高三尖杉酯碱与柔红霉素治疗急性早幼粒细胞白血病的对照研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     比较高三尖杉酯碱替代柔红霉素用于急性早幼粒细胞白血病(APL)治疗的疗效及安全性以探寻APL新的治疗策略。研究方法:
     78例APL初诊患者随机分入柔红霉素(DNR)治疗组(42例)和高三尖杉酯碱(DNR)治疗组(36例),DNR组采用全反式维甲酸(ATRA)联合DNR诱导缓解,DNR及阿糖胞苷(Ara-c)巩固治疗两疗程,再以米托蒽醌(MTZ)及Ara-c巩固第三疗程,HHT组以HHT替代DNR和MTZ,其余用药与DNR组相同,此后两组患者均进入ATRA、6-MP、MTX维持治疗。进行临床资料分析,并收集每疗程治疗后骨髓单个核细胞以半定量逆转录-聚合酶连反应(RT-PCR)、实时定量RT-PCR法检测PML/RARα mRNA表达水平,从两组患者分子生物学缓解率、每个疗程结束后PML/RARα表达水平、中枢神经系统白血病发生率、诱导缓解治疗中维甲酸综合症发生率、出血风险、心脏毒副作用发生率对比DNR和HHT用于急性早幼粒细胞治疗的疗效及安全性。
     结果:
     入组时两组患者基线特征类似。HHT治疗APL诱导缓解治疗后、第一疗程巩固化疗后、第二疗程巩固治疗后巢式RT-PCR法分子生物学缓解率分别为28.57%、82.86%和100%,而DNR治疗APL诱导缓解治疗后、第一疗程巩固化疗后、第二疗程巩固治疗后巢式RT-PCR法分子生物学缓解率分别为35.71%、75.61%和97.44%,两组间各数据比较p>0.05。第三疗程巩固治疗后两组均全部分子生物学缓解率均为100%。HHT组和DNR组中枢神经系统白血病发生率分别为8.57%和12.52%(p>0.05),凝血功能异常持续时间分别为15.28±10.33天和17.85±9.71天(p>0.05),输血浆数分别为和25.3(0-75.6)ml/kg和17.3(0-123.4)ml/kg(p>0.05),维甲酸综合症发生率分别为2.86%和14.27%(p>0.05),非一过性心脏毒副作用发生率分别为9.68%和13.89%(p>0.05),诱导缓解后HHT组和DNR组PML/RAR a mRNA表达水平指标NQ值的中位数分别为3.76和5.56(p>0.05),第一疗程巩固化疗后两组PML/RARα mRNA NQ值中位数分别为0和0.25(p<0.05),第二和第三疗程疗程巩固化疗后两组PML/RARα mRNANQ中位数值均为0。巩固治疗两组均给予ATRA、MTX、6-MP维持治疗,DNR组随访中位时间18月(1-45月),HHT组随访中位时间22月(1-69月),复发率分别为2.56%和3.03%。
     结论:
     HHT治疗急性早幼粒细胞白血病在临床疗效和分子生物学缓解作用上与DNR相似,且不增加治疗相关副作用和并发症发生率,可用于治疗急性早幼粒细胞白血病。
Objective:
     To compare effect and safety of HHT with DNR in treating acute promyelocytic leukemia
     Method:
     Seventy-eight newly diagnosed APL subjects were randomized into two treatment groups namely by HHT and DNR.Patients in DNR group were given ATRA and DNR for induction therapy, then two courses of consolidation treatment of DNR and Ara-c followed.In the third course of consolidation treatment they were given MTZ and Ara-c. Drugs of the HHT group are the same except HHT was used to take the place of DNR. All patients' clinical information was analyzed. Bone marrow mononuclear cells were collected after every course ended. Tumor burden was assessed by copies of PML/RARa fusion transcripts, which was examined by real-time quantitative RT-PCR. Molecular remission ratio, incidence rate of central nervous system leukemia and retinoic syndrome, resistance of blood cougulation disturbance and incidence rate of cardiac toxicity was compared between the two groups to disclose the difference in effect or safety of the two antitumor drug when prescribed to APL.
