机械故障监测诊断的若干新方法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械设备结构的复杂性,故障的发生以及设备工况的改变都将导致其振动信号具有非平稳特性。从这些非平稳信号中提取有用的故障信息是能否准确检测故障的关键。时频分析是非平稳信号分析的有力工具,但是传统时频分析方法存在各自局限性,难以完全适用于某些有用信息的捕捉,因而有关的研究和应用受到了很大的限制。本文提出了广义时频域平均、局部均值分解和双树复小波变换等新的时频特征提取方法,旨在为机械早期和复合故障诊断提供更加有效方法。
     超声波检测是各种超声波工程应用中的关键,本文试图研究一种具有广泛应用前景的超声波通用检测方法。本文提出基于光滑伪Wigner-Ville分布、连续小波变换和Hilbert-Huang变换(HHT)的广义时频域平均技术。该技术将时域平均技术扩展到时频域内,充分发挥时频分析良好的时频聚集性以及多次平均操作的抗干扰信号的能力。广义时频域平均技术非常适合于超声波检测应用,检测方法不受到各种噪声干扰和传输媒介的失真影响,数值仿真实验验证了其有效性。以超声波流量计应用为例,将广义时频域平均技术应用于实际超声波检测中,结果证实该技术具有较强超声波信号检测能力。另外,本文指出现行多种时频分析方法的组合技术,其本质也是一种广义时频域平均。
     局部均值分解(Local Mean Decomposition, LMD)是最近提出的一种新的信号自适应分解方法,本文提出一种基于局部均值分解的机械故障信号解调技术。针对局部均值分解的端点效应、滑动平均步长选择等关键问题进行详细研究,提出相应的具体改进方法。另外,基于LMD分解得到的瞬时幅值和瞬时频率,本文提出了能够同时全面反映信号时频域信息的瞬时时频谱构造方法。通对调幅、调频和混合调制三种仿真信号的分析,证实了所提的LMD改进理论的可行性和有效性,且相比HHT和小波映射Hilbert谱方法,局部均值分解的瞬时时频谱可更为全面、准确解调出信号中的调制和载波信息。利用局部均值分解后构造的瞬时时频谱对实验室转子和某重催机组碰摩故障进行分析,进一步证实了该技术可有效提取出设备运转过程中碰摩故障所导致的工频与亚频的调制特征。另外,通过对某轧机齿轮箱故障诊断得出LMD瞬时时频谱可准确解调齿轮调制以及故障的严重程度等信息。
     自适应信号分解方法近年来由于其在工程应用较少的认为参与受到研究人员的广泛关注。经验模式分解(Empirical Mode Decomposition, EMD)与LMD均为信号的自适应分解方法,为了在工程实践中很好地应用此两种方法,本文在局部均值求解、瞬时频率计算、分解分量和滤波性能等方面做了深入对比研究,结果表明:LMD在计算局部均值过程中不会出现EMD技术的过冲、欠冲等问题;LMD可以不借助Hilbert变换准确求得瞬时频率,且信号分解过程与瞬时频率求解一步完成;LMD分解所得到的乘积函数相比EMD的内禀模态函数物理意义更明显;LMD与EMD具有相似的小波类型的滤波特性,但是LMD不易出现EMD模态破裂问题。采用LMD与EMD对两个实际旋转机组分别存在碰摩和蒸汽激振故障进行诊断,结果表明LMD在早期故障检测方面要胜过EMD方法。
     为了弥补基于第一、二代小波变换、谱峭度和EMD等技术在机械信号噪声消除与冲击特征提取中的不足,本文提出了基于双树复小波变换的机械信号降噪和复合故障诊断技术。仿真信号分析结果表明双树复小波变换具有良好的抗频带混叠能力和平移不变性,这些特性分别保证了双树复小波变换在谐波信号提取和周期性复合冲击特征检测方面要优于经典离散小波变换、第二代小波变换和经验模式分解。双树小波变换的优良特性实质上来源于两个小波基之间的特殊关系,而并不是单纯地利用了经典小波变换的小波基与待分析信号之间的匹配性。机械信号存在各种噪声是不可避免,本文针对信噪比较小时机械信号特征提取问题,联合邻域相关系数降噪技术,提出了一种双树复小波领域相关系数降噪方法。对齿轮裂纹故障信号的降噪结果证实了所提降噪方法与基于第一、二代小波变换的领域系数降噪方法相比,可有效去除噪声,并且尽可能多地保留有用信息。在多重特征同时基提取方面,滚动轴承复合故障诊断和某实际工业机组的多重故障特征提取结果证实双树复小波变换方法要比第二代小波变换和快速谱峭度方法可更为有效。另外,双树复小波变换所具有的有限冗余特性和鲁棒性,使其具有较高运算效率,可完全用于机械故障的在线监测与诊断。
     开发了潜艇模型状态监测与故障诊断系统。通过系统的下位机监测与上位机的分析诊断功能,可实时、准确地监测模型内设备的运行状态,预测和诊断早期、潜在的故障,同时有效监测模型噪声辐射,识别主要噪声源,并据此提高了其隐身性能。利用双树复小波变换良好的滤波和平移不变性能,增强对潜艇模型故障的特征提取能力。联合应用双树复小波变换和局部均值分解技术,将双树复小波变换作为局部均值分解的前处理,提高了局部均值分解自适应滤波能力,可识别更多的潜在的故障信息。
Vibration signals are often non-stationay due to the complexity of the mechanical systems, especially when the faults occur. Extracting features from those non-tationary signals is the key to successfully conducting machine condition monitoring and fault diagnosis. Time-frequency techniques have shown their advangtages for the analysis of non-stationary signals, however sometimes they can not provide comprehensive and accurate information because of their limations. The objective of this dissertation is to develop novel and effective time-frequency methods for fault detection and diagnosis.
     Ultrasonic detection is essential for the ultrasonic-based applications. Rather than focusing on a particular application area, we attempt to provide a general methodology for ultrasonic detection. Based on the smoothed pseudo-Wigner-Ville distribution, continuous wavelet transform and Hilbert-Huang transform, three extended time-frequency domain average (ETFDA) techniques are proposed in this dissertation. These techniques extend the time-domain average (TDA) and combine the localizing characteristics of time-frequency analysis with the abilities of the TDA to suppress noise interference. They are suitable to detect the ultrasonic even when the received signals are smeared by the noise or distorted in the medium. Numerical investigation on the performance of the ETFDA is carried out. A number of tests conducted on simulated and actual signals have demonstrated that ETFDA possesses satisfactory performances.
     Demodulation is an available method for fault diagnosis. Local mean decomposition (LMD) is a new adaptive signal decomposition technique, and a demodulation technique based on LMD is developed. A method of boundary processing and a strategy for determining the step size of moving average are presented to improve the algorithm of LMD. Instantaneous amplitude (IA) and instantaneous frequency (IF) of the signal can be computed independently of Hilbert transform using LMD method. A well-constructed description of the derived IA and IF is given in the form of instantaneous time-frequency spectrum (ITFS), which preserves the time and frequency information simultaneously. Results of three synthetic signals indicate that the proposed method is a better demodulation approach to extract the all the carrier and modulated components as well as the accurate IF, compared with Hilbert-Huang transform and wavelet project Hilbert spectrum. The validity of the technique is then demonstrated on the laboratory experiments and a real rotor system of a gas turbine with rub-impact fault. Due to the opposite friction during operation, the transient fluctuation of IF of the fundamental harmonic component is successfully identified in the ITFS. In addition, we find that the proposed technique is more effective and sensitive than other methods in detecting sub-harmonics and FM components contained in the rub-impact signals.
     In recent years, the adaptive decomposition methods have attracted many researchers’attention, because they are less influenced by human operator in practical applications. LMD and EMD are both adaptive decomposition methods. This dissertation compares LMD and EMD from four aspects through numerical simulation: local mean, decomposed components, instantaneous frequency and the wavelet-like filtering characteristic, and the results obtained are as follows: firstly, overshoot and undershoot of local mean can be avoid using LMD; secondly, more accurate IF of the signals can be acquired by LMD; thirdly, product functions contain more meaningful interpretation than IMFs and fourthly, mode separation may not occure using LMD. Then LMD and EMD are both applied in the health diagnosis of two industrial rotating machines with rub-impact and steam-excited vibration faults, respectively. The results reveal that LMD seems to be more suitable and have better performance than EMD for the incipient fault detection.
