胡枝子和糠醛渣为原料发酵制备乳酸工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相比于传统法利用淀粉类原料发酵乳酸,木质纤维原料由于其价格低廉、可再生、无污染等优点已引起了越来越多的关注。本文以蒸汽爆破胡枝子和碱洗糠醛渣为实验原料,以提高乳酸产量和减少发酵成本为目的,探索乳酸发酵的最佳工艺条件。
     蒸汽爆破预处理研究结果表明,蒸汽爆破过程中主要是半纤维素降解,纤维素少许降解,对木素含量几乎没有影响;而且降解剧烈程度随爆破压力的升高而增大,在爆破压力为2.0 MPa时,胡枝子中半纤维含量仅为4.7%,相比于原料中的29.3%,半纤维素脱除率达到85%。
     正交设计实验结果表明蒸汽爆破胡枝子同步糖化发酵制备乳酸的最佳工艺条件为:温度43℃,纤维素酶加入量30FPU/g底物,碳酸钙加入量3%,底物浓度6%。且各因素的影响次序是底物浓度>温度>酶加入量>碳酸钙。不同蒸汽爆破条件下胡枝子同步糖化发酵制备乳酸结果表明,2.0MPa、4min的爆破条件胡枝子发酵乳酸产量最高,达到21.7g/L,是其理论产率的64.8%,相比于未处理的胡枝子发酵的乳酸产量8.0g/L,乳酸产率提高了1.7倍。
     胡枝子蒸汽爆破过程中产生的抑制物主要有甲酸、乙酸、糠醛和香草醛。研究表明甲酸严重影响糖化和发酵,当甲酸浓度为0.5g/L时,纤维素转化率和乳酸产率分别减少19%和16.4%。而乙酸对糖化没有影响,却明显抑制发酵,乳酸产率最大减少17.6%:糠醛和香草醛相比有机酸抑制作用较小,对乳酸产率几乎没有影响,主要是延长发酵周期,当糠醛浓度为2.0g/L时,乳酸生产周期被延长36h。
     皂荚皂素表面活性剂对糠醛渣糖化和发酵的研究结果表明,皂素最佳添加浓度为0.16g/L。皂荚皂素能轻微增加糠醛渣的水解率(4.4%),却明显促进乳酸发酵。首先提高最终乳酸产率,最大可以提高17.7%;其次减少纤维素酶用量,最大可以减少37.5%;此外可以维持发酵液中纤维素酶活力稳定和减少发酵周期;这对减少乳酸生产成本具有极大的指导意义。成本核算表明,加入皂荚皂素后,每生成lkg乳酸可减少成本0.513元,如果发酵液中的纤维素酶能够循环回收利用,那么每生成lkg乳酸可减少成本1.7元。所以用皂荚皂素来代替部分纤维素酶在经济上是可行的。
Compared to the traditional method for lactic acid production from starchy raw materials, lignocellulosic materials are considered to be the most promising renewable resources for lactic acid production due to its low cost, abundance in nature and free pollutiom. In this study, we try to find the optimal fermentation conditions for lactic acid production from steam pretreated lespedeza stalks and furfural residues to reduce the operational cost.
     The results of lespedeza stalks composition analysis showed that steam pretreatment mainly caused the hemicellulose degradation. Sometimes slight cellulose was also degraded in the presence of high temperature and pressure (2.0MPa), while lignin content was hardly affected. The degree of hemicellulose degradation was proportional to the pressure of steam explosion. After 2.0 MPa of steam explosion, the content of hemicellulose was reduced from 29.3% to 4.7% compared with the raw material, relatively reduced by 85%.
     The results of orthogonal experiments showed that the optimal conditions for lactic acid production by SSF were the substrate concentration of 6%, enzyme loading of 30 FPU/g, calcium carbonate addition of 3% and temperature of 43℃. The significance of the factors which influence the lactic acid yield was in the following order:substrate concentration>temperature>enzyme loading>addition amount of calcium carbonate. Lespedeza stalks with 2.00MPa pressure pretreatment were found to have the highest lactic yield of 21.7 g/L, which accounts for 64.8% of theory yield. The lactic acid yield was enhanced by 1.7 times than that of the untreated materials.