     Results:
     The molecular remission ratio of the HHT group after induction treatment and after the first and the second course of consolidation treatment were28.57%,82.86%and100%,100%, respectively. Those of the DNR group were35.71%,75.61%and97.44%, respectively (p>0.05). Median copies of PML/RARa fusion transcripts (presented by NQ value) after induction treatment of the HHT group and the DNR group were3.76and5.56respectively (p>0.05). Median copies of PML/RARa fusion transcripts after the first course of consolidation treatment of the HHT group and the DNR group were0and0.25respectively (p<0.05).At the end of the second and the third course of consolidation treatment those were both0in two groups (p>0.05).The incidence rate of central nervous system leukemia was8.57%in the HHT group, and the percent was12.52%in the DNR group (p>0.05). The incidence rate of retinoic syndrome was2.56%in the HHT group,and14.29%in the DNR group (p>0.05).The persistence time of blood cougulation disturbance and the plasma transfusion amount(ml/kg) of the HHT group were15.28±10.33d and25.3(0-75.6) ml/kg respectively, and those of the DNR group were17.85±9.71d and17.3(0-123.4) ml/kg respectively (p>0.05). The incidence ratio of untemporary cardiac toxicity event in the HHT group was9.68%, and it was13.89%in the DNR group(p>0.05). Thirty-nine from the DNR group and thirty-three from the HHT group were followed up for a median time of18month (1-45months) and22months(1-69months) respectively.They were all given ATRA,6-MP, MTX as resistance treatment. Replase rate during following up is3.03%in the HHT group and2.56%in the DNR group.
     Conclusion:
     HHT brings effects as good as DNR to APL patients without any more side effects. It can be used to treat APL.
引文
[1]Stein E, McMahon B, Kwaan H, et al. Best Pract Res Clin Haematol. The coagulopathy of acute promyelocytic leukaemia revisited.2009 Mar;22(1):153-63.
    [2]Wang ZY, Chen Z.Acute promyelocytic leukemia:from highly fatal to highly curable.Blood.2008 Mar 1;111(5):2505-15.
    [3]Licht JD.Acute promyelocytic leukemia--weapons of mass differentiation. N Engl J Med.2009 Feb 26;360(9):928-30.
    [4]Nasr R, Guillemin MC, Ferhi O, et al. Eradication of acute promyelocytic leukemia initiating cells through PML-RARa degradation. Nat Med 2008 Dec;14(12):1333-42.
    [5]Boyd AW, Sullivan JR. Leukemic cell differentiation in vivo and in vitro:arrest of proliferation parallels the differentiation induced by the antileukemic drug harringtonine. Blood 1984;63(2):384-92.
    [6]Huang CL, Deng ML, Guo FJ, et al. A study on the induction of differentiation of human leukemia cells by harringtonine combined with cytarabine. Leukemia 1988; 2(8):518-22.
    [7]程涛,严舫.小剂量柔红霉素对HL-60细胞增殖分化的影响.第二军医大学学报.1991;2(4):346-348.
    [8]付冀辉,刘延桢.HA与DA方案治疗成人急性非淋巴细胞自血病106例.湖南医学.2001;18(5):390.
    [9]陈丽贞,杨清明,马健等.HA与DA方案治疗急性非淋巴细胞白血病近期疗效观察,解放军医学杂志.1996;31(6):465-466.
    [10]Larson RS, Tallman MS.Retinoic acid syndrome:manifestations, pathogenesis, and treatment.Best Pract Res Clin Haematol.2003 Sep;16(3):453-61.
    [11]Montesinos P, Bergua JM, Vellenga E, et al.Differentiation syndrome in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthra-cycline chemotherapy:characteristics, outcome, and prognostic factors.Blood. 2009 Jan 22;113(4):775-83.
