计算机病毒和HIV病毒最优控制模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机软硬件技术及网络通信技术的发展,计算机病毒的传播能力越来越强,目前计算机病毒的传播已经对计算机网络安全构成了很大的威胁。为了减少计算机病毒传播对网络安全的威胁,人们采取了一些相应的控制策略,包括安装杀毒软件,重新安装操作系统,安装防火墙等等,而这些控制策略都会消耗不少系统的计算资源。因此如何使用较小的系统资源,使得网络中感染计算机的数目达到最少,成为摆在我们面前一个现实而严峻的问题。
     本文研究的另一个课题是HIV病毒的最优控制模型。在2009年,HIV病毒造成了大约1800万人死亡,成为危害人类健康的主要杀手之一。世界上主要有两种药物对HIV病毒能起到良好的治疗和控制效果,然而这些药物对人体都有很多毒副作用。因此,如何使用尽量少的药物用量,有效地控制HIV病毒,也是一个值得研究的课题。
     本文主要工作如下:
     1,提出了两个计算机病毒最优控制模型。本文在已经存在的计算机病毒传播模型(SAIR模型,改进的SAIR模型)的基础上,考虑到人为控制操作对网络计算机感染数量的影响,引入目标泛函,建立了计算机病毒的最优控制模型。并且运用最优控制理论的相关原理和方法,证明了最优控制函数的存在性,然后使用Pontryagin极大值原理推导出最优控制以及描述最优控制的最优系统。数值仿真结果表明:使用适当的控制策略后,计算机病毒的传播得到了有效的控制。
     2,提出了时滞计算机病毒最优控制模型。时滞效应能够很好的刻画计算机病毒传播的规律。因此,我们利用已经存在的计算机病毒传播模型(时滞SIRS模型),考虑到人为控制策略对网络中计算机感染数量的影响,引入目标泛函,建立了时滞计算机病毒最优控制模型。并且运用最优控制理论的相关原理和方法,证明了最优控制函数的存在性,然后使用Pontryagin极大值原理推导出最优控制以及描述最优控制的最优系统。数值仿真结果表明:使用适当的控制策略后,计算机病毒的传播得到了有效的控制。据我们所知,目前还没有相关文献把最优控制理论引入时滞计算机病毒模型。
     3,提出了一个HIV病毒最优控制模型。我们首先注意到HIV病毒能感染T细胞和巨噬细胞这两类有益细胞。其次HIV病毒的感染细胞可以分为3个阶段。然后两类药物分别是PIs和RTIs能对HIV病毒的感染两个阶段起到良好的治疗和控制效果。在这种背景之下,提出了自己的HIV最优控制模型,目的是让这两类有益细胞的数量的数量到达最大,HIV病毒细胞的数量达到最小,并且用药量达到最小。然后,我们提出了自己的目标泛函,其次,运用最优控制理论的相关原理和方法,证明了最优控制函数的存在性。最后,使用Pontryagin极大值原理推导出最优控制以及描述最优控制的最优系统。数值仿真结果表明:HIV病毒能够在我们的方法下,得到有效的控制。据我们所知,这项工作也是最早的将最优控制理论引入HIV多细胞感染模型。
     简而言之,本文运用最优控制理论对计算机病毒传播模型和HIV病毒模型进行了研究,提出了一些控制这两类病毒的方法,为有效地控制这两类病毒开辟了新的途径。
With the development of software/hardware technology and network communication technology, the spread of computer virus over a computer network has come to be a serious threat for the security of the computer network. In order to protect a computer network from the spread of computer viruses, a variety of control strategies, such as installing anti-virus software, reinstalling the operating system, and installing a firewall, is introduced. However, all of these control strategies would consume lots of computing resources. Therefore, it is of practical importance to keep a low number of infected computers at a low cost.
     Another issue is the optimal control of the HIV virus. The HIV virus, which in 2009 caused about 18 million people dead, has become a great hazard to human health. There are two kinds of drugs that can control the HIV effectively, with significant toxic side effects on the human body. Consequently, it is worth study how the HIV virus can be controlled effectively by using as little amount of drugs as possible.
