低强度爆破耦合H_2O_2处理胡枝子糖化和结构表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胡枝子是一种豆科灌木,其来源广泛、生长迅速、生物质含量高等特性使之成为了一种非常具有前景的生物乙醇生产原料。本文以胡枝子茎秆为原料,先进行低强度蒸汽爆破(1.25MPa,4min),再使用碱性过氧化氢脱除木质素。处理后的固相经水洗后进行酶水解以考察预处理的效果;液相进行半纤维素和木质素的提取,以分析预处理过程对结构的影响。1.25MPa,4min蒸汽爆破胡枝子原料化学组分的改变并不明显,除半纤维素发生明显的降解外,纤维素、木质素和抽提物的含量并没有发生大的改变。细胞壁结构在蒸汽爆破之后发生少量的破损,但纤维之间的粘结依旧很紧密,纤维素的可及度不高。在随后的过氧化氢处理中,通过控制底物浓度、过氧化氢用量、温度、反应时间和乙醇用量等因素考察反应条件对木质素脱除量的影响。单因素实验得到的最优条件是底物浓度3.3%、过氧化氢用量0.6g H202/g底物、反应时间24h、温度60℃,此条件下脱去了蒸汽爆破后物料中73.20%的木素。过氧化氢处理对木质素的脱除率最高可以达到88.41%。进行三组过氧化氢脱木素处理,分别得到木质素含量为15%、10%和5%的物料,其酶水解后葡萄糖产量分别为431.8、491.2和432.6mg/g原始原料。随着木素脱除程度的增加,纤维素组分的结晶度上升(50.4%-53.1%),聚合度下降(333.9-229.3),细胞壁结构变得疏松,露出了大量的纤维。木质素组分通过凝胶色谱分析、红外光谱分析、和热分析发现其结构发生了改变,主要是由过氧化氢在碱性条件下生成的活性因子攻击木素分子造成的解聚作用和处理强度继续增加后木素小分子与大分子之间发生的缩合反应。缩合反应将木质素的分子量升高到18,919g/mol,同时增加了木质素热处理后的剩余物质量(从26%上升到31%)。对半纤维素组分进行凝胶色谱分析、糖分析、红外光谱和核磁共振波谱分析之后发现,木素的脱除过程中除去了大量半纤维素,并使其发生降解(分子量从14,090g/mol下降到9062g/mol)。木质素脱除、分离和提取纤维素组分及半纤维素组分的过程中,原料的整体回收率最高可以达到88%,说明本研究中的预处理方法可以在提高酶水解得率的同时进行低损耗的组分分离,从而实现原料全组分的综合利用。
Lespedeza crytobotrya is a perennial shrub species of the leguminous genus Lespedeza. The most important advantages of L. crytobotrya with respect to its use as a substrate for bioconversion to ethanol are that it has superior growth characteristics relative to other species and that its stalks contain a relatively large amount of carbohydrate. A combination of low severity steam explosion (1.25MPa,4min) and alkaline peroxide post-treatment of Lespedeza stalks was investigated in order to improve enzymatic digestibility of cellulose, and the removed lignin and hemicellulose were isolated from the filtration after this process.Steam explosion did not significantly change the composition of Lespedeza materials except for hemicellulose. The samples obtained by steam explosion were found to be slightly smoother and looser than the raw material through scanning electron microscopy images.In the post-treatment by alkaline peroxide, the experimental sets included variations in substrate concentration, peroxide content, time, temperature and ethanol content for investigating the delignification. The optimal reaction condition got from single factor experiments was substrate concentration3.3%, peroxide content0.6g H2O2/g substrate,24h, and60℃, resulting in a remove of73.20%of lignin from steam-pretreated material. The maximum delignification reached88.41%as the lignin content of sample was only5%.Samples with lignin content of15%,10%, and5%were produced by alkaline peroxide treatment for analyzing the influence of delignification on cellulose digestibility and the structure of lignin and hemicellulose. The cellulose-rich fractions were characterized by scanning electron microscopy and X-ray diffraction, illustrating a smoother surface, a looser structure, an rising crystalline index (from50.4%to53.1%), and a declining degree of polymerization (from333.9to229.3) with the increase of delignification severity. The glucose yield of the3cellulose-rich fractions were431.8、491.2和432.6mg/g raw material, respectively. The isolated lignin preparations were characterized by gel permeation chromatography, Fourier transform infrared spectroscopy, and thermogravimetric analysis/differential thermal analysis. Depolymerization and condensation occurred during the alkaline peroxide treatment. Condensation increased the thermal stability of lignin (mass of pyrolysis residue went up from26to 31%), and the average molecular weight rose to18,919g/mol with the increase of delignification severity. The isolated hemicellulos preparations were characterized by gel permeation chromatography, Fourier transform infrared spectroscopy,'H NMR spectroscopy. Almost all of the hemicellulose was removed from the material, and was further degraded as the average molecular weight was decreased from14,090to9,062g/mol.The maximum value of solid recovery in those three procedures reached88%, indicating that the consecutive pretreatment conducted in this research can not only enhance the enzymatic hydrolysis of lespedeza stalks, but also achieve the isolation and utilization of full composition with minimal loss.