    [12]Lu K, Savaraj N, Feun LG, et al. Pharmacokinetics of homoharringtonine in dogs.Cancer Chemother Pharmacol.1988;21(2):139-42.
    [13]Yanada M, Matsushita T, Asou N, et al. Severe hemorrhagic complications during remission induction therapy for acute promyelocytic leukemia:incidence, risk factors, and influence on outcome.Eur J Haematol.2007 Mar;78(3):213-9.
    [14]Feldman E, Arlin Z, Ahmed T,et al.Homoharringtonine is safe and effective for patients with acute myelogenous leukemia. Leukemia.1992 Nov;6(11):1185-8.
    [15]Zhou DC, Zittoun R, Marie JP, et al. Homoharringtonine:an effective new natural product in cancer chemotherapy. Bull Cancer.1995 Dec;82(12):987-95.
    [1]Lo Coco F, Diverio D, Avvisati G, et al. Therapy of molecular relapse in acute promyelocytic leukemia. Blood.1999;94:2225-2229.
    [2]Stock W, Harvey R, Moser B, et al.Minimal residual disease (MRD) and risk of relapse in acute promyelocytic leukemia (APL):insights from the North American Intergroup phase Ⅲ trial C9710[abstract].Blood.2006; 108:150a.
    [3]Grimwade DJ,Jovanovic J, Hills R, et al. Evluation of prospective detection of PML-RARA and RARA-PML fusion transcripts by real-time quantitative PCR (RQ-PCR) to direct pre-emptive therapy with arsenic trioxide(ATO) in acute promyelocytic leukemia(APL) patients treated in the UK MRC AML15 trial [abstract]. Blood.2007;110:167a.
    [4]Lo-Coco F, Ammatuna E. The biology of acute promyelocytic leukemia and its impact on diagnosis and treatment. Hematology Am Soc Hematol Educ Program.2006; 156-61.
    [5]Reiter A,Lengfelder E, Grimcade D. Pathogenesis, diagnosis and monitoring of residual disease in acute promyelocytic leukemia. Acta Haematol.2004; 112:55-67
    [6]Krauter J, Gorlich K, Ottmann O, et al.Prognostic value of minimal residual disease quantification by real-time reverse transcriptase polymerase chain reaction in patients with core binding factor leukemias.J Clin Oncol.2003 Dec 1;21(23):4413-22.
    [7]Perea G, Lasa A, Aventin A, et al. Prognostic value of minimal residual disease (MRD) in acute myeloid leukemia (AML) with favorable cytogenetics [t(8;21) and inv(16)]. Leukemia.2006 Jan;20(1):87-94.
    [8]Weisser M, Haferlach C, Hiddemann W, Schnittger S. The quality of molecular response to chemotherapy is predictive for the outcome of AMLl-ETO-positive AML and is independent of pretreatment risk factors. Leukemia.2007 Jun;21(6):1177-82.
    [9]Martinelli G, Rondoni M, Buonamici S,et al.Molecular monitoring to identify a threshold of CBFbeta/MYHll transcript below which continuous complete remission of acute myeloid leukemia inv16 is likely.Haematologica.2004 Apr;89(4):495-7.
    [10]Buonamici S, Ottaviani E, Testoni N, et al. Real-time quantitation of minimal residual disease in inv(16)-positive acute myeloid leukemia may indicate risk for clinical relapse and may identify patients in a curable state. Blood.2002;99:443-449.
    [11]Stentoft J, Hokland P, Ostergaard M, et al.Minimal residual core binding factor AMLs by real time quantitative PCR-initial response to chemotherapy predicts event free survival and close monitoring of peripheral blood unravels the kinetics of relapse. Leuk Res.2006 Apr;30(4):389-95.
    [12]Gianfaldoni G, Mannelli F, Baccini M, et al.Clearance of leukaemic blasts from peripheral blood during standard induction treatment predicts the bone marrow response in acute myeloid leukaemia:a pilot study. Br J Haematol.2006; 134:54-57.