     In order to solve the defects of the first and second generation wavelet transform, kurtogram and EMD etc. in denoising and extracting impulse, a novel signal denoising technique and a multi-fault diagnosis technique based on the dual-tree complex wavelet transform (DTCWT) are proposed. Through numerical simulations, it is demonstrated that DTCWT enjoys better shift invariance and less spectral aliasing than first generation wavelet transform, second generation wavelet transform (SGWT) and empirical mode decomposition (EMD). These advantages arise from the relationship between two dual-tree wavelet basis functions, instead of the matching of the wavelet basis function to the signal being analyzed. Since noises inevitably exist in the measured signals, an enhanced vibration signal denoising algorithm incorporating DTCWT with NeighCoeff shrinkage is also developed. Denoising results of the vibration signals resulting from a cracked gear indicate the proposed denoising method can effectively remove noise and retain the valuable information as much as possible compared with DWT- and SGWT-based NeighCoeff shrinkage denoising methods. As is well known, the acquisition of comprehensive signatures embedded in the vibration signals is of practical importance to clearly identify the cause of the fault, especially the combined faults. In the case of multi-features detection, diagnosis results of rolling element bearings and an actual industrial equipment confirm that the proposed DTCWT-based method is a powerful and versatile tool and can consistently outperform SGWT and fast kurtogram widely used recently. Moreover, it must be noted, the proposed method is completely suitable for the on-line surveillance and diagnosis due to its good robustness and high efficiency.
     Monitoring and diagnosis system of vibration and acoustics for the submarine model is developed. By slave computer monitoring and the host computer analysis, running state of the equipment in the submarine model can be real-time and accurately monitored and prognosis on the incipent and potential faults can be conducted. Meanwhile, sound radiation of the model is monitored and main noise source is diagnosed, which may raise the concealment performance of the submarine model. DTCWT and LMD are used in the monitoring and diagnosis system. DTCWT is helpful to extract harmonic features of equipment in the submarine due to its good anti-aliasing filtering. Furthermore, DTCWT can be considered as a preprocessing method for LMD, which may enhance the performance of the filtering and detect more potential fault signatures.
引文
[1]胡兆勇.机械故障诊断中知识表达与推理的研究[D].西安:西安交通大学, 2005.
    [2]新华网.巴基斯坦三列火车相撞伤亡严重. http://newsxinhuanetcom/world/2005-07/13/content_3214812htm, 2005.
    [3]新华网.青藏铁路20日发生两列工程车相撞事故. http://newsxinhuanetcom/weekend/2006-01/21/content_4081896htm, 2006.
    [4]新华网.俄客机由于机械故障导致失事88人遇难[J]. http://newsxinhuanetcom/world/2008-09/15/content_10013020htm, 2008.
    [5]新华网.伊朗发生严重车祸. http://newsxinhuanetcom/world/2009-05/04/content_11311642htm, 2009.
    [6]新华网.华盛顿地铁列车相撞可能系电脑控制系统故障所致. http://newsxinhuanetcom/world/2009-06/24/content_11592727htm, 2009.
    [7]新华网.法航称客机失事. http://newsxinhuanetcom/world/2009-06/02/content_11474142htm, 2009.
    [8]新华网.伊朗客机坠毁. http://newsxinhuanetcom/video/2009-07/17/content_11722070htm, 2009.
    [9]陈予恕.机械故障诊断的非线性动力学原理[J].机械工程学报, 2007, 43 (1): 25-34.
    [10] Solve JS. Trouble-shooting to stop vibration of centrifuga[J]. Petro/Chem Engineer, 1968, 11: 22~33.
    [11] Muszynska A. Vibration diagnostics of rotating machinery malfunctions[J]. Vibration and Rotor Dynamics, 1992, 30 (2): 40~42.
    [12] McFadden PD, Smith JD. Model for the vibration produced by a single point defect in a rolling element bearing[J]. Journal of Sound and Vibration, 1984, 9 (1): 69~82.
    [13] McFadden PD, Smith JD. The vibration produced by multiple point defects in a rolling element bearing[J]. Journal of Sound and Vibration, 1985, 98 (2): 263~273.
    [14] Rubini R, Meneghetti U. Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings[J]. Mechanical Systems and Signal Processing, 2001, 15 (2): 287-302.
    [15] Parker RG, Agashe V, Vijayakar SM. Dynamic response of a planetary gear system using a finite element/contact mechanics model[J]. Journal of Mechanical Design, 2000, 122 (3): 304-310.
    [16] Parker RG, Vijayakar SM, Imajo T. Non-linear dynamic response of a spur gear pair: Modelling and experimental comparisons[J]. Journal of Sound and Vibration, 2000, 237 (3): 435-455.
    [17] Parker RG. A physical explanation for the effectiveness of planet phasing to suppress planetary gear vibration[J]. Journal of Sound and Vibration, 2000, 236 (4): 561-573.
    [18] Parker RG. Analytical vibration of spinning, elastic disk-spindle systems[J]. ASME Journal of Applied Mechanics, 1999, 66 (1): 218-224.
    [19]高金吉.高速涡轮机械振动故障机理及诊断方法的研究[D].北京:清华大学, 1993.
    [20]徐敏,张瑞林.设备故障诊断手册[M].西安:西安交通大学出版社, 1998.
    [21]陈雪峰.小波有限元理论与裂纹故障诊断的研究[D].西安:西安交通大学, 2004.
    [22]李兵.基于小波有限元理论的裂纹故障诊断[D].西安:西安交通大学, 2005.
    [23]郑长松,马彪,马源.基于油液光谱分析的综合传动状态监测试验研究[J].光谱学与光谱分析, 2009, (03): 749~751.
    [24]王晓伟,刘占生,张广辉等.基于声发射的可倾瓦径向滑动轴承碰摩故障诊断[J].中国电机工程学报, 2009, (08): 64~69.
    [25]郝如江,卢文秀,褚福磊.声发射检测技术用于滚动轴承故障诊断的研究综述[J].振动与冲击, 2008, (03): 75~79, 181.
    [26]李学军,廖传军,褚福磊.适于声发射信号故障特征提取的小波函数[J].机械工程学报, 2008, (03): 177~181.
    [27] Kim Y-H, Tan ACC, Mathew J, et al. Condition Monitoring of Low Speed Bearings: A Comparative Study of the Ultrasound Technique Versus Vibration Measurements[C], 2006: 182~191.
    [28] Rothberg SJ, Halliwell NA. Vibration measurements on rotating machinery using laser Doppler velocimetry[J]. ASME Journal of Vibration and Acoustics, 1994, 116 (3): 326-331.
    [29]周玉清,梅雪松,姜歌东等.基于内置传感器的大型数控机床状态监测技术[J].机械工程学报, 2009, 45 (04): 125~130.
    [30] Cooley JW, Turkey JW. An alforithm for the machine calculation of complex Fourier series.[J]. Mathematics of Computation, 1965, 19 (60): 297-301.
    [31]何正嘉,訾艳阳,孟庆丰等.机械设备非平稳信号的故障诊断原理及应用[M].北京:高等教育出版社, 2001.
    [32] Chen ZS, Yang YA, Hu Z, et al. Detecting and predicting early faults of complex rotating machinery based on cyclostationary time series model[J]. ASME Journal of Vibration and Acoustics, 2006, 128 (5): 666-671.
    [33] Capdessus C, Sidahmed M, Lacoume JL. Cyclostationary processes: Application in gear faults early diagnosis[J]. Mechanical Systems and Signal Processing, 2000, 14 (3): 371-385.
    [34] Raad A, Antoni J, Sidahmed M. Indicators of cyclostationarity: Theory and application to gear fault monitoring[J]. Mechanical Systems and Signal Processing, 2008, 22 (3): 574-587.
    [35] Antoni J. Cyclic spectral analysis in practice[J]. Mechanical Systems and Signal Processing, 2007, 21 (2): 597-630.
    [36] Antoni J, Bonnardot F, Raad A, et al. Cyclostationary modelling of rotating machine vibration signals[J]. Mechanical Systems and Signal Processing, 2004, 18 (6): 1285-1314.
    [37]陈进,姜鸣.高阶循环统计量理论在机械故障诊断中的应用[J].振动工程学报, 2001, 14 (2): 125~134.
    [38] Li L, Liangsheng Q. Cyclic statistics in rolling bearing diagnosis[J]. Journal of Sound and Vibration, 2003, 267 (2): 253~265.
    [39]李力.机械信号的循环统计处理原理和应用[D].西安:西安交通大学, 2004.
    [40] Benzi R, Sutera A, Vulpiani A. The Mechanism of Stochastic Resonance[J]. Journal of Physics A: Mathematical and General, 1981, 14 (11): L453-L457.
    [41]杨定新,胡茑庆,杨银刚等.随机共振技术在齿轮箱故障检测中的应用[J].振动工程学报, 2004, 17 (2): 201~204.
    [42] Leng YG, Wang TY, Guo Y, et al. Engineering signal processing based on bistable stochastic resonance[J]. Mechanical Systems and Signal Processing, 2007, 21: 138-150.
    [43] Yong GL, Tai YW, Yan G. Numerical analysis and engineering application of large parameter stochastic resonance[J]. Journal of Sound and Vibration, 2006, 292: 788-801.