     The main contributions made in this thesis are summarized as follows:
     1: Inspired by the previous computer viruses models (the SAIR model and the improved SAIR model) and by attempting to keep a low number of infected nodes at the lowest cost, two optimal control models of computer viruses are proposed. In these models, the dynamical behaviors of the virus-free equilibrium and the virus-endemic equilibrium are analyzed. Then, the objective functional for this system is presented. The existence of an optimal control strategy is proved. Finally, by means of the Pontryagin’s Maximun Principle we derive the corresponding optimality system as well as the optimal control. Simulation experiments show that the spread of computer virus can be controlled effectively with proper control strategy.
     2: A delayed optimal control model of computer viruses is suggested. In reality, the spread of computer viruses is often accompanied with time delay. By incorporating the objective of keeping a low number of infected nodes at the lowest cost into a known computer virus model (the delayed SIRS model), a novel model is described. Then the objective functional of this system is given. An optimal control strategy is proved to be existent. Again by calling the Pontryagin’s Maximun Principle, we derive the optimal control and the optimality system characterizing the optimal control. Numerical simulations show that the spread of computer virus can be controlled effectively with proper control strategy. To our knowledge, this is the first time the delay factor is considered in the optimal control model of computer viruses.
     3: Under a novel HIV model, an efficient therapy strategy is devised. It is known that (1) the HIV virus can infect two types of benefit cells (T cells and macrophages), (2) HIV infection can be divided into three stages, and (3) two kinds of drugs (PIs and RTIs) can treat and control the HIV effectively in the first and third stages of the HIV infection. In this context, we propose an optimal control model of HIV, which is intended to maximize the number of healthy cells at the least cost of chemotherapy. Next the objective functional of this system is described. The existence of an optimal control is shown. Finally, we derive the optimal control and the optimality system. Numerical results show that HIV can be controlled effectively by using our method. To our knowledge, there is no known work about the optimal control of HIV multi-cell infection.
     In summary, this thesis proposes and investigates three computer viruses models and one HIV model. This work opens a door to the effective control of computer virus and HIV.
引文
[1] http://en.wikipedia.org/wiki/Computer_virus
    [2]中华人民共和国计算机信息系统安全保护条例[M].
    [3]江民2009中国大陆地区计算机病毒网络安全报告[M].2009.
    [4] P.J. Denning, Computers Under Attack [M]. Addison-Wesley, Reading, Mass, 1990.
    [5] F. Cohen, A short course of computer viruses [J]. Computer and Security, 1990. 8:149–160.
    [6] J.V. Neumann, Theory of Self-Reproducing Automata [J]. University of Illinois Press, 1966, 66–87.
    [7] C.E. Engler, The Shockwave Rider [M]. UK: Harper & Row, 1997.
    [8]赵红霞,基于新型否定选择算法的计算机病毒检测技术研究[D].太原理工大学硕士论文, 2010.
    [9]范晓峰,基于免疫系统的计算机病毒检测模型研究[D].桂林电子科技大学硕士论文, 2008.
    [10]邓清华,计算机病毒传播模型及防御策略研究[D].华中师范大学硕士论文, 2009.
    [11]张运凯,马建峰,网络蠕虫传播与控制研究[D].西安电子科技大学博士学位论文, 2005.
    [12]刘巍伟,基于可信计算技术的移动代码安全研究[D].北京交通大学博士学位论文, 2009.
    [13]袁华,陈国青,电子邮件病毒传播仿真模型及影响因素模型[J].计算机工程与设计,2006, 27(11): 1914–1916.
    [14]蒿敬波,对等结构的恶意蠕虫网络研究[D].国防科学技术大学博士学位论文, 2008.
    [15]卓新建,郑康锋,辛阳,计算机病毒原理与防治[M].北京邮电大学出版社, 2007.
    [16]傅建明,彭国军,张焕国,计算机病毒分析与对抗[M].武汉大学出版社, 2004.
    [17] J.O. Kephart, S.R. White, Directed-graph epidemiological models of computer viruses [J]. IEEE Symposium on Security and Privacy, 1991, 343–361.
    [18] X. Han, Q. Tan, Dynamical behavior of computer virus on Internet [J]. Applied Mathematics and Computation, 2010, 217(6): 2520-2526.