引文
[1]陈洪章.纤维素生物技术[M].北京:化学工业出版社,2005.
    [2]陈伟红,闫德冉,杜风光.宋安东.纤维质原料生产燃料乙醇的研究进展[J].生物加工过程,2006,26(4),29-32.
    [3]黄崇杏,王双飞,杨崎峰,宋海农.低压蒸汽爆破处理对蔗渣浆化学组分的影响[J].造纸科学与技术,2005,24(2),16-18.
    [4]蒋建新,朱莉伟,王堃,王卫刚.蒸汽爆破处理胡枝子的同步糖化发酵制备乙醇研究[J].生物质化学工程,2006,40(z1),165-168.
    [5]李月.沙柳、柠条、杨木水解抽取葡萄糖的研究[D].内蒙古农业大学,2007.
    [6]廖双泉,马凤国,廖建和,谭惠民.蒸汽爆破对剑麻纤维组分分离的影响[J].热带作物学报,2003a,24(3),27-30.
    [7]廖双泉,马凤国,邵自强,廖建和,谭惠民.椰衣纤维的蒸汽爆破处理技术[J].热带作物学报,2003b,24(1),17-20.
    [8]马现刚,徐恒泳,李文钊.木质纤维素生产燃料乙醇的研究进展[J],天然气化工,2008,33(4),60-65.
    [9]潘亚杰,张雷,郭军,张大雷.农作物秸秆生物法降解的研究[J].可再生能源,2005,3,33-35.
    [10]文新亚,李燕松,张志鹏,王璞.酶解木质纤维素的预处理技术研究进展[J].酿酒科技,2006,8,97-100.
    [11]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社,2003.
    [12]谢涛,余秉奇,张儒.基于碱性过氧化氢法分级分离竹材半纤维素的结构特性[J].纺织学报,2011,32(4),18-22.
    [13]幸婷,程可可,张建安,张富春.利用木质纤维原料制取燃料乙醇预处理方法的研究进展[J].现代化工,2007,27(2),92-97.
    [14]闫军,冯连勋,蒸汽爆破技术的研究[J],现代农业科技,2009,11,279-280.
    [15]杨小寒,周美华,黄爱玲.废弃纤维材料的酶水解[J].东华大学学报,2005,31(1),120-123.
    [16]张曾,黄干强,郭新春.含氧类自由基与过氧化氢脱木素[J].中国造纸学报,2004,19(1),186-188.
    [17]张继泉,王瑞明,孙玉英.利用木质纤维素生产燃料酒精的研究进展[J].酿酒科技,2003,1,39-41.
    [18]郑洪奎,高晓霞.花棒材的构造、纤维形态及化学成分研究[J].四川农业大学学报,1998,16(1),154-158.
    [19] A. Boussaid, J. Robinson, Y. Cai, D.J. Gregg, and J.N. Saddler. Fermentability of the hemicellulose-derived sugars from steam-exploded softwood (Douglas-fir) [J]. Biotechnology and Bioengineering 1999,64(3),284-289.
    [20] A. Emmel, A.L. Mathias, F. Wypych, and L.P. Ramos. Fractionation of eucalyptus grandis chips by dilute acid-catalysed steam explosion [J]. Bioresource Technology 2003,86(2),105-115.
    [21] A. Ferrer, F.M. Byers, B. Sulbaran-de-Ferrer, B.E. Dale, and C. Aiello. Optimizing ammonia pressurization/depressurization processing conditions to enhance enzymatic susceptibility of dwarfelephant grass [J]. Applied Biochemistry and Biotechnology 2000,84-86(1-9),163-180.
