糠醛渣特定底物产酶培养及其水解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素酶是由几种不同酶组成的复合酶系,由于酶催化反应底物的复杂性,从不同霉菌和不同底物发酵分离得到的纤维素酶组分和酶活力有着很大差别。本论文选择不同菌种针对特定底物进行产纤维素酶活力比较评价,并进行糠醛渣酶解过程研究。木论文选取了产纤维素酶的四种霉菌绿色木霉CGMCC3.2941、康宁木霉CICC13007、里氏木霉CICC40360和黑曲霉ACCC30557,采用液体发酵法在微晶纤维素和糠醛渣两种底物上进行产酶培养,在选定时间测定所产纤维素酶的纤维二糖酶活力、内切葡聚糖酶活力、外切葡聚糖酶活力以及滤纸酶活力。其中两种滤纸酶活比较高的菌株康宁木霉CICC13007和绿色木霉CGMCC3.2941以糠醛渣为特定底物的滤纸酶活比微晶纤维素特定底物的滤纸酶活分别高0.64U/mL和6.31U/mL。使用拟康氏木霉、康宁木霉、里氏木霉所产纤维素酶及诺维信纤维素酶水解不同纤维素含量的糠醛渣。糠醛渣纤维素含量为94.92%时,诺维信纤维素酶得到的底物糖化率最高,为92.06%,而自产的纤维素酶中拟康氏木霉达到了83.76%。结果表明糠醛渣中的木质素脱除后,纤维素酶对纤维素的降解效率提高了,说明在水解反应中木素的存在对纤维素酶有无效吸附作用。去除了木素对纤维素酶的影响后,纤维素酶能更好的与纤维素进行有效的吸附解吸,从而提高了水解效率将绿色木霉、拟康氏木霉、康宁木霉三种菌种生产的纤维素酶复配,并补充由黑曲霉生产的纤维二糖酶,对糠醛渣原料进行水解,结果发现绿色木霉与拟康氏木霉的混合酶液对糠醛渣的降解效果最好,糖化率达80%。不同菌种所产的纤维素酶系组分之间产生了协同增效作用。一株产纤维素酶的粗糙脉胞菌作为出发菌株,经过不同的紫外线照射时间,确定了菌株的致死率。以糠醛渣为底物培养粗糙脉胞菌的突变菌株,获得的滤纸酶活力比对照菌种高出30%。该诱变菌株优化后可用于纤维素乙醇直接转化工艺过程中。
Cellulase is composed of several different enzymes. The component and enzyme activity of cellulase which is isolated from the different fungi fermentation, because the substrate of enzyme-catalyzed reaction is complex. The aim of the experiment is to evaluate cellulase production from different fungi.This experiment picks up four kinds of fungi which produce cellulase, which are CGMCC3.2941、 CICC13007、CICC40360. and ACCC30557. These fungi were selected for cellulase production using furfural residues and microcrystalline cellulose (MCC) as the substrates. After cellulase production, the filter paper activity (FPA) of the supernatant from each fungus was measured to compare the performance of the enzyme from different fungal strains. Moreover, the individual activities of β-glucosidase, endoglucanase, and exoglucanase were also evaluated. In the case of CGMCC3.2941and CICC13007, furfural residues supported a better environment for cellulase production than MCC.The FPAs of CGMCC3.2941and CICC13007in furfural residues were6.31U/mL and0.64U/mL higher than that in MCC, respectively.Furfural residues with different cellulose contents were hydrolysed by a mixture of cellulase which are from CGMCC3.3002, CICC13007. CICC13052and Celluclast1.5L and β-glucosidase. The glucose yield of furfural residues increased incrementally according to the cellulose content of the substrate. The highest glucose yield (92.06%) in the digest with Celluclast1.5L preparation was obtained from the enzymatic hydrolysate of the furfural residue with a cellulose content of94.92%. The glucose yield in the digest with cellulase preparation from CGMCC3.3002is83.76%. After removing of ligin. the efficiency of degradation of cellulose increased, which indicated that there was non-productive adsorption between the enzyme and the lignin in the furfural residues. The increase of hydrolysis efficiency due to removing the impact of ligin on cellulase and thus the better adsorption and desorption between the cellulase and cellulose.Furfural residues were hydrolysed by a mixture of cellulase, which contain the cellulase from CGMCC3.2941, CGMCC3.3002and CICC1007. During the hydrolysis, β-glucosidase from ACCC30557was added into the digest. The result showed the highest glucose yield in the digest with the cellulase mixture of CGMCC3.2941and CGMCC3.3002is80%. There is synergistic action among the different constituents.In the experiment, after different UV exposure time, the death rate of the Neurospora crassa was determined. Compared to the initial Neurospora crassa, the cellulase production from Neurospora crassa after ultraviolet mutagenesis was improved by30%. After optimizing, Neurospora crassa after ultraviolet mutagenesis can be used drectly in the production of ethanol.