    [13]Buccisano F, Maurillo L, Gattei V, et al. The kinetics of reduction of minimal residual disease impacts on duration of response and survival of patients with acute myeloid leukemia. Leukemia.2006;20:1783-1789.
    [14]Laane E, Derolf AR, Bjorklund E, et al. The effect of allogeneic stem cell transplantation on outcome in younger acute myeloid leukemia patients with minimal residual disease detected by flow cytometry at the end of postremission chemotherapy. Haematologica.2006;91:833-836.
    [15]Feller N, van der Pol MA, Waaijman T, et al. Immunologic purging of autologous peripheral blood stem cell products based on CD34 and CD133 expression can be effectively and safely applied in half of the acute myeloid leukemia patients. Clin Cancer Res.2005;11:4793-4801.
    [16]Falini B, Mecucci C, Tiacci E, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med.2005;352:254-266. Erratum in:N Engl J Med.2005;352:740.
    [17]Gorello P, Cazzaniga G, Alberti F,et al.Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations. Leukemia.2006 Jun;20(6):1103-8.
    [18]Chou WC, Tang JL, Wu SJ, et al.Clinical implications of minimal residual disease monitoring by quantitative polymerase chain reaction in acute myeloid leukemia patients bearing nucleophosmin (NPM1) mutations.Leukemia.2007 May;21(5):998-1004.
    [19]Schnittger S,Kern W,Haferlach C,et al.PCR-based MRD detection in NPM1 mutated AML:a prospective follow-up study in 97 patients [abstract]. Haematologica.2007;92 Suppl 1:147.
    [20]Gorello P, Cazzaniga G, Alberti F, et al. Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations.Leukemia.2006;20:1103-1108.
    [21]Falini B, Nicoletti I, Martelli MF, et al.Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML):biologic and clinical features.Blood.2007 Feb 1;109(3):874-85.
    [22]Grimwade D.NPM1 mutation in AML:WHO and why?Blood.2006;108:3965.
    [23]Paydas S, Tanriverdi K, Yavuz S, et al. PRAME mRNA levels in cases with acute leukemia:clinical importance and future prospects. Am J Hematol.2005;79:257-261.
    [24]Baldus CD, Mrozek K, Marcucci G, et al.Clinical outcome of de novo acute myeloid leukemia patients with normal cytogenetics is affected by molecular genetic alterations:a concise review.Br J Haematol.2007;137:387-400.
    [25]Schnittger S, Schoch C, Kern W, et al.FLT3 length mutations as marker for follow-up studies in acute myeloid leukaemia. Acta Haematol.2004; 112:68-78.
    [26]Schnittger S, Schoch C, Kern W,et al.FLT3 length mutations as marker for follow-up studies in acute myeloid leukaemia. Acta Haematol.2004;112:68-78.
    [27]Shih LY, Huang CF, Wu JH, et al. Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia:a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood.2002;100:2387-2392.
    [28]Palmisano M, Grafone T, Ottaviani E,et al.NPM1 mutations are more stable than FLT3 mutations during the course of disease in patients with acute myeloid leukemia. Haematologica.2007 Sep;92(9):1268-9.
    [29]Kottaridis PD, Gale RE, Langabeer SE,et al.Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors.Blood.2002 Oct 1;100(7):2393-8.
    [30]Shih LY, Lin TL, Wang PN,et al.Internal tandem duplication of fins-like tyrosine kinase 3 is associated with poor outcome in patients with myelodysplastic syndrome.Cancer.2004 Sep 1;101(5):989-98.
    [31]Cloos J, Goemans BF, Hess CJ,et al.Stability and prognostic influence of FLT3 mutations in paired initial and relapsed AML samples. Leukemia.2006 Jul;20(7):1217-20.
    [32]Schnittger S, Schoch C, Dugas M, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia:correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood.2002; 100:59-66.