    [44] Jiyong T, Xuefeng C, Junying W, et al. Study of frequency-shifted and re-scaling stochastic resonance and its application to fault diagnosis[J]. Mechanical Systems and Signal Processing, 2009: 811-822.
    [45] Gelle G, Colas M, Serviere C. Blind source separation: A tool for rotating machine monitoring by vibrations analysis?[J]. Journal of Sound and Vibration, 2001, 248 (5): 865-885.
    [46] Antoni J. Blind separation of vibration components: Principles and demonstrations[J]. Mechanical Systems and Signal Processing, 2005, 19 (6): 1166-1180.
    [47] Zhong ZM, Chen J, Zhong P, et al. Application of the blind source separation method to feature extraction of machine sound signals[J]. International Journal of Advanced Manufacturing Technology, 2006, 28 (9): 855-862.
    [48] Zhou W, Chelidze D. Blind source separation based vibration mode identification[J]. Mechanical Systems and Signal Processing, 2007, 21 (8): 3072-3087.
    [49] He QB, Feng ZH, Kong FR. Detection of signal transients using independent component analysis and its application in gearbox condition monitoring[J]. Mechanical Systems and Signal Processing, 2007, 21 (5): 2056-2071.
    [50]李强,王太勇,黄毅等.故障源信号的频域盲分离及其应用研究[J].机械强度, 2009, (01): 14~18.
    [51]邵忍平,黄欣娜,刘宏昱等.基于高阶累积量的齿轮系统故障检测与诊断[J].机械工程学报, 2008, (06): 161~168.
    [52]屈梁生.机械故障的全息诊断原理[M].北京:科学出版社, 2007.
    [53] Montero FEH, Medina OC. The application of bispectrum on diagnosis of rolling element bearings: A theoretical approach[J]. Mechanical Systems and Signal Processing, 2008, 22: 588-596.
    [54] Zhang LJ, Xu JW, Yang HH, et al. Multiscale morphology analysis and its application to fault diagnosis[J]. Mechanical Systems and Signal Processing, 2008, 22: 597-610.
    [55] Nikolaou NG, Antoniadis IA. Application of morphological operators as envelope extractors for impulsive-type periodic signals[J]. Mechanical Systems and Signal Processing, 2003, 17 (6): 1147-1162.
    [56] Hao R, Chu F. Morphological undecimated wavelet decomposition for fault diagnostics of rollingelement bearings[J]. Journal of Sound and Vibration.
    [57]雷亚国.混合智能技术及其在机械故障诊断中的应用研究[D].西安:西安交通大学, 2007.
    [58] Yang DM, Stronach AF, MacConnell P, et al. Third-order spectral techniques for the diagnosis of motor bearing condition using artificial neural networks[J]. Mechanical Systems and Signal Processing, 2002, 16 (2-3): 391-411.
    [59] Chen D, Wang WJ. Classification of wavelet map patterns using multi-layer neural networks for gear fault detection[J]. Mechanical Systems and Signal Processing, 2002, 16 (4): 695-704.
    [60] Wong MLD, Jack LB, Nandi AK. Modified self-organising map for automated novelty detection applied to vibration signal monitoring[J]. Mechanical Systems and Signal Processing, 2006, 20 (3): 593-610.
    [61] de Miguel LJ, Blazquez LF. Fuzzy logic-based decision-making for fault diagnosis in a DC motor[J]. Engineering Applications of Artificial Intelligence, 2005, 18 (4): 423-450.
    [62] Lou XS, Loparo KA. Bearing fault diagnosis based on wavelet transform and fuzzy inference[J]. Mechanical Systems and Signal Processing, 2004, 18 (5): 1077-1095.
    [63] Jack LB, Nandi AK. Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms[J]. Mechanical Systems and Signal Processing, 2002, 16 (2-3): 373-390.
    [64] Zhang S, Mathew J, Ma L, et al. Best basis-based intelligent machine fault diagnosis[J]. Mechanical Systems and Signal Processing, 2005, 19 (2): 357-370.
    [65] Sampath S, Singh R. An integrated fault diagnostics model using genetic algorithm and neural networks[J]. Transactions of the ASME Journal of Engineering for Gas Turbines and Power, 2006, 128 (1): 49-56.
    [66]王自营,邱绵浩,安钢.基于支持矢量聚类的机械故障诊断[J].机械工程学报, 2009, (04): 226~230.
    [67] Li RQ, Chen J, Wu X, et al. Fault diagnosis of rotating machinery based on SVD, FCM and RST[J]. International Journal of Advanced Manufacturing Technology, 2005, 27 (1-2): 128-135.
    [68]王仲生,姜洪开,徐一艳.发动机转子系统早期故障智能诊断[J].航空学报, 2009, (02): 242~246.
    [69]邵忍平,黄欣娜,胡军辉.聚类分析的数据挖掘方法及其在机械传动故障诊断中的应用[J].航空动力学报, 2008, (10): 1933~1938.
    [70]雷亚国,何正嘉,訾艳阳.基于混合智能新模型的故障诊断[J].机械工程学报, 2008, (07): 112~117.
    [71] :http://www.imscenter.net/. Center for Intelligent Maintenance Systems.
    [72]吴伟蔚.基于Internet的远程协作故障诊断系统研究[D].武汉:华中科技大学, 2001.
    [73]孔卫祥,陈进,伍星.基于网络的设备远程监测与诊断系统开发[J].振动工程学报, 2004, 17: 597~600.
    [74] Wigner E. On the quantum correction for thermodynamic equilibrium.[J]. Physical Review, 1932, 40 (5): 749~759.
    [75] Ville J. Theorie et applications de la notion de signal analytique[J]. Cables et Transmissions, 1948, 20A: 61~74.
    [76] Gabor D. Theory of communication.[J]. Journal on Institution of Electrical Engineers, 1946, 93 (26): 429~457.
    [77] Jeong JC, Williams WJ. Kernel Design for Reduced Interference Distributions[J]. IEEE Transactions on Signal Processing, 1992, 40 (2): 402~412.
    [78] Williams WJ. Reduced interference distributions: Biological applications and interpretations[J]. Proceedings of the IEEE, 1996, 84 (9): 1264~1280.
    [79] Qazi S, Georgakis A, Stergioulas LK, et al. Interference suppression in the Wigner distribution using fractional Fourier transformation and signal synthesis[J]. IEEE Transactions on Signal Processing, 2007, 55 (6): 3150-3154.
    [80] Nilsen GK. Recursive Time-Frequency Reassignment[J]. IEEE Transactions on Signal Processing, 2009, 57 (8): 3283~3287.
    [81] Hammond JK, White PR. The analysis of non-stationary signals using time-frequency methods[J]. Journal of Sound and Vibration, 1996, 190 (3): 419-447.
    [82] Meltzer G, Ivanov YY. Fault detection in gear drives with non-stationary rotational speed-part I: The time-frequency approach[J]. Mechanical Systems and Signal Processing, 2003, 17 (5): 1033-1047.
    [83] Neild S, McFadden P, Willams M. A review of time-frequency methods for structural vibration analysis[J]. Engineering Structures, 2003, 25 (6): 713~728.
    [84] Le KN. Time-frequency distributions for crack detection in rotors - A fundamental note[J]. Journal of Sound and Vibration, 2006, 294 (1-2): 397-409.
    [85] Zhou J, Chen J. A comparative study on time-frequency feature of cracked rotor by Wigner-Ville distribution and wavelet transform.[J]. Journal of Sound and Vibration, 2004, 276 (1~2): 1~11.
    [86]程发斌,汤宝平,刘文艺.一种抑制维格纳分布交叉项的方法及在故障诊断中应用[J].中国机械工程, 2008, (14): 1727~1731.
    [87] Fan YS, Zheng GT. Research of high-resolution vibration signal detection technique and application to mechanical fault diagnosis[J]. Mechanical System and Signal Processing, 2007, 21: 678~687.
    [88] Haar A. Zur Theorie der orthogonalen Funktionensysteme [J]. Mathematische Annalen, 1910, 69 (331~371).
    [89] Grossmann A, Morlet J. Decompositiion of hardy function into square integrable wavelet of constant shape.[J]. SIAM Journal on Mathematical Analysis, 1984, 15: 723~736.
    [90] Daubechies I. Orthonormal bases of compactly supported wavelet[J]. Communications on Pure and Applied Mathematics, 1988, XII: 909~996.
    [91] Daubechies I. The wavelet transform, time-frequency localization and signal analysis.[J]. IEEE Transactions on Information Theory, 1990, 36 (5): 961~1006.
    [92] Mallat SG. Multiresolution representation and wavelet[D]. Philadelphia, PA: University of Pennsylvania, 1988.
    [93] Mallat SG. Multifrequency channel decompositions of images and wavelet models[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37 (12): 2091~2110.