     The inhibitors generated from steam pretreatment process mainly consist of acetic acid, formic acid, furfural and vanillin. Formic acid was the most serious inhibitor in saccharification and fermentation. The cellulose conversion rate and lactic acid yield was reduced by 19% and 16.4% resperctively in the presence of 0.5g/L formic acid. Acetic acid performed no impact on saccharification, but had significant inhibition on fermentation. The lactic acid yield was reduced by up to 17.6%. Effect of furfural and vanillin on lactic acid yield was relatively weak compared to that of organic acid, and the inhibition of them mainly focused on the lag time, resulting in the greatly prolonged fermentation period (36h in the presence of 2.0g/L furfural).
     The results of influence of Gleditsia saponin on saccharification and fermentation of furfural residues showed that the optimal addition concentration of saponin was 0.16 g/L. Gleditsia saponin could slightly increase the hydrolysis rate of furfural residues (4.4%) and had positive influences on fermentation. Firstly, it could improve eventually lactic acid yield, which was increased by 17.7% at most. Secondly, it could also reduce cellulase loading, which was cut down up to 37.5%. Additionally, GS was useful to maintain the remaining enzyme activity stable in fermentation broth and reduced fermentation period. It was meaningful to reduce the overall cost of lactic acid production. The limited economic evaluation showed that the lactic acid production cost could be redcued by 0.513 yuan when lkg lactic acid was produced in the presence of GS. Furthermore, if it was possible to recover all the activity in the fermentation broth, the lactic acid production could be decreased by 1.7yuan. Therefore, it was economically feasible to use GS to replace partial cellulast for lactic acid production.
引文
[1]曹本昌,徐建林.L-乳酸研究综述[J].食品与发酵工业,1993,12(3):56-61.
    [2]陈洪章,李佐虎.麦草蒸汽爆破处理的研究(Ⅰ)—影响麦草蒸汽爆碎处理因素及其过程分[J].纤维素科学与技术,1999,7(4):14-22
    [3]高培基.纤维素酶降解机制及纤维素酶分子结构与功能研究进展[J].自然科学进展,2003,13(1):21-29.
    [4]侯金淑,袁兴中,曾光明等.利用废报纸同步糖化发酵生产乙醇的研究[J].食品与发酵工业,2006,32(10):66-69.
    [5]蒋建新,刘圣英,马雅琦等.蒸汽爆破预处理对沙柳组成及纤维结构性能影响研究[J].现代化工,2008,28(2):49-53.
    [6]蒋建新,朱莉伟,王堃等.蒸汽爆破处理胡枝子的同步糖化发酵制备乙醇研究[J].生物质化学工程,2006,12(10):165-168.
    [7]金其荣,张继民,徐勤.有机酸发酵工艺学[M].中国轻工业出版社,北京:1989.
    [8]罗鹏,刘忠.木质生物资源的水解[J].林产化学与工业,2006,26(2):99-104.
    [9]罗鹏,刘忠.蒸汽爆破法预处理木质纤维原料的研究[J].林业科技,2005,30(3):54-55.
    [10]李平兰,郑海涛.乳酸菌及其生物工程研究新进展[J].中国乳品工业,2000,28(4):50-53.
    [11]李稳宏,吴大雄,高新等.麦秸纤维素酶解法产糖预处理过程工艺条件[J].西北大学学报(自然科学版),1997,27(3):277-283.
    [12]钱志良.乳酸的工业化生产、应用和市场[J].食品发酵工业,2001,16:90-95.
    [13]沈萍.微生物学[M].高等教育出版社,北京:2002.
    [14]王博彦,金其荣.发酵有机酸生产与应用手册[M].中国轻工业出版社,2000,5:337-389.