引文
[1]常景玲,李慧.预处理对作物秸秆纤维素降解的影响[J].江苏纸业科,2006,(4):177-179.
    [2]陈红歌,张东升,刘亮伟.纤维素酶菌种选育研究进展[J].河南农业科学,2008,(8):5-7.
    [3]崔福绵,刘菡,韩辉.康宁木霉CP88329纤维素酶产生条件的研究[J].微生物学通报,1995,22(2):72-76.
    [4]段金柱,曹淡君.固体发酵与液体发酵生产纤维素酶产率与催化性能比较[J].粮食与饲料工业,2004,(3):24-26.
    [5]冯培勇,刘执平,李红玉,马学敏.一株黑曲霉产纤维素酶的性质研究[J].安徽农业科学,2007,35:11746-11747.
    [6]冯炘,王丹,辛丽霞,宋文华.粗糙脉孢菌(Neurospora crassa)产纤维素酶发酵条件研究[J].食品科学,2005,26(1):67-70.
    [7]高培基,曲音波,汪天虹等.微生物降解纤维素机制的分子生物学研究进展[J].纤维素科学与技术,1995,3(2):1-19.
    [8]顾方媛,陈朝银,石家骥等.纤维素酶的研究进展与发展趋势[J].微生物学杂志,2008,28(1):83-87.
    [9]郝林华,牛德庆,陈靠山,郭敏.拟康氏木霉液态发酵条件的研究[J].菌物学报,2005,24(2):235-244.
    [10]冀春雪,杜风光,史吉平.徐志剑,韩素芳,董青山.纤维乙醇用纤维素酶的研究进展[J].酿酒科技,2007,7:118-121.
    [11]蒋建新.朱莉伟,王堃.王卫刚.蒸汽爆破处理胡枝子的同步糖化发酵制备乙醇研究[J].生物质化学工程,2006,1:165-69.
    [12]李明,徐秀雯.表面活性剂、染料对纤维素酶活性的影响[J].纺织科学研究,1996,(4):23-27.
    [13]林向阳.阮榕生,李资玲等.利用纤维素制备燃料乙醇的研究[J].可再生能源,2005,(6):50-54.
    [14]刘娜.石淑兰.木质纤维素转化为燃料乙醇的研究进展[J].现代化工,2005,25(3):19-22.
    [15]农向,伍红,秦天莺.纤维素酶的研究进展[J].西南民族大学学报(自然科学版)增刊,2005:29-33.
    [16]苏建宇,姚澍晖.黑曲霉液体发酵生产纤维素酶的研究[J].宁夏大学学报(自然科学版),2000,21(3):265-284.
    [17]王超,章超桦.酶解纤维素类物质生产燃料酒精的研究进展[J].节能,2003,(12):6-9.
    [18]王璀璨.王义强,李辉,陈介南.石彩蕊.混合纤维素酶对杨木酶解的研究[J].可再生能源,2010.28(6):57-61.
    [19]王铎,常春.木质纤维素原料酶水解产乙醇工艺的研究进展[J].生物加工过程,2010,8(4):
    72-76.
    [20]王菁莎,王颉,刘景彬.康宁木霉固态发酵秸秆生产纤维素酶的研究[J].纤维素科学与技术,2005,13(4):26-30.