    [22] A. Mancera, V. Fierro, A. Pizzi, S. Dumarcay, P. Gerardin, J. Velasquez, G. Quintana, and A. Celzard. Physicochemical characterization of sugar cane bagasse lignin oxidized by hydrogen peroxide [J]. Polymer Degradation and Stability 2010,95(4),470-476.
    [23] A. Rodriguze, L. Jimznez, and J.L. Ferre. Use of oxygen in the delignification and beaching of pulps [J]. Appita Journal 2007,60(1),17-22.
    [24] A. Teleman, J. Lundqvist, F. Tjerneld, H. Stalbrand, and O. Dahlman. Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing 1H and 13C NMR spectroscopy [J]. Carbohydrate Research 2000,329(4),807-815.
    [25] A.P. Dadi, S. Varansi, and C.A. Schall. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step [J]. Biotechnology and Bioengineering 2006,95(5),904-910.
    [26] A.T. Martinez, A.E. Gonzalez, M. Valmaseda, B.E. Dale, M.J. Lambregts, and J.F. Haw. Solid-state NMR studies of lignin and plant polysaccharide degradation by fungi [J]. Holzforschung 2009, 45(s1),49-54.
    [27] B. Sulbaran-de-Ferrer, M. Aristiguieta, B.E. Dale, A. Ferrer, and G. Ojeda-de-Rodriguez. Enzymatic hydrolysis of ammonia-treated rice straw [J]. Applied Biochemistry and Biotechnology 2003,105-108(1-3),155-164
    [28] B. Yang and C.E. Wyman. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose [J]. Biotechnology and Bioengineering 2004,86(1),88-98.
    [29] B. Yang, A. Boussaid, S.D. Mansfield, D.J. Gregg, and J.N. Saddler. Fast and efficient alkaline peroxide treatment to enhance the enzymatic digestibility of steam-exploded softwood substrates [J]. Biotechnology and Bioengineering 2002,77(6),678-684.
    [30] M.H. Yang, W.L. Li, B.B. Liu, Q. Li, and J.M. Xing. High-concentration sugars production from corn stover based on combined pretreatments and fed-batch process [J]. Bioresource Technology 2010,101(13),4884-4888.
    [31] B.C. Saha and M.A. Cotta. Enzymatic saccharification and fermentation of alkaline peroxide pretreated rice hulls to ethanol [J]. Enzyme and Microbial Technology 2007,41(4),528-532.
    [32] B.E. Dale and M.J. Moreira. A freeze explosion technique for increasing cellulose hydrolysis [J]. Biotechnology and Bioengineering Symposium 1982,12,31-43.
    [33] B.E. Dale, L.L. Henk, and M. Shiang. Fermentation of lignocellulosic materials treated by ammonia freeze explosion [J]. Developments in Industrial Microbiology 1985,26,223-233.
    [34] B.K. Avellar and W.G. Glasser. Steam-assisted biomass fractionation. I. Process considerations and economic evaluation [J]. Biomass Bioenergy 1998,14(3),205-218.
    [35] C. Cara, E. Ruiz, M. Ballesteros, P. Manzanares, M.J. Negro, and E. Castro. Production of fuel ethanol from steam-explosion pretreated olive tree pruning [J]. Fuel 2008,87(6),692-700.
    [36] C. Olkkonen, H. Tylli, I. Forsskahl, A. Fuhrmann, T. Hausalo, T. Tamminen, B. Hortling, and J. Jason. Degradation of model compounds for cellulose and lignocellulosic pulp during ozonation in aqueous solution [J]. Holzforschuang 2000,54(4),397-406.
    [37] C.J. Biermann, T.P. Schultz, and G.D. Mcginnia. Rapid steam hydrolysis/extraction of mixed hardwoods as biomass pretreatment [J]. Journal of Wood Chemistry and Technology 1984,4(1), 111-128.
    [38] C.L. Li, B. Knierim, C. Manisseri, R. Arora, H.V. Scheller, M. Auer, K.P. Vogel, B.A. Simmons, and S. Singh. Comparison of dilute acid and ionic liquid pretreatment of switchgrass:Biomass recalcitrance, delignification and enzymatic saccharification [J]. Bioresource Technology 2010, 101(13),4900-4906.
    [39] C. Cara, E. Ruiz, I. Ballesteros, M.J. Negro, and E. Castro. Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification [J]. Process Biochemistry 2006, 41(2),423-429.