    [94] Mallat SG. A theory for multiresolution signal decomposition: The wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11 (7): 674~693.
    [95] Rioul O, Vetterli M. Wavelets and signal processing[J]. IEEE Signal Processing Magazine, 1991, 8 (4): 14-38.
    [96] Mallat S, HWang WL. Sigularity detection and processing with wavelets[J]. IEEE Transactions on Infromation Theory, 1992, 38 (2): 617-643.
    [97] Xu Y, Weaver JB, Jr DMH, et al. Wavelet transform domain filters: A spatially selective noise filtration technique[J]. IEEE Transactions on Image Processing, 1994, 3: 747-758.
    [98] Chang SG, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression[J]. IEEE Transactions on Image Processing, 2000, 9 (9): 1532-1546.
    [99] Selesnick IW. Wavelets, a modern tool for signal processing[J]. Physics Today, 2007, 60 (10): 78-79.
    [100] Staszewski WJ, Tomlinson GR. Application of the Wavelet Transform to Fault Detection of a Spur Gear[J]. Mechanical Systems and Signal Processing, 1994, 8 (3): 289~307.
    [101] Li CJ, Ma J. Wavelet decomposition of vibrations for detection of bearing-localized defects[J]. NDT&E International 1997, 30 (3): 143-149.
    [102] Lin J, Qu L. Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis[J]. Journal of Sound and Vibration, 2000, 234: 135-148.
    [103] Peter WT, Peng YH, Richard Y. Wavelet Analysis and Envelope Detection For Rolling Element Bearing Fault Diagnosis---Their Effectiveness and Flexibilities[J]. ASME Journal of Vibration and Acoustics, 2001, 123 (3): 303-310.
    [104] Yiakopoulos CT, Antoniadis IA. Wavelet based demodulation of vibration signals generated by defects in rolling element bearings[J]. Shock and Vibration, 2002, 9 (6): 293-306.
    [105] Peng Z, He Y, Lu Q, et al. Feature extraction of the rub-impact rotor system by means of wavelet analysis[J]. Journal of Sound and Vibration, 2003, 259 (4): 1000-1010.
    [106] Pakrashi V, Basu B, O'Connor A. A Statistical Measure for Wavelet Based Singularity Detection[J]. ASME Journal of Vibration and Acoustics, 2009, 131: 041015.
    [107] Liu J, Wang W, Golnaraghi F, et al. Wavelet spectrum analysis for bearing fault diagnostics[J]. Measurement Science & Technology, 2008, 19 (1).
    [108] Bayissa WL, Haritos N, Thelandersson S. Vibration-based structural damage identification using wavelet transform [J]. Mechanical Systems and Signal Processing, 2008, 22 (5): 1194-1215.
    [109] Hong HB, Liang M. Separation of fault features from a single-channel mechanical signal mixture using wavelet decomposition[J]. Mechanical Systems and Signal Processing, 2007, 21 (5): 2025-2040.
    [110]王学军,马辉,孙伟等.基于小波分析的转子碰摩故障特征提取[J].农业机械学报, 2008, (04): 147~151.
    [111] Qiu H, Lee J, Lin J, et al. Wavelet filter-based weak signature detection method and its applicationon rolling element bearing prognostics[J]. Journal of Sound and Vibration, 2006, 289 (4-5): 1066-1090.
    [112] Li Z, Crocker MJ. A study of joint time-frequency analysis-based modal analysis[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55 (6): 2335-2342.
    [113] Douka E, Loutridis S, Trochidis A. Crack identification in plates using wavelet analysis[J]. Journal of Sound and Vibration, 2004, 270 (1-2): 279-295.
    [114] Loutridis S, Douka E, Trochidis A. Crack identification in double-cracked beams using wavelet analysis[J]. Journal of Sound and Vibration, 2004, 277: 1025~1039.
    [115] Antonino-Daviu J, Riera-Guasp M, Roger-Folch J, et al. Application and optimization of the discrete wavelet transform for the detection of broken rotor bars in induction machines[J]. Applied and Computational Harmonic Analysis, 2006, 21: 268-279.
    [116] HS K, H M. Damage detection of structures by wavelet analysis[J]. Engineering Structures, 2004, 26 (3): 347~362.
    [117] Lin J, Qu LS. Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis[J]. Journal of Sound and Vibration, 2000, 234 (1): 135-148.
    [118]程发斌,汤宝平,钟佑明.基于最优Morlet小波和SVD的滤波消噪方法及故障诊断的应用[J].振动与冲击, 2008, (02): 91~94, 128, 178~179.
    [119] Peng ZK, Chu FL. Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography[J]. Mechanical Systems and Signal Processing, 2004, 18 (2): 199-221.
    [120] Sweldens W. The lifting scheme: A construction of second generation wavelet constructions.[J]. Siam Journal on Mathematical Analysis, 1997, 29 (2): 511~546.
    [121] Sweldens W. The lifting scheme: a construction of second generation wavelets[J]. SIAM Journal on Mathematical Analysis, 1998, 29 (2): 511-546.
    [122] Daubechies I, Sweldens W. Factoring wavelet transforms into lifting steps [J]. Journal of Fourier Analysis and Applications, 1998, 4 (3).
    [123] Keinert F. Raising multiwavelet approximation order through lifting[J]. SIAM Journal on Mathematical Analysis, 2001, 32 (5): 1032-1049.
    [124] Piella G, Pesquet-Popescu B, Heijmans H. Adaptive update lifting with a decision rule based on derivative filters[J]. IEEE Signal Processing Letters, 2002, 9 (10): 329-332.
    [125] Kuzume K, Niijima K. Design of optimal lifting wavelet filters for data compression[J]. Proceedings of the IEEE-Sp International Symposium on Time-Frequency and Time-Scale Analysis, 1998: 337-340.
    [126] Trappe W, Liu KJR. Denoising via adaptive lifting schemes[J]. Wavelet Applications in Signal and Image Processing Viii Pts 1 and 2, 2000, 4119: 302-312.
    [127] Li HG, Wang Q, Wu LN. A novel design of lifting scheme from general wavelet[J]. IEEE Transactions on Signal Processing, 2001, 49 (8): 1714-1717.
    [128]曾建芬.多项式拟合的预测方法[J].电路与系统学报, 2001, 6 (3): 62~67.
    [129]吴永宏,潘泉,张洪才.一类小波的构造方法研究[J].信号处理, 2005, 21 (4): 423~426.
    [130] Vasilyev OV, Bowman C. second-generation wavelet collocation method for the solution of partial differential equations[J]. Journal of Computational Physics, 2000, 165: 660~693.
    [131] Ding WP, Wu F, Wu XL, et al. Adaptive directional lifting-based wavelet transform for image coding[J]. IEEE Transactions on Image Processing, 2007, 16 (2): 416-427.
    [132] Liu Y, Ngan KN. Weighted Adaptive Lifting-based Wavelet Transform for Image Coding[J]. IEEE Transactions on Image Processing, 2008, 17 (4): 500~511.
    [133] Piella G, Pesquet-Popescu B, Heijmans H, et al. Combining seminorms in adaptive lifting schemes and applications to image analysis and compression[J]. Journal of Mathematical Imaging andVision, 2006, 25 (2): 203-226.
    [134] Zhang YF, Li J. Wavelet-based vibration sensor data compression technique for civil infrastructure condition monitoring[J]. Journal of Computing in Civil Engineering, 2006, 20 (6): 390-399.
    [135] Delouille V, Jansen M, von Sachs R. Second-generation wavelet denoising methods for irregularly spaced data in two dimensions[J]. Signal Processing, 2006, 86 (7): 1435-1450.
    [136] Amiri M, Rabiee HR. A New Adaptive Lifting Scheme Transform for Robust Object Detection[J]. IEEE International Conference on Acoustics, Speech and Signal Processing, 2006, II: 749~752.
    [137] Chen HX, Chua PSK, Lim GH. Vibration analysis with lifting scheme and generalized cross validation in fault diagnosis of water hydraulic system[J]. Journal of Sound and Vibration, 2007, 301 (3-5): 458-480.
    [138] Samuel PD, Pines DJ. Constrained adaptive lifting and the CAL4 metric for helicopter transmission diagnostics[J]. Journal of Sound and Vibration, 2009, 319 (1-2): 698-718.
    [139] Fan XF, Liang M, Yeap TH, et al. A joint wavelet lifting and independent component analysis approach to fault detection of rolling element bearings[J]. Smart Materials & Structures, 2007, 16: 1973-1987.
    [140]段晨东,姜洪开,何正嘉.一种改进的第2代小波变换算法及应用[J].西安交通大学学报, 2004, (01): 47~50.
    [141]段晨东,何正嘉.第2代小波变换及其在机电设备状态监测中的应用[J].西安交通大学学报, 2003, (07): 695~698.