    [33]Shih LY, Huang CF, Wu JH, et al. Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia:a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood.2002;100:2387-2392.
    [34]Hovland R, Gjertsen BT, Bruserud O. Acute myelogenous leukemia with internal tandem duplication of the Flt3 gene appearing or altering at the time of relapse:a report of 2 cases. Leuk Lymphoma.2002;43:2027-2029.
    [35]Kottaridis PD, Gale RE, Langabeer SE, et al. Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood. 2002; 100:2393-2398.
    [36]Nakano Y, Kiyoi H, Miyawaki S, et al. Molecular evolution of acute myeloid leukaemia in relapse:unstable N-ras and FLT3 genes compared with p53 gene. Br J Haematol.1999; 104:659-664.
    [37]Schnittger S, Kinkelin U, Schoch C, et al. Screening for MLL tandem duplication in 387 unselected patients with AML identify a prognostically unfavorable subset of AML.Leukemia.2000;14:796-804.
    [38]Thiede C, Steudel C, Mohr B, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia:association with FAB subtypes and identification of subgroups with poor prognosis. Blood.2002;99:4326-4335.
    [39]Weisser M, Kern W, Schoch C, et al.Risk assessment by monitoring expression levels of partial tandem duplications in the MLL gene in acute myeloid leukemia during therapy.Haematologica.2005 Jul;90(7):881-9.
    [40]Clin Cancer Res.2006 Apr 15;12(8):2434-41. Identification of a set of seven genes for the monitoring of minimal residual disease in pediatric acute myeloid leukemia. Steinbach D, Schramm A, Eggert A
    [41]Inoue K, Sugiyama H, Ogawa H, et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood. 1994;84:3071-3079.
    [42]Cilloni D, Renneville A,Hermitte F, et al.Real-time quantitative PCR (RQ-PCR) detection of minimal residual disease (MRD) by optimized WT1 assay to enhance risk stratification in acute myeloid leukemia (AML):a European LeukemiaNet study [abstract].Blood.2007; 110:167a.
    [43]Lapillonne H, Renneville A, Auvrignon A, et al. High WT1 expression after induction therapy predicts high risk of relapse and death in pediatric acute myeloid leukemiaJ Clin Oncol.2006;24:1507-1515.
    [44]Kreuzer KA, Saborowski A, Lupberger J, et al. Fluorescent 50-exonuclease assay for the absolute quantification of Wilms'tumour gene (WT1) mRNA:implications for monitoring human leukaemias. Br J Haematol.2001;114:313-318.
    [45]Cilloni D, Renneville A,Hermitte F, et al.Real-time quantitative PCR(RQ-PCR) detectin of minimal residual disease(MRD) by optimized WT1 assay to enhance risk stratification in acute myeloid leukemia(AML):a European LeukemiaNet study[abstract]. Blood.2007; 110:167a
    [46]Weisser M, Kern W, Schoch C, et al. Reverse transcriptasepolymerase chain reaction based quantification of the combined MDS-EVI1/EVI1 gene in acute myeloid leukemia.Leuk Lymphoma.2006;47:2645-2647.
    [47]Gabert J, Beillard E, van der Velden VH, et al. Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia-a Europe Against Cancer program. Leukemia.2003; 17:2318-2357。
    [48]Lucio P, Gaipa G, van Lochem EG, et al. BIOMED-I concerted action report:flow cytometric immunophenotyping of precursor B-ALL with standardized triple-stainings. BIOMED-1 Concerted Action Investigation of Minimal Residual Disease in Acute Leukemia:International Standardization and Clinical Evaluation. Leukemia.2001;15:1185-1192.
    [49]Kern W, Voskova D, Schoch C, et al. Determination of relapse risk based on assessment of minimal residual disease during complete remission by multiparameter flow cytometry in unselected patients with acute myeloid leukemia. Blood.2004;104:3078-3085.