    [40] D. Montane, X. Farriol, J. Salvado, P. Jollez, and E. Chornet. Application of steam explosion to the fractionation and rapid vapor-phase alkaline pulping of wheat straw [J]. Biomass and Bioenergy 1998,14(3),261-276.
    [41] D.J. Mitchell, K. Grohmann, M.E. Himmel, B.E. Dale, and H.A. Schroeder. Effect of the degree of acetylation on the enzymatic digestion of acetylated xylans [J]. Journal of Wood Science and Technology 1990,10 (1),111-121.
    [42] E. Palmqvist, Q. Meinander, H. Grage, and B. Hahn-Hagerdal. Main and interaction effects of acetic acid, furfural and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts [J]. Biotechnology and Bioengineering 1999,63(1),46-55.
    [43] E. Varga, K. Reczey, and G Zacchi. Optimization of steam pretreatment of corn stover to enhance enzymatic digestibility [J]. Applied Biochemistry and Biotechnology 2004,113-116,509-523.
    [44] F. Alfani, A. Gallifuoco, A. Saporosi, A. Spera, and M. Cantarella. Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw [J]. Journal of Industrial Microbiology and Biotechnology 2000,25(4),184-192
    [45] G. Quintana, G. Rocha, A. Goncalves, and J. Velasquez. Evaluation of heavy metal removal by oxidized lignins in acid media from various sources [J]. Bioresource 2008,3(4),1092-1102.
    [46] G. Sarath, R.B. Mitchell, S.E. Sattler, D. Funnell, J.F. Pedersen, R.A. Graybosch, and K.P. Vogel. Opportunities and roadblocks in utilizing forages and small grains for liquid fuels [J]. Journal of Industrial Microbiology and Biotechnology 2008,35(5),343-354.
    [47] GP. Walsum, S.G. Allen, M.J. Spencer, M.S. Laser, M.J. Antal, and L.R. Lynd. Coversion of lignocellulosics pretreated with liquid hot water to ethanol [J]. Applied Biochemistry and Biotechnology 1996,57-58(1),157-170.
    [48] H. Chen and L. Liu. Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction [J]. Bioresource Technology 2007,98(3),666-676.
    [49] H.Kawagishi, T. Kanao, R. Inagaki, T. Mizuno, K. Shimura, H. Ito, T. Hagiwara, and T. Nakamura. Formolysis of a potent antitumor (1→6)-β-d-glucan-protein complex from Agaricus blazei fruiting bodies and antitumor activity of the resulting products [J]. Carbohydrate Polymers 1990,12(4), 393-403.
    [50] H.H. Brownell, E.K.C. Yu, and J.N. Saddler. Steam-explosion pretreatment of wood:effect of chip size, acid, moisture content and pressure drop [J]. Biotechnolgy Bioengineering 1986,28(6), 792-801.
    [51] I. Ballesteros, J.M. Oliva, A.A. Navarro, A. Gonzales, J. Carrasco, and M. Ballesteros. Effect of chip size on steam explosion pretreatment of softwood [J]. Applied Biochemistry Biotechnology 2000,84-86(1-9),97-110.
    [52] I.F. Cullis, J.N. Saddler, and S.D. Mansfield. Effect of initial moisture content and chip size on the bioconversion efficiency of softwood lignocellulosics [J]. Biotechnology Bioengineering 2004, 85(4),413-421.
    [53] J. Dupont, R.F. Souza, and P.A.Z. Suarez. Ionic liquid (molten salt) phase organometallic catalysis [J]. Chemical Review,2002,102(10),3667-3691.
    [54] J. Gierer, The Reaction of Lignins with Oxygen-containing Species [C]. Proceedings of7th ISWPC, Beijing,1993..
    [55] J. Gierer. Chemistry of delignification [J]. Wood Science and Technology 1986,20(1),1-33.
    [56] J. M. Gould. Alkaline Peroxide Delignification of agricultural residues to enhance enzymatic saccharification [J]. Biotechnology and Bioengineering 1984,26(1),46-52.
    [57] J. Wu, J. Zhang, J.S. He, Q. Ren, and M. Guo. Homogeneous acetylation of cellulose in a new Ionic liquid [J]. Biomacromol 2004,5(2),266-268.