    [142] Duan C, He Z, Jiang H. A sliding window feature extraction method for rotating machinery based on the lifting scheme[J]. Journal of Sound and Vibration, 2007, 299 (4-5): 774-785.
    [143]姜洪开,何正嘉,段晨东等.自适应冗余第2代小波设计及齿轮箱故障特征提取[J].西安交通大学学报, 2005, (07): 715~718, 739.
    [144] Jiang H, He Z, Duan C, et al. Gearbox fault diagnosis using adaptive redundant Lifting Scheme[J]. Mechanical Systems and Signal Processing, 2006, 20 (8): 1992-2006.
    [145] Li Z, He ZJ, Zi YY, et al. Rotating machinery fault diagnosis using signal-adapted lifting scheme[J]. Mechanical Systems and Signal Processing, 2008, 22 (3): 542-556.
    [146] Li Z, He Z, Zi Y, et al. Customized wavelet denoising using intra- and inter-scale dependency for bearing fault detection[J]. Journal of Sound and Vibration, 2008, 313 (1-2): 342-359.
    [147] Cao H, Chen X, Zi Y, et al. End milling tool breakage detection using lifting scheme and Mahalanobis distance[J]. International Journal of Machine Tools and Manufacture, 2008, 48 (2): 141-151.
    [148] Bao W, Zhou R, Yang JG, et al. Anti-aliasing lifting scheme for mechanical vibration fault feature extraction[J]. Mechanical Systems and Signal Processing, 2009, 23 (5): 1458-1473.
    [149]高立新,殷海晨,张建宇等.第二代小波分析在轴承故障诊断中的应用[J].北京工业大学学报, 2009, (05): 577~581.
    [150]崔玲丽,高立新,张建宇等.基于EMD的复合故障诊断方法[J].北京科技大学学报, 2008, (09): 1055~1060.
    [151] Goodman TNT, Lee SL. Wavelets of Multiplicity r [J]. Transactions of the American Mathematical Society, 1994, 342 (1): 307~324.
    [152]袁静,何正嘉,王晓东等.平移不变多小波相邻系数降噪方法及其在监测诊断中的应用[J].机械工程学报, 2009, (04): 155~160.
    [153] Kingsbury NG. The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters[J]. IEEE Digital Signal Processing Workshop, 1998.
    [154] Kingsbury NG. A Dual-Tree Complex Wavelet Transform with improved orthogonality and symmetry properties[C]. Vancouver, 2000.
    [155] Kingsbury NG. Complex wavelets for shift invariant analysis and filtering of signals[J]. Journal of Applied and Computational Harmonic Analysis, 2001, 10 (3): 234-253.
    [156] Selesnick IW. The design of approximate Hilbert transform pairs of wavelet bases[J]. IEEE Transactions on Signal Processing 2002, 50 (5): 1144-1152.
    [157] Selecnick IW. Hilbert transform pairs of wavelet bases[J]. IEEE Signal Processing Letters, 2001, 8 (6): 170-173.
    [158] Selesnick IW, Baraniuk RG, Kingsbury NG. The dual-tree complex wavelet transform[J]. IEEE Signal Processing Magazine, 2005, 22 (6): 123-151.
    [159] Wang Y, He Z, Zi Y. Enhancement of signal denoising and multiple fault signatures detecting in rotating machinery using dual-tree complex wavelet transform [J]. Mechanical Systems and Signal Processing, 2009, 24 (1): 119~137.
    [160] E.J.Candes, D.L.Donoho. Donoho.Ridgelets:the key to high-dimensional intermittency?[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Science 1999, 357: 2495~2509.
    [161] Donoho DL. Ridge functions and orthonormal ridgelets[J]. Journal of Approximation Theory, 2001, 111 (2): 143-179.
    [162] Candes EJ. Ridgelets: Estimating with ridge functions[J]. Annals of Statistics, 2003, 31 (5): 1561-1599.
    [163] Starck J-L, Candes EJ, Donoho DL. The Curvelet Transform for Image Denoising[J]. IEEE Transactions on Image Processing, 2002, 11 (6): 670-684.
    [164] Donoho DL. Wedgelets: Nearly minimax estimation of edges[J]. Annals of Statistics, 1999, 27 (3): 859-897.
    [165] Mallat S, Peyre G. A review of Bandlet methods for geometrical image representation[J]. Numerical Algorithms, 2007, 44 (3): 205-234.
    [166] Le Pennec E, Mallat S. Sparse geometric image representations with bandelets[J]. IEEE Transactions on Image Processing, 2005, 14 (4): 423-438.
    [167] Huo XM, Chen JH. JBEAM: Multiscale curve coding via beamlets[J]. IEEE Transactions on Image Processing, 2005, 14 (11): 1665-1677.
    [168] Donoho DL, Huo XM. Beamlet pyramids: A new form of multiresolution analysis, suited for extracting lines, curves, and objects from very noisy image data[J]. Wavelet Applications in Signal and Image Processing Viii Pts 1 and 2, 2000, 4119: 434-444.
    [169] Do MN, Vetterli M. The contourlet transform: An efficient directional multiresolution image representation[J]. IEEE Transactions on Image Processing, 2005, 14 (12): 2091-2106.
    [170] Le KN, Dabke KP, Egan GK. Hyperbolic wavelet family[J]. Review of Scientific Instruments, 2004, 75 (11): 4678~4693.
    [171] Le KN. High-order symmetrical hyperbolic wavelets[J]. Journal of Sound and Vibration, 2007, 304: 297~325.
    [172] Le KN, Dabke KP, Egan GK. Hyperbolic wavelet power spectra of nonstationary signals[J]. Optical Engineering, 2003, 42 (10): 3017~3037.
    [173] Baraniuk RG, Jones DL. A Signal-Dependent Time-Frequency Representation - Fast Algorithm for Optimal Kernel Design[J]. IEEE Transactions on Signal Processing, 1994, 42 (1): 134-146.
    [174] Baraniuk RG, Jones DL. Signal-Dependent Time-Frequency Analysis Using a Radially Gaussian Kernel[J]. Signal Processing, 1993, 32 (3): 263-284.
    [175] Baraniuk RG, Jones DL. A Signal-Dependent Time-Frequency Representation - Optimal Kernel Design[J]. IEEE Transactions on Signal Processing, 1993, 41 (4): 1589-1602.
    [176] Jones DL, Baraniuk RG. An Adaptive Optimal-Kernel Time-Frequency Representation[J]. IEEE Transactions on Signal Processing, 1995, 43 (10): 2361-2371.
    [177]邹虹,保铮.用于多分量线性调频信号的自适应核分布分析[J].电子与信息学报, 2002, 24 (3): 314~319.
    [178]刘庆云,李志舜.用于多分量线性调频信号的自适应核分布[J].系统工程与电子技术, 2004, 26 (5): 704~707.
    [179] Tan JL, bin Sha'ameri AZ. Adaptive Optimal Kernel Smooth-Windowed Wigner-Ville Distribution for Digital Communication Signal[J]. Eurasip Journal on Advances in Signal Processing, 2008.
    [180] Gelman L, Gould J. A new time-frequency transform for non-stationary signals with any nonlinear instantaneous phase[J]. Multidimensional Systems and Signal Processing, 2008, 19 (2): 173~198.
    [181] Bao L, Riemenschneider S, Zuowei S. An adaptive time-frequency representation and its fast implementation[J]. ASME Journal of Vibration and Acoustics, 2007, 129 (2): 169-178.
    [182]史东峰,申凡,鲍明.自适应时频分析在回转机械诊断中的应用研究[J].振动工程学报, 2000, 13 (2): 271~276.
    [183]刘晓峰,柏林,秦树人.基于自适应时频分解的瞬态冲击信号提纯[J].机械工程学报, 2008, 44 (11): 166~170,177.
    [184] Qian S, Chen DP. Signal Representation Using Adaptive Normalized Gaussian Functions[J]. Signal Processing, 1994, 36 (1): 1-11.
    [185] Qian S, Chen DP. Decomposition of the Wigner-Ville Distribution and Time-Frequency Distribution Series[J]. IEEE Transactions on Signal Processing, 1994, 42 (10): 2836-2842.
    [186] Mallat SG, Zhang ZF. Matching Pursuits with Time-Frequency Dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41 (12): 3397-3415.
    [187] Liu B, Ling SF, Gribonval R. Bearing failure detection using matching pursuit[J]. NDT & E International, 2002, 35 (4): 255-262.
    [188]赵发刚,陈进,董广明.匹配追踪在齿轮故障诊断中的应用[J].上海交通大学学报, 2009, (06): 910~913.
    [189] Yang HY, Mathew J, Ma L. Fault diagnosis of rolling element bearings using basis pursuit[J]. Mechanical Systems and Signal Processing, 2005, 19 (2): 341-356.