    [50]San Miguel JF, Vidriales MB, Lopez-Berges C, et al. Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification. Blood.2001;98:1746-1751.
    [51]Venditti A, Buccisano F, Del Poeta G, et al. Level of minimal residual disease after consolidation therapy predicts outcome in acute myeloid leukemia. Blood. 2000;96:3948-3952.
    [52]Kern W, Voskova D, Schoch C, et al. Prognostic impact of early response to induction therapy as assessed by multiparameter flow cytometry in acute myeloid leukemia. Haematologica.2004;89:528-540.
    [53]Kern W, Haferlach T, Schoch C, et al. Early blast clearance by remission induction therapy is a major independent prognostic factor for both achievement of complete remission and long-term outcome in acute myeloid leukemia:data from the German AML Cooperative Group (AMLCG) 1992 Trial. Blood.2003;101:64-70.
    [54]Buccisano F, Maurillo L, Gattei V, et al. The kinetics of reduction of minimal residual disease impacts on duration of response and survival of patients with acute myeloid leukemia. Leukemia.2006 Oct;20(10):1783-9.
    [55]Baer MR, Stewart CC, Dodge RK,et al.High frequency of immunophenotype changes in acute myeloid leukemia at relapse:implications for residual disease detection (Cancer and Leukemia Group B Study 8361). Blood.2001;97(11):3574-80.
    [56]Oelschlagel U, Nowak R, Schaub A, et al. Shift of aberrant antigen expression at relapse or at treatment failure in acute leukemia. Cytometry.2000;42:247-253.
    [57]Macedo A, San Miguel JF, Vidriales MB, et al. Phenotypic changes in acute myeloid leukaemia:implications in the detection of minimal residual disease. J Clin Pathol. 1996;49:15-18.
    [58]San Miguel JF, Martinez A, Macedo A, et al. Immunophenotyping investigation of minimal residual disease is a useful approach for predicting relapse in acute myeloid leukemia patients. Blood.1997;90:2465-2470.
    [59]Kern W, Schoch C, Haferlach T,et al. Complemental roles for multiparameter flow cytometry and quantitative RT-PCR for the quantification of minimal residual disease in patients with acute myeloid leukemia[Abstract]. Blood.2003; 102.
    [1]Nasr R, Guillemin MC, Ferhi O, et al.Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation. Nat Med.2008 Dec;14(12):1333-42.
    [2]Takatsuki H, Sadamura S, Umemura T, et al.PML/RAR alpha fusion gene is expressed in both granuloid macrophage and erythroid colonies in acute promyelocytic leukaemia. Br J Haematol 1993; 85:477-482.
    [3]Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367:645-648.
    [4]Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3:730-737.
    [5]Gilliland DG. FLT3-activating mutations in acute promyelocytic leukaemia:a rationale for risk-adapted therapy with FLT3 inhibitors. Best Pract Res Clin Haematol 2003; 16:409-417.
    [6]Rizzatti EG, Garcia AB, Portieres FL, et al. Expression of CD117 and CD11b in bone marrow can differentiate acute promyelocytic leukemia from recovering benign myeloid proliferation. Am J Clin Pathol 2002; 118:31-37.
    [7]Kogan SC, Brown DE, Shultz DB, et al. BCL-2 cooperates with promyelocytic leukemia retinoic acid receptor alpha chimeric protein (PMLRARalpha) to block neutrophil differentiation and initiate acute leukemia. J Exp Med 2001; 193: 531-543.
    [8]Brown D, Kogan S, Lagasse E, et al. A PMLRARalpha transgene initiates murine acute promyelocytic leukemia. Proc Natl Acad Sci USA 1997; 94:2551-2556.
    [9]Early E, Moore MA, Kakizuka A, et al. Transgenic expression of PML/RARalpha impairs myelopoiesis. Proc Natl Acad Sci USA 1996; 93:7900-7904.