    [21]王堃,蒋建新,宋先亮.蒸汽爆破预处理木质纤维素及其生物转化研究进展[J].生物质化学上程,2006,40(6):37-41.
    [22]王琰,杨森,李十中.糠醛渣纤维素酶解研究[J].环境科学,2007,28(9):2129-2133.
    [23]饶庆隆,杭志喜,彭军,余世袁.里氏木霉产纤维素酶碳源优化[J].江西农业大学学报,2008,30(3):538-541.
    [24]吴石金,罗锡平,夏一峰.里氏木霉产纤维素酶系各组分分泌特性[J].浙江林学院学报,2003,20(2):146-150.
    [25]许凤,孙润仓,詹怀宇.木质纤维原料生物转化燃料乙醇的研究进展[J].纤维素科学与技术,2004,12(1):45-55.
    [26]阎伯旭,高培基.纤维素酶分子结构与功能研究进展[J].生命科学,1995,7(5):22-26.
    [27]闫训友,史振霞.张惟广等.纤维素酶在食品工业中的应用进展[J].食品工业科技,2004,(10):140-142.
    [28]鄢永琦.张素芹.绿色木霉T-99产纤维素酶的研究[J].应用与环境生物学报,1999,(5):200-203.
    [29]杨永彬,黄谚谚,林跃鑫.纤维素酶的结构及分子多样性[J].生命的化学,2004,23(3):211-213.
    [30]袁盛凌.拟康氏木霉TH内切酶组分的分离纯化及endo-endo (?)(?)同作用的初步研究.山东大学硕士论文,2000:15-22.
    [31]袁振宏,吴创之,马隆龙等.生物质能利用原理与技术[M].北京化学工业出版社,2005:211-283.
    [32]张伟,张海宾,袁正仿,刘慧娟.利用紫外诱变育种选育强降解纤维素真菌的研究[J].中国医学生物技术应用杂志,2003,(4):37-42.
    [33]章冬霞,亓伟,孙秀云,颜涌捷.木质纤维素酶水解技术的研究[J].吉林化工学院学报,2009,26(1):1-5.
    [34]仉磊,李涛,王磊,李十中.糠醛渣的纤维素酶水解及其最优纤维素转化条件[J].农业工程学报,2009,25(10):226-230.
    [35]赵小立,周红军,费承伟,浦鹰,王奕.黑曲霉HD 9478纤维素酶固体发酵条件的研究[J].粮食与饲料工业,1997,5:21-23.
    [36] Ahamed A, Vermette P. Effect of culture medium composition on Trichoderma reesei's morphology and cellulase production. Bioresource Technology,2009, (100):5979-5987.
    [37] Baldrian P, Valaskova V. Degradation of cellulose by basidiomycetous fungi[J]. FEMS Microbiology Reviews,2008,32(3):501-521.
    [38] Borjesson J, Peterson R, Tjerneld F. Enhanced enzymatic conversion of softwood lignocellulose by poly (ethylene glycol) addition[J]. Enzyme and Microbial Technology,2007,40 (4):754-762.
    [39] Brumbauer A, Johansson G, Reczey K. Study on heterogeneity of (β-glucosidase from Aspergillus species by using counter-current distribution[J]. Journal of Chromatography B:Biomedical Sciences and Applications,2000,743:247-254.
    [40] Camassola M, Dillon A J P. Biological pretreatment of sugar cane bagasse for the production of cellulases and xylanases by Penicillium echinulatum[J]. Industrial Crops and Products,2009, 29(2-3):642-647.
    [41] Chandra M, Kalra A, Sharma P, Sangwan R. Cellulase production by six Trichoderma spp. fermented on medicinal plant processings[J]. Journal of Industrial Microbiology and Biotechnology, 2009,36(4):605-609.
    [42] Chen M, Zhao J, Xia L M. Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars[J]. Carbohydrate Polymers,2008,71(3):411-415.
    [43] Feng Y, Liu H Q, Xu F, Jiang J X. Enzymatic degradation of steam-pretreated Lespedeza stalk (Lespedeza crytobotrya) by cellulosic-substrate induced cellulases[J]. Bioprocess and Biosystem Engineering,2011,34(3):357-365.