    [190] Feng ZP, Chu FL. Application of atomic decomposition to gear damage detection[J]. Journal of Sound and Vibration, 2007, 302 (1-2): 138-151.
    [191] Rilling G, Flandrin P. On empirical mode decomposition and its algorithms[C]. Grado, Italy, 2003.
    [192] Rilling G, Flandrin P. One or two frequencies? The empirical mode decomposition answers[J]. IEEE Transactions on Signal Processing, 2008, 56 (1): 85-95.
    [193] Chen Q, Huang N, Sherman R, et al. A B-spline approach for empirical mode decomposition[J]. Advances in Computational Mathematics, 2006, 24: 171-195.
    [194] Peel MC, McMahon TA, Pegram GGS. Assessing the performance of rational spline-based empirical mode decomposition using a global annual precipitation dataset[J]. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 2009, 465 (2106): 1919-1937.
    [195] Pegram GGS, Peel MC, McMahon TA. Empirical mode decomposition using rational splines: an application to rainfall time series[J]. Proceedings of the Rayal Society of London A, 2008, 464: 1483-1501.
    [196] Kopsinis Y, McLaughin S. Improved EMD using doubly-iterative sifting and high order spline interpolation[J]. Eurasip Journal on Advances in Signal Processing, 2008.
    [197] Qin SR, Zhong YM. A new envelope algorithm of Hilbert-Huang Transform[J]. Mechanical System and Signal Processing, 2006, 20 (8): 1941-1952.
    [198] Wu F, Qu L. An improved method for restraining the end effect in empirical model decomposition and its applications to the fault diagnosis for large rotating machinery[J]. Journal of Sound and Vibration, 2008, 314 (3-5): 586-602.
    [199] Qi K, He Z, Zi Y. Cosine window-based boundary processing method for EMD and its application in rubbing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2007, 21 (7): 2750-2760.
    [200] Cheng J, Yu D, Yang Y. Application of support vector regression machines to the processing of the end effects of Hilbert-Huang transform[J]. Mechanical Systems and Signal Processing, 2007, 21 (3): 1197-1211.
    [201]杨建文,贾民平.希尔伯特-黄谱的端点效应分析及处理方法研究[J].振动工程学报, 2006, (02).
    [202]黄先祥,李胜朝,谢建.新型经验模式分解端点效应消除方法[J].机械工程学报, 2008, 44 (09): 1~5.
    [203]胡爱军,安连锁,唐贵基. HILBERT-HUANG变换端点效应处理新方法[J].机械工程学报, 2008, 44 (04): 154~158.
    [204] Deering R, Kaiser JE. The use of a masking signal to improve empirical mode decomposition[J]. 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vols 1-5 - Speech Processing, 2005: 485-488.
    [205] Senroy N, Suryanarayanan S, Ribeiro PF. An improved Hilbert-Huang method for analysis of time-varying waveforms in power quality[J]. IEEE Transactions on Power Systems, 2007, 22 (4): 1843-1850.
    [206] Li HL, Yang LH, Huang DR. The study of the intermittency test filtering character of Hilbert-Huang transform[J]. Mathematics and Computers in Simulation, 2005, 70 (1): 22-32.
    [207] Wu Z, Huang NE. Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1 (1): 1~41.
    [208] Huang NE, Wu ZH. A review on Hilbert-Huang transform: method and its applications to geophysical studies[J]. Reviews of Geophysics, 2008, 46 (2): 1~23.
    [209] Rato RT, Ortigueira MD, Batista AG. On the HHT its problems, and some solutions[J]. Mechanical Systems and Signal Processing, 2008, 22 (6): 1374-1394.
    [210] Stroeer A, Cannizzo JK, Camp JB, et al. Methods for detection and characterization of signals in noisy data with the Hilbert-Huang transform[J]. Physical Review D, 2009, 79 (12).
    [211] Fan X, Zuo MJ. Machine fault feature extraction based on intrinsic mode functions[J]. Measurement Science and Technology, 2008, 19: 1-12.
    [212] Loutridis SJ. Damage detection in gear systems using empirical mode decomposition[J]. Engineering structrue, 2004, 26: 1833-1841.
    [213]李辉,郑海起,唐力伟.基于EMD和功率谱的齿轮故障诊断研究[J].振动与冲击, 2006, (01).
    [214]康海英,祁彦洁,王虹等.利用倒阶次谱和经验模态分解的轴承故障诊断[J].振动、测试与诊断, 2009, (01): 60~65, 118.
    [215] Liu B, Riemenschneider S, Xu Y. Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrum[J]. Mechanical Systems and Signal Processing, 2006, 20 (3): 718-734.
    [216] Fan XF, Zuo MJ. Gearbox fault detection using Hilbert and wavelet packet transform[J]. Mechanical Systems and Signal Processing, 2006, 20 (4): 966-982.
    [217] Cheng JS, Yu DJ, Tang JS, et al. Application of frequency family separation method based upon EMD and local Hilbert energy spectrum method to gear fault diagnosis[J]. Mechanism and Machine Theory, 2008, 43 (6): 712-723.
    [218] Li H, Zhang YP, Zheng HQ. Wear detection in gear system using Hilbert-Huang transform[J]. Journal of Mechanical Science and Technology, 2006, 20 (11): 1781-1789.
    [219] Du Q, Yang S. Application of the EMD method in the vibration analysis of ball bearings[J]. Mechanical Systems and Signal Processing, 2007, 21 (6): 2634~2644.
    [220] Yan R, Gao RX. Hilbert-Huang transform-based vibration signal analysis for machine healthmonitoring[J]. IEEE Transactions on Instrumentation and measurement, 2006, 55 (6): 2320-2329.
    [221] Cheng JS, Yu DJ, Yang Y. A fault diagnosis approach for roller bearings based on EMD method and AR model[J]. Mechanical Systems and Signal Processing, 2006, 20 (2): 350-362.
    [222]何正嘉,訾艳阳,张周锁等.大型机械设备变工况非平稳动态分析与监测诊断关键技术[J].中国机械工程, 1999, (09): 26~29,24.
    [223] Yu Y, YuDejie, Cheng JS. A roller bearing fault diagnosis method based on EMD energy entropy and ANN[J]. Journal of Sound and Vibration, 2006, 294 (1-2): 269-277.
    [224] Yu D, Cheng J, Yang Y. Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings[J]. Mechanical Systems and Signal Processing, 2005, 19: 259-270.
    [225] Rai VK, Mohanty AR. Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform[J]. Mechanical Systems and Signal Processing, 2007, 21 (6): 2607-2615.
    [226]祁克玉.一种改进的EMD设备故障诊断方法及裂纹定量诊断反问题研究[D].西安:西安交通大学, 2007.
    [227] Cheng J, Yu D, Tang J, et al. Local rub-impact fault diagnosis of the rotor systems based on EMD[J]. Mechanism and Machine Theory, 2008, 44 (4): 784~791.
    [228] Babu T, Srikanth S, Sekhar A. Hilbert-Huang transform for detection and monitoring of crack in a transient rotor[J]. Mechanical Systems and Signal Processing, 2008, 22 (4): 905-914.
    [229]向玲,朱永利,唐贵基. HHT方法在转子振动故障诊断中的应用[J].中国电机工程学报, 2007, (35).
    [230] Li HL, Deng XY, Dai HL. Structural damage detection using the combination method of EMD and wavelet analysis[J]. Mechanical Systems and Signal Processing, 2007, 21 (1): 298-306.
    [231]崔玲丽,高立新,张建宇等.基于EMD的复合故障诊断方法[J].北京科技大学学报, 2008, (09).
    [232] Yu DJ, Cheng JS, Yang Y. Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings[J]. Mechanical Systems and Signal Processing, 2005, 19 (2): 259-270.
    [233]鞠萍华,秦树人,秦毅等.多分辨EMD方法与频域平均在齿轮早期故障诊断中的研究[J].振动与冲击, 2009, (05): 97~101, 207.
    [234]唐贵基,向玲,朱永利.基于HHT的旋转机械油膜涡动和油膜振荡故障特征分析[J].中国电机工程学报, 2008, (02): 77~81.
    [235] Smith JS. The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society Interface, 2005, (2): 443-454.
    [236]任达千.基于局域均值分解的旋转机械故障特征提取方法及系统研究[D].杭州:浙江大学, 2008.
    [237]程军圣,杨宇,于德介.局部均值分解方法及其在齿轮故障诊断中的应用[J].振动工程学报, 2009, (01): 76~84.
    [238] Wang Y, He Z, Zi Y. A comparative study of the local mean decomposition and empirical mode decomposition Application to rotating machinery health monitoring[J]. ASME Journal of Vibration and Acoustics, 2009.