    [15]王垫,蒋建新,宋先亮.蒸汽爆破预处理木质纤维素及其生物转化研究进展[J].生物质化学工程,2006,40(6):37-42.
    [16]王正岩,郝章来.聚乳酸的生产和应用及市场前景[J].化工新型材料,2003,31(7):40-41.
    [17]许凤,孙润仓,詹怀宇.木质纤维原料生物转化燃料乙醇的研究进展[J].纤维素科学与技术,2004,12(1):45-54.
    [18]薛海燕,李均敏.玉米秸秆同步糖化发酵生产乳酸的研究[J].中国酿造,2008(18):37-40.
    [19]杨雪霞,陈洪章,李佐虎.玉米秸秆氨化汽爆处理及其固态发酵[J].过程工程学报,2001,1(1):86-89.
    [20]阎伟红,师文贵,徐柱,等.胡枝子属植物野生种质资源及其研究进展[J].中国草地学报,2007,29(20):86-93.
    [21]赵越,武彬,阎伯旭等.纤维二糖抑制外切纤维素酶水解作用机理的分析[J].中国科学,2003,33(5):454-460.
    [22]张裕卿,梁江华,李滨县.β-葡萄糖甘酶促进纤维素降解的应用[J].天津大学学报,2007,40(3):317-320.
    [23]Amass W, Amass A, Tighe B. A review of biodegradable polymers:uses, current developments in the synthesis and characterization of biodegradable polymers, blengds of biodegradable polymers and recent advances in biodegradation studies[J]. Polymer International,1998,47:9-14.
    [24]Ando S, Arai I, Kiyoto K, Hanai S. Activity and stability of xylose isomerase preparations from whole cells of Lactobacillus brevis in spent sulfite liquor[J]. Fermentation Technology,1986, 64:567-577.
    [25]Bardet M, Robert D R, Lundqvist K. Fermentation of lignocellulosic hydrolysates. Ⅱ:inhibitors and mechanisms of inhibition[R]. Sven Papperstidn,1985,74:25-33.
    [26]Budhavaram N K, Fan Z L. Production of lactic acid from paper sludge using acid-tolerant, thermophilic Bacillus coagulan strains[J]. Bioresource Technology,2009,100:5966-5972.
    [27]Castanon M, Wilke C R. Effects of the surfactant Tween 80 on enzymatic hydrolysis of newspaper[J]. Biotechnology Bioengineering,1981:ⅩⅩⅢ:1365-1372.
    [28]Chen C C, Ju L K. Coupled lactic acid fermentation and adsorption[J]. Applied Microbiology and Biotechnology,2002,37:170-174.
    [29]Chernoglazov V M, Ermolova O V, Klyosov A A. Adsorption of Highly Purified Endo-1,4-beta-Glucanases of Trichoderma reesei on the Components of Lignocellulosic Material: Cellulose, Lignin, and Xylan. Prikl Biokhim[J]. Microbiology,1989,25:333-342.
    [30]Chornet E, Overend R P. Phenomenological Kinetics and Reaction Engineering Aspects of Steam Aqueous Treatments:Proceedings of the International Workshop on Steam Explosion Techniques, 1998,10:21-58.
    [31]Clark T A, Mackie K L. Steam explosion of soft-wood pinus rasiata with sulphur dioxide addition. Process optimization[J]. Wood Chemistry Technology,1987,7:373-403.
    [32]Clark T, Mackie K L. Fermentation inhibitors in wood hydrolyzates derived from the softwood Pinus radiate[J]. Journal of Chemistry Biotechnol,1984,34:101-110.
    [33]Datta R, Tsai S P, Bonsignore P et al. Technological and economic potential of poly(lactic-acid) and lactic acid derivatives[J]. FEMS Microbiology Reviews,1995,16:221-231.
    [34]Eriksson T, Borjesson, Tjenneld F. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulosic[J]. Enzyme Microbial Technology,2002,31:353-364.
