexity Science Series, 1991:156
    [65] Yabuta, T. And Yamada, T.. Neural Network Controller Charateristica with Regard to
    
    Adaptive Control. IEEE Trans. SMC, 1992,22;170-177;
    [66] Arimoto,S. Et al. Learning Control Theory for Dynamical Systems, Proc. 24th conference on Decision and Control, Neural Networks, 1992,3(5) ,724-740;
    [67] Narendra,K,S.. Intelligent Control ,IEEE Control Systems Magazine,1991,Jan.,39-40;
    [68] Nussbeutn, M. Et al, Intelligent Manual, An Aid for Process Engineering. Engineering Application of Al, 1992,5( 1 ),43-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700