    [58] J.R. Weil, A. Sarikaya, S.L. Rau, J. Goetz, C.M. Ladisch, M. Brewer, R. Hendrickson, and M.R. Ladisch.1997. Pretreatment of yellow poplar sawdust by pressure cooking in water [J]. Applied Biochemistry and Biotechnology 1997,68(1-2),21-40.
    [59] K. Wang, J.X. Jiang, F. Xu, and R.C. Sun. Influence of steaming pressure on steam explosion pretreatment of Lespedeza stalks (Lespedeza crytobotrya):part Ⅰ. characteristics of degraded cellulose [J]. Polymer Degradation and Stability 2009,94(9),1379-1388.
    [60] K.D. Baugh, J.A. Levy, and P.L. McCarty. Thermochemical pretreatment of lignocellulose to enhance methane fermentation:Ⅰ. Monosaccharide and furfurals hydrothermal decomposition and product formation Rates [J]. Biotechnology and Bioengineering 1998a,31(1),50-61.
    [61] K.D. Baugh, J.A. Levy, and P.L. McCarty. Thermochemical pretreatment of lignocellulose to enhance methane fermentation:Ⅱ. Evaluation and application of pretreatment model [J]. Biotechnology and Bioengineering 1998b,31(1),62-70.
    [62] K.H. Kim, M. Tucker, and Q. Nguyen. Conversion of bark-rich biomass mixture into fermentable sugar by two-stage dilute acid-catalyzed hydrolysis [J].Bioresource Technology 2005,96(11), 1249-1255.
    [63] K.V. Sarkanen. Chemistry of solvent pulping [J]. Tappi Journal 1990,73(10),215-219.
    [64] L. Aguiar, F. Marquez-Montesinos, A. Gonzalo, J.L. Sanchez, and J. Arauzo. Influence of temperature and particle size on the fixed bed pyrolysis of orange peel residues. J. Anal. Appl. Pyrolysis 2008,83(1),124-130.
    [65] L. C. Teixeira, J. C. Linden, and H. A. Schroeder. Alkaline and peracetic acid pretreatments of biomass for ethanol production [J]. Applied Biochemistry and Biotechnology 1999,77(1-3),19-34.
    [66] L. Zhu, J.P. O'Dwyer, V.S. Chang, C.B. Grand, and M.T. Holtzapple. Structural features affecting biomass enzymatic digestibility [J]. Bioresource Technology 2008,99(9),3817-3828.
    [67] L.E. Gollapalli, B.E. Dale, and D.M. Rivers. Predicting digestibility of ammonia fiber explosion (AFEX)-treated rice straw [J]. Applied Biochemistry and Biotechnology 2002,98-100(1-9),23-35.
    [68] M. Alkasrawi, A. Rudolf, G. Liden, and G. Zacchi. Influence of strain and cultivation procedure on the performance of simultaneous saccharification and fermentation of steam pretreated spruce [J]. Enzyme and Microbial Technology 2006,38(1-2),279-286.
    [69] M. Cantarella, L. Cantarella, A. Gallifuoco, A. Spera, and F. Alfani. Effect of inhibitors released during steam-explosion treatment of polar wood on subsequent enzymatic hydrolysis and SSF [J]. Biotechnology Progress 2004,20(1),200-206.
    [70] M. Heitz, E. Capek-Menard, P.G. Koeberle, J. Gagne, E. Chornet, R.P. Overend, J.D. Taylor, and E. Yu. Fractionation of Populus tremuloides in the pilot plant scale:optimization of steam pretreatment conditions using STAKE II technology [J]. Bioresource Technology 1991,35(1), 23-32.
    [71] M. Imai, K. Ikari, and S. Isao. High-Performance hydrolysis of cellulose using mixed cellulase species and ultrasonication pretreatment [J]. Biochemical Engineering Journal 2004,17(2),79-83.
    [72] M. Laser, D. Schulman, S.G. Allen, and J. Lichwa. A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol [J]. Bioresource Technology 2002, 81(1),33-44.
    [73] M. Moniruzzaman, B.E. Dale, R.B. Hespell, and R.J. Bothast. Enzymatic hydrolysis of high
    moisture corn fiber pretreated by AFEX and recovery and recycle of the enzyme complex [J]. Applied Biochemistry and Biotechnology 1997,67(1-2),113-126.