    [35]Excoffier G A. Evolution of Lignocellulosic Components During Steam Explosion:Proceedings of The International Workshop on Steam Explosion Techniques,1988,12:83-95.
    [36]Gauss W F, Suzuki S, Takagi M. Compiler:US,3990944[P].
    [37]Ghose T K. Measurement of cellulase activities[J]. Pure and Applied Chemistry,1987,59(2):257-268.
    [38]Helle S S, Duff S J B, Cooper D G. Effect of surfactant on cellulose hydrolysis[J]. Biotechnology and Bioengineering,2004,42:611-617.
    [39]Jones R P. Biological principles for the effects of ethanol[J]. Enzyme and Microbial Technology,1989,11:130-153.
    [40]Jonsson L J, Palmqvist E, Nilvebrant N O, Hahn-Hagerdal B. Detoxification of wood hydrolyzates with laccase and peroxidase from the white-rot fungus Trametes versicolor[J]. Applied Microbial Biotechnology,1998,49:691-697.
    [41]Lai Y Z. Chemical degradation, CRC Press, New York,2000.
    [42]Lee S B, Park K H, Robyt J F. Inhibition of β-glycosidases by a carbose analogues containing cellbiose and lactose structures[J]. Carbohydrate Research,2001,331(1):13-18.
    [43]Maria C, Laura C, Alberto G, Agata S, Francesco A. Effects of inhibitors released during steam explosion treatment of Poplar wood on subsequent enzymatic hydrolysis and SSF[J]. Biotechnology Progress,2004,20,200-206.
    [44]Martin C, Thomsen M H, Hauggaard-Nielsen H, Thomsen A. Wet oxidation pretreatment, enzymatic hydrolysis and simultaneous saccharification and fermentation of clover-ryegrass mixtures[J]. Bioresource Technology,2008,99:8777-8782.
    [45]Mcmillan J D. Processes for pretreating lignocellulosic biomass:A review [R].Golden National Renewable Energy Laboratory,1992.
    [46]Mes-Hartree M, Saddler J N. Identification of aromatic monomers in steam-exploded poplar and their influences on ethanol fermentation by Saccharomyces cerevisiae[J]. Biotechnology Letters, 1983,5:567-570.
    [47]Mizutani C, Sethumadhavan K, Howley P, Bertoniere N. Effect of a nonionic surfactant on Trichoderma cellulase treatments of regenerated cellulose and cotton yarns[J]. Cellulose,2002, 9:83-89.
    [48]Mosier N. Features of promising technologies for pretreatment of lignocelluloses biomass[J]. Bioresource Technology,2005,96:673-686.
    [49]Nilvebrant N O, Reimann A, Sousa F, Kleen M, Palmqvist E. In Proceedings of the Nineth International Symposium on Wood and Pulping Chem,1997, Montreal, Canada.
    [50]Oliva J M, Maria J N, Felicia S, Ballesteros O, Paloma M, Alberto G, Mercedes B. Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerat yeast Kluyveromyces marxianus[J]. Applied Biochemistry and Biotechnology, 2003,6:105-108.
    [51]Ooshima H, Sakata M, Harano Y. Enhancement of enzymatic hydrolysis of cellulose by surfactant[J]. Biotechnology and Bioengineering,1986,28:1727-1734.
    [52]Palmqvist E, Almeida J S, Hahn-Hagerdal B. Influence of furfural on anaerobic glycolytic kinetics of Sacchariomyces cerevisiae in batch culture[J]. Biotechnology and Bioengineering,1999, 62:447-454.
    [53]Palmqvist E. Barbel H. Fermentation of lignocellulosic hydrolysates. I:inhibition and detoxification [J]. Bioresource Technology,2000.74:17-24
    [54]Palmqvist E, Meinander Q, Grage H, Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates. I:inhibition and detoxification[R]. Biotechnol Bioeng,1999,63:17-24.