    [10]Grisolano JL, Wesselschmidt RL, Pelicci PG, et al. Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences. Blood 1997; 89:376-387.
    [11]He LZ, Tribioli C, Rivi R,et al.Acute leukemia with promyelocytic features in PML/RARalpha transgenic mice. Proc Natl Acad Sci USA 1997; 94:5302-5307.
    [12]Brown D, Kogan S, Lagasse E, et al. A PMLRARalpha transgene initiates murine acute promyelocytic leukemia. Proc Natl Acad Sci USA 1997; 94:2551-2556.
    [13]David G, Terris B, Marchio A,et al. The acute promyelocytic leukemia PML-RAR alpha protein induces hepatic preneoplastic and neoplastic lesions in transgenic mice. Oncogene 1997;14:1547-1554.
    [14]Minucci S, Monestiroli S, Giavara S, et al. PML-RAR induces promyelocytic leukemias with high efficiency following retroviral gene transfer into purified murine hematopoietic progenitors. Blood 2002; 100:2989-2995.
    [15]Passegue E, Jamieson CH, Ailles LE,et al. Normal and leukemic hematopoiesis:are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci USA 2003; 100:11842-11849.
    [16]Grignani F, Valtieri M, Gabbianelli M, et al. PML/RAR alpha fusion protein expression in normal human hematopoietic progenitors dictates myeloid commitment and the promyelocytic phenotype. Blood 2000; 96:1531-1537
    [17]Grignani F, Ferrucci PF, Testa U, et al. The acute promyelocytic leukemia-specific PML-RAR alpha fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell 1993; 74:423-431.
    [18]Ruthardt M, Testa U, Nervi C, et al. Opposite effects of the acute promyelocytic leukemia PMLretinoic acid receptor alpha (RAR alpha) and PLZF-RAR alpha fusion proteins on retinoic acid signalling. Mol Cell Biol 1997; 17:4859-4869.
    [19]Minucci S, Maccarana M, Cioce M, et al. Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation. Mol Cell 2000; 5:811-820.
    [20]Lin RJ, Evans RM. Acquisition of oncogenic potential by RAR chimeras in acute promyelocytic leukemia through formation of homodimers. Mol Cell 2000; 5: 821-830.
    [21]Zheng X, Beissert T, Kukoc-Zivojnov N, et al. Gamma-catenin contributes to leukemogenesis induced by AML-associated translocation products by increasing the self renewal of very primitive progenitor cells. Blood 2004; 18:1176-1199.
    [22]Grignani F, Testa U, Fagioli M, et al. Promyelocytic leukemia-specific PML-retinoic acid alpha receptor fusion protein interferes with erythroid differentiation of human erythroleukemia K562 cells. Cancer Res 1995; 55:440-443.
    [23]Testa U, Grignani F, Hassan HJ,et al. Terminal megakaryocytic differentiation of TF-1 cells is induced by phorbol esters and thrombopoietin and is blocked by expression of PML/RARalpha fusion protein. Leukemia 1998; 12:563-570.
    [24]Reya T, Duncan AW, Ailles L,et al.A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423:409-414.
    [25]Kitada S, Pedersen IM, Schimmer AD, et al. Dysregulation of apoptosis genes in hematopoietic malignancies. Oncogene 2002;21:3459-3474.
    [26]Testa U, Grignani F, Samoggia P, et al. The PML/RARalpha fusion protein inhibits tumor necrosis factor-alpha-induced apoptosis in U937 cells and acute promyelocytic leukemia blasts. J Clin Invest 1998; 101:2278-2289
    [27]Quignon F, De Bels F, Koken M,et al. PML induces a novel caspase-independent death process. Nat Genet 1998; 20:259-265.
    [28]Wang ZG, Ruggero D, Ronchetti S, et al.PML is essential for multiple apoptotic pathways. Nat Genet 1998;20:266-272.
    [29]Salomoni P, Pandolfi PP. The role of PML in tumor suppression.Cell 2002; 108: 165-170.