    [74] M. Oliet, J. Garcia, F. Rodriguez, M.A. Gilarranz, and J.C. Dominguez. Solvent effects in auto catalyzed alcohol-water pulping comparative study between ethanol and methanol as delignifying agents [J]. Chemical Engineering Journal 2002,87(2),157-16
    [75] M. Oliet, M.A. Gilarranz, J.C. Dominguez, M.V. Alonso, and F. Rodriguez. Ethanol-based pulping from Cynara cardunculus L [J]. Journal of Chemical Technology and Biotechnology 2005,80(7), 746-753.
    [76] M.A. Gilarranz, M. Oliet, F. Rodriguez, and J. Tijero. Ethanol-water pulping:cooking variables optimization [J]. The Canadian Journal of Chemical Engineering 1998,76(2),253-260.
    [77] M.A. Gilarranz, M. Oliet, F. Rodriguez, and J. Tijero. Methanol-based pulping of Eucalyptus globulus [J]. The Canadian Journal of Chemical Engineering 1999,77(3),515-521.
    [78] M.J. Negro, P. Manzanares, J.M. Oliva, I. Ballesteros, and M. Ballesteros. Changes in various physical/chemical parameters of Pinus pinaster wood after steam explosion pretreatment [J]. Biomass and Bioenergy 2003,25(3),301-308.
    [79] M.T. Garcia-Cubero, G. Gonzalez-Benito, I. Indacoechea, M. Coca, and S. Bolado. Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw [J]. Bioresource Technology 2009,100(4),1608-1613.
    [80] N. Moiser, C. Wyman, B. Dale, R. Elander, Y.Y. Lee, M. Holtzapple, and M. Ladisch. Features of promising technologies for pretreatment of lignocellulosic biomass [J]. Bioresources Technology 2005,96(6),673-686.
    [81] National Renewable Energy Laboratory (NREL):Determination of Structural Carbohydrates and Lignin in Biomass (http://www.nrel.gov/biomass/analytical_procedures.html#lap-002, USA 2008).
    [82] P.E. Vidal and J. Molinier. Ozonolysis of lignin-improvement of in vitro digestibility of polar sawdust [J]. Biomass 1998,16(1),1-17.
    [83] R. Navarro. Effects of furfural on ethanol fermentation by Saccharomyces cerevisiae:mathematical models [J]. Current Microbiology 1994,29(2),87-90.
    [84] R. Sun, J. Lawther, W. Banks, B. Xiao. Effect of extraction procedure on the molecular weight of wheat straw lignins [J]. Industrial Crops and Products 1997,6(2),97-106.
    [85] R.A. Silverstein, Y. Chen, R.R. Sharma-Shivappa, M.D. Boyette, and J. Osborne. A comparison of chemical pre-treatment methods foe improving saccharification of cotton stalks [J]. Bioresource Technology 2007,98(16),3000-3011.
    [86] R.C. Sun, J. Tomkinson, P.L. Ma, and S.F. Liang. Comparative study of hemicelluloses from rice straw by alkali and hydrogen peroxide treatments [J]. Carbohydrate Polymers 2000a,42(2), 111-122.
    [87] R.C. Sun, J. Tomkinson, S.Q. Wang, and B. Xiao. Characterization of lignin from wheat straw by alkaline peroxide treatment [J]. Polymer Degradation and Stability,2000b,67(1),101-109.
    [88] S. Ando, Ⅰ. Arai, K. Kiyoto, and S. Hanai. Identification of aromatic monomers in steam-exploded polar and their influence on ethanol fermentation by Saccharomyces cerevisiae [J]. Journal of Fermentation Technology 1986,64(6),567-570.
    [89] S. Bengtsson and P. Aman. Isolation and chemical characterization of water-soluble arabinoxylans in rye grain [J]. Carbohydrate Polymers 1990,12(3),267-277.
    [90] S. Kim and M.T. Holtzapple. Lime pretreatment and enzymatic hydrolysis of corn stover [J]. Bioresource Technology 2005,96(18),1994-2006.
    [91] S. Larsson, A. Reimann, N. Nilvebrant, and L. Jonsson. Comparison of different methods for the
    detoxification of lignocellulose hydrolyzates of spruce [J]. Applied Biochemistry and Biotechnology 1999a,77(1-3),91-103.
    [92] S. Larsson, E. Palmqvist, and B. Hahn-Hagerdal, C. Tengborg, K. Stenberg, G. Zacchi, and N. O. Nilvebrant. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood [J]. Enzyme and Microbial Technology 1999b,24(3-4),151-159.