    [239] Wang Y, He Z, Zi Y. A demodulation method based on local mean decomposition and its application in rub-impact fault diagnosis[J]. Measurement Science & Technology, 2009, 20 (2): 025704.
    [240]黄宝娟,于德弘,高振华.超声波气体流量计关键技术综述[J].计量技术, 2007, (1): 18~22.
    [241] Liang W, Que P-w, Lei H-m, et al. Matching pursuit for decomposition and approximation of ultrasonic pulse-echo wavelet and its application in ultrasonic nondestructive evaluation[J]. Review of Scientific Instruments, 2008, 79 (075105): 1-7.
    [242] Lynnworth LC, Liu Y. Ultrasonic flowmeters: Half-century progress report, 1955-2005[J]. Ultrasonics, 2006, 44: E1371-E1378.
    [243] Lin YY, Hans V. Self-monitoring ultrasonic gas flow meter based on vortex and correlation method[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56 (6): 2420-2424.
    [244] Angrisani L, Baccigalupi A, Lo Moriello RS. A measurement method based on Kalman filtering for ultrasonic time-of-flight estimation[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55 (2): 442-448.
    [245] Angrisani L, Baccigalupi A, Lo Moriello RS. Ultrasonic time-of-flight estimation through unscented Kalman filter[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55 (4): 1077-1084.
    [246] Raisutis R, Kazys R, Mazeika L. Ultrasonic Thickness Measurement of Multilayered Aluminum Foam Precursor Material[J]. IEEE Transactions on Instrumentation and Measurement, 2008, 57 (12): 2846-2855.
    [247] Gueuning FE, Varlan M, Eugene CE, et al. Accurate distance measurement by an autonomous ultrasonic system combining time-of-flight and phase-shift methods[J]. IEEE Transactions on Instrumentation and Measurement, 1997, 46 (6): 1236-1240.
    [248] Alonge F, Branciforte M, Motta F. A Novel Method of Distance Measurement Based on Pulse Position Modulation and Synchronization of Chaotic Signals Using Ultrasonic Radar Systems[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58 (2): 318-329.
    [249] Bechou L, Dallet D, Danto Y, et al. An improved method for automatic detection and location of defects in electronic components using scanning ultrasonic microscopy[J]. IEEE Transactions on Instrumentation and Measurement, 2003, 52 (1): 135-142.
    [250] Legendre S, Massicotte D, Goyette J, et al. Wavelet-transform-based method of analysis for lamb-wave ultrasonic NDE signals[J]. IEEE Transactions on Instrumentation and Measurement, 2000, 49 (3): 524-530.
    [251] Bingol Y. Development of an Ultrasonic NDE&T Tool for Yield Detection in Steel Structures[D]: Louisiana State University, 2008.
    [252] Demirli R, Saniie J. Model-based estimation of ultrasonic echoes part II: Nondestructive evaluation applications[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2001, 48 (3): 803-811.
    [253] Chen TL, Que PW, Zhang Q, et al. Ultrasonic signal identification by empirical mode decomposition and Hilbert transform[J]. Review of Scientific Instruments, 2005, 76 (8).
    [254] Lu YF, Oruklu E, Saniie J. Application of Hilbert-Huang Transform for Ultrasonic Nondestructive Evaluation[J]. 2008 Ieee Ultrasonics Symposium, Vols 1-4 and Appendix, 2008: 1499-1502.
    [255] Demirli R, Saniie J. Model-based estimation of ultrasonic echoes part I: Analysis and algorithms[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2001, 48 (3): 787-802.
    [256] Stankovi La. A measure of some time-frequency distributions concentration[J]. Signal Processing, 2001, 81 (3): 621-631.
    [257] Chui CK. An introduction to Wavelets[M]. San Diega, CA: Academic Press, 1992.
    [258] Hlawatsch F, Auger Fo. Time-frequency analysis : concepts and methods [M]. London ISTE ; Hoboken, NJ : Wiley, 2008.
    [259]邹红星,戴琼海,李衍达.不含交叉干扰项具有WVD聚集性的时频分布之不存在性[J].中国科学(E辑:技术科学), 2001, 31 (4): 348~354.
    [260] Jones DL, Parks TW. A High-Resolution Data-Adaptive Time Frequency Representation[J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1990, 38 (12): 2127-2135.
    [261] Jones DL, Baraniuk RG. A Simple Scheme for Adapting Time-Frequency Representations[J]. IEEE Transactions on Signal Processing, 1994, 42 (12): 3530-3535.
    [262] Mallat S, Zhang Z. Matching pursuit with time-frequency dictionaries[J]. IEEE Transactions onSignal Processing, 1993, 41 (12): 3397-3415.
    [263] S.S.Chen, D.L.Donoho, M.A.Saunders. Atomic decomposition by basis pursuit[J]. SIAM JSciComput, 1999, 20 (1): 33-61.
    [264] Huang NE, Shen Z, Long SR. A new view of nonlinear water waves: the Hilbert spectrum[J]. Annual Review of Fluid Mechanics, 1999, 31: 417-457.
    [265] Huang NE, Shen Z, Long SR. The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of The Royal Society Lond A, 1998, 454 (903-995).
    [266]盖强,张海勇,徐晓刚. Hilbert-Huang变换的自适应频率分辨率多分辨分析研究[J].电子学报, 2005, 33 (3): 563~566.
    [267] Halim EB, Shah SL, Zuo MJ, et al. Fault detection of gearbox from vibration signals using time-frequency domain averaging[C]. Minneapolis, Minnesota, 2006: 4430-4435.
    [268] Zhu LM, Ding H, Zhu XY. Synchronous averaging of time-frequency distribution with application to machine condition monitoring[J]. ASME Journal of Vibration and Acoustics, 2007: 441-447.
    [269] Mahadeva DV, Baker RC, Woodhouse J. Further studies of the accuracy of clamp-on transit-time ultrasonic flowmeters for liquids[J]. IEEE Transactions on Instrumentation and Measurement, 2009: 1602-1609.
    [270] Brassier P, Hosten B, Vulovic F. High-frequency transducers and correlation method to enhance ultrasonic gas flow metering[J]. Flow Measurement and Instrumentation, 2001, 12 (3): 201-211.
    [271] Ao XS, Matson J, kucmas P, et al. Ultrasonic clamp-on lflow measurement of natural gas, steam and compressed air[C], 2002: 1-9.
    [272] Maragos P, Kaiser JF, Quatieri TF. On amplitude and frequecy demodulation using energy operator[J]. IEEE Transactions on Signal Processing, 1993, 41 (4): 1532-1550.
    [273] Potamianos A, Maragos P. A comparison of the energy operator and the Hilbert transform approach to signal and speech demodulation[J]. Signal Processing, 1994, 37 (1): 95~120.
    [274] Bovik AC, Maragos P, Quatieri TF. AM-FM energy detection and separation in noise using multiband energy operators[J]. IEEE Transactions on Signal Processing, 1993, 41 (12): 3245-3265.
    [275] Santhanam B, Maragos P. Multicomponent AM-FM demodulation via periodicity-based algebraic separation and energy-based demodulation[J]. IEEE Transactions on Communications, 2000, 48 (3): 473~490.
    [276] F.Gianfellci, Biagetti G, Crippa P, et al. Multicomponent AM-FM representations: an asymptotically exact approach[J]. IEEE Trans on Audio, Speech, and Language Processing, 2007, 15 (3): 823-837.
    [277] Qin Y, Qin S, Mao Y. Research on iterated Hilbert transform and its application in mechanical fault diagnosis[J]. Mechanical Systems and Signal Processing, 2008.
    [278] Nikolaou NG, Antoniadis IA. Demodulation of vibration signals generated by defects in rolling element bearings using complex shifted Morlet wavelets[J]. Mechanical Systems and Signal Processing, 2002, 16 (4): 677-694.
    [279] Cui SY, Li XL, Ouyang GX, et al. Detection of epileptic spikes with empirical mode decomposition and nonlinear energy operator. Advances in Neural Networks - Isnn 2005, Pt 3, Proceedings. Springer-Verlag Berlin: Berlin, 2005: 445-450.
    [280] Cheng JS, Yu DJ, Yu Y. The application of energy operator demodulation approach based on EMD in machinery fault diagnosis[J]. Mechanical Systems and Signal Processing, 2007, 21 (2): 668-677.
    [281]李辉,郑海起,杨绍普.基于EMD和Teager能量算子的轴承故障诊断研究[J].振动与冲击, 2008, (10): 15~17, 22, 188.
    [282] Liu X, Qin S, Bo L. Hybrid wavelet packet-Teager energy operator analysis and its application for gearbox fault diagnosis[J]. Chinese Journal of Mechanical Engineering, 2007, 20 (06): 79~83.
    [283] Olhede S, Walden AT. The Hilbert spectrum via wavelet projections[J]. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 2004, 460 (2044): 955-975.