    [30]Liu JH, Mu ZM, Chang KS. PML suppresses oncogenic transformation of NIH/3T3 cells by activated neu. J Exp Med 1995; 181:2049-2058.
    [31]Le XF, Vallian S, Mu ZM, et al. Recombinant PML adenovirus suppresses growth and tumorigenicity of human breast cancer cells by inducing G1 cell cycle arrest and apoptosis.Oncogene 1998; 16:1839-1849.
    [32]Mu ZM, Chin KV, Liu JH,et al. PML, a growth suppressor disrupted in acute promyelocytic leukemia. Mol Cell Biol 1994; 14:6858-6867.
    [33]Mu ZM, Le XF, Glassman AB,et al. The biologic function of PML and its role in acute promyelocytic leukemia. Leuk Lymphoma 1996; 23:277-285.
    [34]Mu ZM, Le XF, Vallian S,et al. Stable overexpression of PML alters regulation of cell cycle progression in HeLa cells. Carcinogenesis 1997; 18:2063-2069.
    [35]Pearson M, Carbone R, Sebastiani C, et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 2000; 406:207-210.
    [36]Wang ZG, Delva L, Gaboli M, et al. Role of PML in cell growth and the retinoic acid pathway.Science 1998; 279:1547-1551.
    [37]Rego EM, Wang ZG, Peruzzi D,et al. Role of promyelocytic leukemia (PML) protein in tumor suppression. J Exp Med 2001; 193:521-529.
    [38]Grignani F, Gelmetti V, Fanelli M, et al. Formation of PML/RAR alpha high molecular weight nuclear complexes through the PML coiled-coil region is essential for the PML/RAR alpha-mediated retinoic acid response. Oncogene 1999; 18: 6313-6321.
    [39]Lai HK Borden KL. The promyelocytic leukemia (PML) protein suppresses cyclin D1 protein production by altering the nuclear cytoplasmic distribution of cyclin D1 mRNA. Oncogene 2000; 19:1623-1634.
    [40]Rousseau D, Kaspar R, Rosenwald I,et al. Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E.Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. Proc Natl Acad Sci USA 1996; 93:1065-1070.
    [41]Sonenberg N, Gingras AC. The mRNA 50 cap-binding protein eIF4E and control of cell growth. Curr Opin Cell Biol 1998; 10:268-275.
    [42]Cohen N, Sharma M, Kentsis A, et al.PML RING suppresses oncogenic transformation by reducing the affinity of eIF4E for mRNA. EMBO J 2001; 20: 4547-4559
    [43]D'Orazi G, Cecchinelli B, Bruno T, et al. Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol 2002; 4:11-19.
    [44]Hofmann TG, Moller A, Sirma H, et al. Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol 2002;4:1-10.
    [45]Moller A, Sirma H, Hofmann TG,et al. PML is required for homeodomain-interacting protein kinase 2 (HIPK2)-mediated p53 phosphorylation and cell cycle arrest but is dispensable for the formation of HIPK domains. Cancer Res 2003; 63:4310-4314.
    [46]Barlev NA, Liu L, Chehab NH, et al. Acetylation of p53 activates transcription through recruitment of coactivators histone acetyltransferases. Mol Cell 2001; 8: 1243-1254.
    [47]Jensen K, Shiels C, Freemont PS. PML protein isoforms and the RBCC/TRIM motif. Oncogene 2001; 20:7223-7233.
    [48]Grignani F, Fagioli M, Alcalay M,et al. Acute promyelocytic leukemia:from genetics to treatment Blood 1994; 83:10-25.
    [49]Mu ller-Tidow C, Steffen B, Cauvet T, et al. Translocation products in acute myeloid leukemia activate the Wnt-signaling pathway in hematopoietic cells. Mol Cell Biol 2004;24:2890-2904.
    [50]Willert K, Brown JD, Danenberg E,et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 2003; 423:448-452

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700