    [55]Pere Z J, Musozdorado J, Rubia T et al. Biodegradation and biological treatments of cellulose, hemicellulose and lignin[R]. International Microbiology,2002,5:53-63.
    [56]Popo T, Theander O. On permanganate oxidation of humic acids[J]. Acta Chemical Scandinavica,1976,30:63-78.
    [57]Rathin D et al. Hydroxycarboxylic acid[J]. Encyclopedia Chemical Technology,1995, 13:1042-1062.
    [58]Russell J B. Another explanation for the toxicity of fermentation acids at low pH:anion accumulation versus uncoupling[J]. Journal of Applied Bacteriology,1992,73:363-370.
    [59]Schell D J. Technical and economical analysis of an enzymatic hydrolysis based ethanol plant[R]. Golden:National Renewable Energy Laboratory,1990.
    [60]Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production:a review[R]. Bioresource Technology,2002,83:1-11.
    [61]Teeri T T. Crystalline cellulose degradation:New insight into the function of cellobiohydrolases[J]. Trends Biotechnology,1997,15:160-167.
    [62]Tran A V, Chambers R P. Red oak derived inhibitors in the ethanol fermentation of xylose by pichia stipotis CBS[J]. Biotechnology Letters,1985,7,841-846.
    [63]Tomita K, Nakajima T, Kikuchi Y et al. Degradation of poly(L-lactic acid) by a newly isolated thermophile[J]. Polymer Degradation and Stability,2004,84:433-438.
    [64]Tu M B, Chandra R P, Saddler J N. Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated lodgepole pine[J]. Biotechnology progress,2007,23:1130-1137.
    [65]Tu M B, Zhang X, Paice M, McFarlane P, Saddler J N. Adsorption of Cellulase on Cellulolytic Enzyme Lignin from Lodgepole Pine[J]. Journal of Agricultural and Food Chemistry,2009,57 (17):7771-7778.
    [66]Van Walsum G P, Shi H. Carbonic acid enhancement of hydrolysis in aqueous pretreatment of corn stover[J]. Bioresource Technology,2004,93 (3):217-226.
    [67]Wahlbom C F, Hahn-Hagerdal B. Furfural,5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae[J]. Biotechnology Bioengineering,2002,78:172-178.
    [68]Weea Y J, Ryu H W. Lactic acid production by Lactobacillus sp. RKY2 in a cell-recycle continuous fermentation using lignocellulosic hydrolyzates as inexpensive raw materials[J]. Bioresource Technology,2009,100:4262-4270.
    [69]William E K, Mark T H. Using lime pretreatment to facilitate the enzymatic hydrolysis of corn stover[J]. Biomass and Bioenergy,2000,18:189-199.
    [70]Wolfgang. L-2-hydroxy-4-methylpentanoic acid-dehydrogenase, process for obtaining it and its use[P]. U.S.4530903.
    [71]Wright B E, Longacre A, Reimers J. Models of metabolism in Rhizopus oryzae[J]. Journal of Theoretical Biology,1996,182:453-457.
    [72]Yao R, Qi B, Deng S S, Liu N, Peng S, Cui Q F. Use of surfactants in enzymatic hydrolysis of rice straw and lactic acid production from rice straw by simultaneous saccharification and fermentation[J]. Bioresources,2007,2(3):389-398.
    [73]Yin P M, Yahiro K, Ishigaki T et al. L(+)-lactic acid production by repeated batch culture of Rhizopus oryzae in air-lift bioreactor[J]. Journal of Bioscience and Bioengineering,1998, 85:96-100.
    [74]Yoon S H, Robyt J F. Activation and stabilization of 10 starch-degrading enzymes by Triton X-100, polyethylene glycols, and polyvinyl alcohols[J]. Enzyme Microbial Technology,2005,37:556-562.
    [75]Zhu S D, Wu Y, Yu Z. Pretrement by microwave/alkali of rice straw and its enzymatic hydrolysis[J]. Process Biochemistry,2005,40:3082-3086.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700