    [284] Picinbono B. On instantaneous amplitude and phase of signals[J]. IEEE Trans on Signal Processing, 1997, 45: 552-560.
    [285] Kwok HK, Jones DL. Improved instantaneous frequency estimation using an adaptive short-time Fourier transform[J]. IEEE Transactions on Signal Processing, 2000, 48 (10): 2964-2972.
    [286] Girolami G, Vakman D. Instantaneous frequency estimation and measurement: a quasi-local method [J]. Measurement Science and Technology, 2002, 16 (6): 909-917.
    [287]秦毅,秦树人,毛永芳.基于小波脊线的解调方法及其在旋转机械故障诊断中的应用[J].机械工程学报, 2009, (02): 231~237, 242.
    [288]柏林,刘小峰,秦树人.基于时频脊线的瞬时频率特征提取[J].机械工程学报, 2008, (10): 222~227.
    [289] Djurovic I, Stankovic LA. An algorithm for the Wigner distribution based instantaneous frequency estimation in a high noise environment[J]. Signal Processing, 2004, 84 (3): 631~643.
    [290] Kay S. Fast and accurate single frequency estimator[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37 (12): 1987-1990.
    [291]胡茑庆.转子碰摩非线性行为与故障辨识的研究[D].长沙:国防科技大学, 2001.
    [292] Lin J, Zuo MJ. Gearbox fault diagnosis using adaptive wavelet filter[J]. Mechanical System and Signal Processing, 2003, 17 (6): 1250~1269.
    [293] Li Z, He Z, Zi Y, et al. Rotating machinery fault diagnosis using signal-adapted lifting scheme[J]. Mechanical Systems and Signal Processing, 2008, 22 (3): 542-556.
    [294]崔玲丽,高立新,殷海晨等.基于第二代小波的复合故障诊断方法研究[J].中国机械工程, 2009, 20 (04): 442~446.
    [295] Flandrin P, Goncalves P. Empirical mode decompositions as data-driven wavelet-like expansions[J]. International Journal of Wavelet, Multiresolution and Information Processing, 2004, 2 (4): 477-496.
    [296] Wu Z, Huang NE. A study of the characteristics of white noise using the empirical mode decomposition method[J]. Proceedings of the Rayal Society of London A, 2004, 460: 1597-1611.
    [297] Flandrin P, Rilling G, Goncalves P. Empirical mode decomposition as a filter bank[J]. IEEE Signal Processing Letters, 2004, 11 (2): 112-114.
    [298] Kruger CJC. Constrained cubic spline interpolation for chemical engineering application[J]. http://wwwkorfcouk, 2002.
    [299] Du Q, Yang S. Improvement of the EMD method and applications in defect diagnosis of ball bearings[J]. Measurement Science & Technology, 2006, 17: 2355-2361.
    [300] Huang NE, Wu Z, Long SR, et al. On instantaneous frequency[J]. Advances in Adaptive Data Analysis, 2009, 1 (2): 177-229.
    [301] Deng Y, Wang W. Bounary processing technique in EMD method and Hilbert transform[J]. Chinese Science Bulletin, 2001, 46 (11): 257~263.
    [302] Gao Q, Duan C, Fan H, et al. Rotating machine fault diagnosis using empirical mode decomposition[J]. Mechanical Systems and Signal Processing, 2008, 22 (5): 1072-1081.
    [303]何正嘉,訾艳阳,孟庆丰等.机械设备非平稳信号的故障诊断原理及应用[M].北京:高等教育出版社, 2001.
    [304] Antoni J, Randall RB. The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines[J]. Mechanical Systems and Signal Processing, 2006, 20 (2): 308-331.
    [305] Antoni J. Fast computation of the kurtogram for the detection of transient faults[J]. MechanicalSystems and Signal Processing, 2007, 21 (1): 108-124.
    [306] Sawalhi N, Randall RB, Endo H. The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis[J]. Mechanical Systems and Signal Processing, 2007, 21 (6): 2616-2633.
    [307] Combet F, Gelman L. Optimal filtering of gear signals for early damage detection based on the spectral kurtosis[J]. Mechanical Systems and Signal Processing, 2009, 23 (3): 652-668.
    [308] Yu R, Ozkaramanli H. Hilbert transform pairs of orthogonal wavelet bases: Necessary and sufficient conditions[J]. IEEE Transactions on Signal Processing, 2005, 53 (12): 4723-4725.
    [309] Tay DBH. Hilbert pair of wavelets via the matching design technique[C], 2005: 2303-2306.
    [310] Yu R, Ozkaramanli H. Hilbert transform pairs of biorthogonal wavelet bases[J]. IEEE Transactions on Signal Processing, 2006, 54 (6): 2119-2125.
    [311] Shi H, Hu B, Zhang JQ. A novel scheme for the design of approximate Hilbert transform pairs of orthonormal wavelet bases[J]. IEEE Signal Processing, 2008, 56 (6): 2289-2297.
    [312] Tay DBH. Orthonormal Hilbert pair of wavelets with (almost) maximum vanishing moments[J]. IEEE Signal Processing Letters, 2007, 13 (19): 533-536.
    [313] Dumitrescu B, Bayram I, Selesnick IW. Optimization of symmetric self-Hilbertian filters for the dual-tree complex wavelet transform[J]. IEEE Signal Processing Letters, 2008: 146-149.
    [314] Yu R, Baradarani A. Sampled-Data Design of FIR Dual Filter Banks for Dual-Tree Complex Wavelet Transforms via LMI Optimization[J]. IEEE Transactions on Signal Processing, 2008, 56 (7): 3369-3375.
    [315] Chaudhury Kn, Unser M. Construction of Hilbert Transform Pairs of Wavelet Bases and Gabor-like Transforms[J]. IEEE Transactions on Signal Processing, 2009.
    [316] Shark L-K, Yu C. Design ofoptimal shift-invariant orthonormal wavelet filter banks via genetic algorithm[J]. Signal Processing, 2003, 83: 2579~2591.
    [317] Lang M, Guo H, Odegard JE, et al. Noise Reduction Using an Undecimated Discrete Wavelet Transform[J]. IEEE Signal Processing Letters, 1996, 3 (1): 10-12.
    [318] Coifman RR, Donoho DL. Translation-Invariant De-Noising[J]. Wavelet and StatisticsSpringer Verlag, 1995: 125-150.
    [319] Lewis JM, Burrus CS. Approximate continous wavelet transform with an application to noise reduction[C], 1998: 1533-1536.
    [320] Crouse MS, Nowak RD, Baraniuk RG. Wavelet-based statistical signal processing using hidden Markov models[J]. IEEE Transactions on Signal Processing, 1998, 46 (4): 886-902.
    [321] Sendur L, Selesnick IW. Bivariate shrinkage functions for wavelet-based denoising explioting interscale dependency[J]. IEEE Transactions on Signal Processing, 2002, 50 (11): 2744-2756.
    [322] Portilla J, Strela V, Wainwright MJ, et al. Image Denoising Using Scale Mixtures of Gaussian in the Wavelet Domain[J]. IEEE Transactions on Image Processing, 2003, 12 (11): 1338-1351.
    [323] Chen Z, Xu J, Yang D. New method of extracting weak failure information in gearbox by complex wavelet denoising [J]. Chinese Journal of Mechanical Engineering, 2008, 21 (4): 87-91.
    [324] Chaux C, Pesquet J-C, Duval L. Noise covariance properties in dual-tree wavelet decompositions [J]. IEEE Transactions on Information Theory, 2007, 53 (12): 4680-4700.
    [325] Cai TT, Silverman BW. Incorporating information on Neighboring Coefficients into wavelet estimation[J]. Sankhya Indian Journal of Statistics Series B, 2001, 63: 127-148.
    [326] Wang WY. Early detection of gear tooth cracking using the resonance demodulation technique[J]. Mechanical Systems and Signal Processing, 2001, 15 (5): 887-903.
    [327]中国新闻网.中国海军一潜艇机械故障失事70名官兵全部遇难. http://wwwchinanewscomcn/n/2003-05-02/26/299687html, 2005.
    [328] Seto mL, Hutt D. Ship signature management system-Towards increased warship survivability[J].Undersea Defence Technology, 2004: 350~359.
    [329] O'Mara D, Gear G, MeMahon DR. Automated self-noise monitoring and acoustic fault detection[J]. Undersea Defence Technology, 2002: 253~261.
    [330]耿俊豹,金家善.舰船远程监测与故障诊断系统的研究[J].舰船科学技术, 2004, 26 (2): 48~50,54.
    [331]张永祥,明廷涛,张晓峰.舰船机电设备网络监测与远程诊断技术[J].中国造船, 2005, 46 (3): 68~72.
    [332]王衍学,何正嘉,成玮等.基于源数估计的船舶振源盲识别研究[J].中国舰船研究, 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700