    [44] Ghose TK. Measurement of cellulase activities. Pure and Applied Chemistry,1986, (59):257-268.
    [45] Hanelinck C N, Hooijdonk G, Faai J P. Ethanol from lignocellulosie biomass:techno-economic performance in short-middle-and long term[J]. Biomass and Bioenergy,2005,28:384-410.
    [46] Hanif A, Yasmeen A. Rajoka M I. Induction, production, repression, and de-repression of exoglucanase synthesis inAspergillus niger[J]. Bioresource Technology,2004, (94):311-319.
    [47] Hetti P, Folke T, Guido Z, Maija T. Adsorption of Trichoderma reesei CBH Ⅰ and EG Ⅱ and their catalytic domains on steam pretreated softwood and isolated lignin[J]. Journal of Biotechnology, 2004.107:65-72.
    [48] Hideno A, Inoue H, Tsukahara K, Yano S, Fang X, Endo T, Sawayama S. Production and characterization of cellulases and hemicellulases by Acremonium cellulolyticus using rice straw subjected to various pretreatments as the carbon source[J]. Enzyme and Microbial Technology, 2011.48(2):162-168.
    [49] Jorgensen H, Morkeberg A, Krogh K B R. Olsson L. Growth and enzyme production by three Penicillium species on monosaccharides[J]. Journal of Biotechnology,2004,109(3):295-299.
    [50] Van W J P, Mohulatsi M. Biodegration of wastepaper by celluase from Trichoderma viride[J]. Bioresource Technology.1996. (86):21-23.
    [51] Kanda T. Michihiko O. Nobu A. Hexokinase of angiostrongylus cantonensis:presence of a glucokinase [J]. Biochemistry and Molecular Biology,1979,63(3):335-340.
    [52] Kim Y S, J ung H C. Pan J G. Bacterial cell surfacedisplay of an enzyme library for selective
    screening of improved cellulase variants[J]. Applied and Environmental Microbiology,2000,66 (2):788-793.
    [53] Kovacs K, Megyeri L, Szakacs G, Kubicek CP, Galbe M, Zacchi G. Trichoderma atroviride mutants with enhanced production of cellulase and beta-glucosidase on pretreated willow[J]. Enzyme and Microbial Technology,2008,43(1):48-55.
    [54] Kovacs K, Szakacs G, Zacchi G. Comparative enzymatic hydrolysis of pretreated spruce by supernatants, whole fermentation broths and washed mycelia of Trichoderma reesei and Trichoderma atroviride[J]. Bioresource Technology,2009,100(3):1350-1357.
    [55] Lu YP, Yang B, Gregg D, Saddler J N, Mansfield S D. Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues[J]. Applied Biochemistry and Biotechnology,2002,98:64-654.
    [56] Lin L, Meng X, Liu P, Hong Y, Wu G, Huang X, Li C, Dong J. Xiao L, Liu Z. Improved catalytic efficiency of endo-beta-1,4-glucanase from Bacillus subtilis BME-15 by directed evolution[J]. Applied Microbiology and Biotechnology,2009.82(4):671-679.
    [57] Liu J, Yuan X Z, Zeng G M, Shi J G. Chen S. Effect of biosurfactant on cellulase and xylanase production by Trichoderma viride in solid substrate fermentation[J]. Process Biochemistry,2006. 41:2347-2351.
    [58] Ljungdahl L G. The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use[J]. Incredible Anaerobes:From Physiology to Genomics to Fuels,2008, 1125:308-321.
    [59] Li X H, Yang H J, Roy B, Park E Y, Jiang L J, Wang D, Miao Y G. Enhanced cellulase production of the Trichoderma viride mutated by microwave and ultraviolet[J]. Research in Microbiology, 2010,165(3):190-198.
    [60] Lo C M, Zhang Q, Callow N V, Ju L W. Cellulase production by continuous culture of Trichoderma reesei Rut C30 using acid hydrolysate prepared to retain more oligosaccharides for induction[J]. Bioresource Technology,2010,101:717-723.
    [61] Margeot A, Hahn-Hagerdal B, Edlund M, Slade R. Monot F. New improvements for lignocellulosic ethanol[J]. Current Opinion in Biotechnology,2009,20:372-380.