    [93] S. Singh, B.A. Simmons, and K.P. Vogel. Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass [J]. Biotechnology and Bioengineering 2009,104(1),68-75.
    [94] S. Zhu, Y. Wu, Z. Yu, C. Wang, F. Yu, S. Jin, Y. Ding, R. Chi, J. Liao, and Y. Zhang. Comparison of three microwave/chemical pretreatment processes for enzymatic hydrolysis of rice straw [J]. Biosystems Engineering 2006,93(3),279-283.
    [95] S. Zhu, Y. Wu, Z. Yu, J. Liao, and Y Zhang. Pretreatment by microwave/alkali of rice straw and its enzymatic hydrolysis [J]. Process Biochemistry 2005,40(9),3082-3086.
    [96] S.H. Lee, T.V. Doherty, R.J. Linhardt, J.S. and Dordick. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis [J]. Biotechnology and Bioengineering 2009,102(5),1368-1376.
    [97] S.M. Shevchenko, K. Chang, J. Robinson, and J.N. Saddler. Optimization of monosaccharide recovery by post-hydrolysis of the water-soluble hemicellulose component after steam explosion of softwood chips [J]. Bioresource Technology 2000,72(3),207-211.
    [98] T. Heinze, K. Schwikal, and S. Barthel. Ionic liquids as reaction medium in cellulose functionalization [J]. Macromolecular Bioscience 2005,5(6),520-525.
    [99] T.A. Clark and K.L. Mackie. Steam explosion of the soft wood Pinus radiate with sulphur dioxide addition. I. Process optimization [J]. Journal of Wood Chemistry and Technology 1987,7(3), 373-403.
    [100]T.A. Hsu. Pretreatment of biomas. In:Wyman, C.E. (Ed.), Handbook on Bioethanol Production and Utilization [M].1996, Applied Energy Technology Series, Taylor & Francis, Washington DC, Chapter 10.
    [101]T.J. McDonough and R.C. Kirk. Oxygen delignification conference proceedings [M]. Atlanta: Tappi Press,1989.
    [102]V. Ferreira-Leitao, C.C. Perrone, J. Rodrigues, A.P. Franke, S. Macrelli, and G. Zacchi. An approach to the utilisation of CO2 as impregnating agent in steam pretreatment of sugar cane bagasse and leaves for ethanol production [J]. Biotechnology for Biofuels 2010,3(1),7.
    [103]V.S. Chang, M. Nagwani, C.H. Kim, and M.T. Holtzapple. Oxidative lime pretreatment of high-lignin biomass [J]. Applied Biochemistry and Biotechnology 2001,94(1),1-28.
    [104]W.G Glasser and R.S. Wright. Steam-assisted biomass fractionation. Ⅱ. fractionation behavior of various biomass resources [J]. Biomass and Bioenergy 1998,14(3),219-235.
    [105]W.R. Grous, A.O. Converse, and H.E. Grethlein. Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar [J]. Enzyme and Microbial Technology 1985,8(5), 274-280.
    [106]X. Qi, Y. Tang, H.L. Jian, X. Li and J.J. Jiang. Production of lactic acid by simultaneous saccharification and fermentation using steam pretreated Lespedeza stalks as inexpensive raw materials [J]. Advanced Materials Research 2011,152-153,1404-1411.
    [107]X.B. Zhao, L. Wang, and D.H. Liu. Effect of several factors on peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis [J]. Journal of Chemical Technology and Biotechnology 2007,82(12),1115-1211.
    [108]X.B. Zhao, L. Wang, and D.H. Liu. Peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis:a continued work [J]. Journal of Chemical Technology and Biotechnology 2008,83(6), 950-956.
    [109]Y. Ni and Q. Hu. Alcell(?) lignin solubility in ethanol-water mixtures [J]. Journal of Applied Polymer Science 1995,57(12),1441-1446.
    [110]Y. Sun and J.J. Cheng. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production [J]. Bioresource Technology 2005,96 (14),1599-1606.
    [111]Y. Yamashita, M. Shono, C. Sasaki, and Y. Nakamura. Alkaline peroxide pretreatment for efficient enzymatic saccharification of bamboo [J]. Carbohydrate Polymers 2010,79,914-920.
    [112]Z. Xu, Q. Wang, Z.H. Jiang, and X. Yang. Enzymatic hydrolysis of pretreated soybean straw [J]. Biomass and Bioenergy 2007,31(2-3),162-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700