    [62] Martins L F, Kolling D, Camassola M, Dillon A J P. Ramos L P. Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates[J]. Bioresource Technology,2008.99(5):1417-1424.
    [63] Meunier L. Penner M H. Enzyme-catalyzed saccharification of model celluloses in the presence of lignacious residues[J]. Journal of Agricultural and Food Chemistry,1999,47:346-351.
    [64] Nascimento R P, Junior N A. Pereira Jr N, Bon EPS. Coelho R R R. Brewer's spent grain and com steep liquor as substrates for cellulolytic enzymes production by Streptomyces malaysiensis[J].
    Letters in Applied Microbiology,2009,48:529-535.
    [65] Picart P, Diaz P, Pastor F I J. Cellulases from two Penicillium sp strains isolated from subtropical forest soil:production and characterization[J]. Letters in Applied Microbiology,2007,45(1): 108-113.
    [66] Rosgaard L, Pedersen S, Langston J, Akerhielm D, Cherry J R, Meyer A S. Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated Barley straw substrates[J]. Biotechnology Progress,2007,23(6):1270-1276.
    [67] Shalini G, Laurent S. Partitioning of β-glucosidase from Trichoderma reesei in poly(ethyleneglycol) and potassium phosphate aqueous two-phase systems:Influence of pH and temperature[J]. Biochemical Engineering Journal,2006,30:104-108.
    [68] Shrestha P, Khanal S K, Pometto A L, van Leeuwen J. Enzyme Production by Wood-Rot and Soft-Rot Fungi Cultivated on Corn Fiber Followed by Simultaneous Saccharification and Fermentation[J]. Journal Agricultural and Food Chemistry,2009,57(10):4156-4162.
    [69] Singhania R R, Sukumaran R K. Patel A K, Larroche C, Pandey A. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases[J]. Enzyme and Microbial Technology,2010,46(7):541-549.
    [70] Sukumaran R K. Singhania R R, Mathew G M, Pandey A. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production[J]. Renewable Energy,2009,34(2):421-424.
    [71] Sun Y D, Sun R, Jiang J X, Zhu L W. Process of conversion of the residue of furfural manufacture to ethanol by simultaneous saccharification and fermentation[J]. Modern Chemical Industry,2008, 28(12):48-52.
    [72] Takashi Korenaga, Shin-ichiro Fujii. Separation and enzymatic Saccharification of cellulose from Wakame(Undaria Pinnaifida)[J]. Journal of Food Composition and Analysis,2000, (13):865-871.
    [73] Thomas M W. Fungal cellulases[J].Biochemistry Society Transaction,1992,20:46-53.
    [74] Tomme P, Warren R A J, Gilkes N R. Cellulose hydrolysis by bacteria and fungi[J]. Advances in Microbial Physiology,1995, (3):71-81.
    [75] Wen Z Y. Liao W. Chen S L. Hydrolysis of animal manure lignocellulosics for reducing sugar production[J]. Bioresource Technology,2004,91:31-39.
    [76] Wen Z Y, Liao W, Chen S L. Production of cellulase by Trichoderma reesei from dairy manure[J]. Bioresource Technology,2005.96(4):491-499.
    [77] Wood T M. Breakdown of crystalline cellulose by synergistic action between cellulase components from clostridium thermocellum and trichoderma koningii[J]. FEMS Microbiology Letters,1988, 50(2/3):247-252.
    [78] Xia L M, Shen X L. High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob
    residue. Bioresource Technology,2004,91(3):259-262.
    [79] Yang X X, Chen H Z. Biconversion of corn straw by coupling ensiling and solid state fermentation[J]. Bioresource Technology,2001,78(3):277-280.
    [80] Zhang C, Xing X H, Liu M S. Production of multienzymes consisting of alkaline amylase and cellulase by mixed alkalophilic culture and their potential use in the saccharification of sweet potato[J]. Biochem Eng J,2004,19(2):181-187.
    [81] Zhou Xuguo, Smith Joseph A, Oi Faith M. Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes[J]. Gene,2007,395(1-2):29-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700