    [19] V.O. Araujo, Modelagem Dinamica de Vírus de Computador [J]. Undergraduate Engineering Thesis, Escola Politécnica da USP, S?o Paulo, Brazil, 2004.
    [20] J.R.C. Piqueira, A.A. Vasconcelos, C.E.C.J. Gabriel, et al., Dynamic models for computers viruses [J]. Computers & Security, 2008, 27: 355–359.
    [21] J.R.C. Piqueira, B.F. Navarro, L.H.A. Monteiro, Epidemiological models applied to viruses in computer networks [J]. Journal of Computer Science, 2005, 1: 31–34.
    [22] B.K. Mishra, D. Saini, Mathematical models on computer viruses [J]. Applied Mathematics and Computation, 2007, 187 (2): 929–936.
    [23] B.K. Mishra, N. Jha, Fixed period of temporary immunity after run of the anti-malicious software on computer nodes [J]. Applied Mathematics and Computation, 2007, 190: 1207–1212.
    [24] M.M. Williamson, et al., An epidemiological model of virus spread and cleanup [J]. Information Infrastructure Laboratory HP Laboratories Bristol, 2003.
    [25] N.D. McBeth, E.P. Debenedictis, Computer Modeling of the Spread and Containment of Computer Viruses [J]. Adventures in Supercomputing Challenge Final Report, 2005.
    [26] J. Leveille, Epidemic Spreading in Technological Networks [J]. Information Infrastructure Laboratory HP Laboratories Bristol, 2002, 1–100.
    [27] C. Jin, J. Liu, Q. Deng, A Novel Email Virus Propagation Model [J]. 2008 Workshop on Power Electronics and Intelligent Transportation System, 2008, 56–60.
    [28] L. Billings, W. M. Spears, I. B. Schwartz, A unified prediction of computer virus spread in connected networks [J]. Physics Letters A, 2002, 297: 261–266.
    [29] J.C. Wiermana, D.J. Marchetteb, Modeling computer virus prevalence with a susceptible-infected-susceptible model with reintroduction [J]. Computational Statistics & Data Analysis, 2004, 45: 3–23.
    [30] I.B. Schwartz, L. Billings, M. Dykman, A. Landsman, Predicting extinction rates in stochastic epidemic models [J]. Journal of Statistical Mechanics: Theory and Experiment, 2009, 1–11.
    [31] M. Draief, A. Ganesh, L. Massouili, Thresholds for virus spread on networks [J]. Annals of Applied Probability, 2008, 18 (2): 359–378.
    [32]胡海岩,应用非线性动力学[M].航空工业出版社, 2000, 120-129.
    [33] http://baike.soso.com/v7620636.htm
    [34] http://en.wikipedia.org/wiki/Aleksandr_Lyapunov
    [35] http://en.wikipedia.org/wiki/Lyapunov_stability
    [36] http://baike.baidu.com/view/25827.htm
    [37] http://en.wikipedia.org/wiki/Henri_Poincar%C3%A9
    [38] http://en.wikipedia.org/wiki/Lipschitz_continuity
    [39] http://baike.baidu.com/view/2995370.htm
    [40] J.E. Slotine, W.P. Li, Applied Nonlinear Control [M]. USA: Prentice Hall, 1991.
    [41] R.C. Robinson, An Introduction to Dynamical System: Continuous and Discrete [M]. USA: Prentice Hall, 2004.
    [42] http://baike.baidu.com/view/623940.htm
    [43] http://en.wikipedia.org/wiki/Jacobian
    [44] D.K. Arrowsmith, C.M. Place, Dynamical Systems [M]. UK: Chapman & Hall, 1992.
    [45] http://en.wikipedia.org/wiki/Taylor_Series
    [46] G.B. Thomas, R.L. Finney, Calculus and Analytic Geometry [M]. USA: Addison Wesley, 1996.
    [47] G. Michael, Advanced Engineering Mathematics [M]. USA: Prentice Hall, 1998.
    [48] S.H. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology chemistry and engineering [M]. USA: Addison Wesley, 1994.
    [49] K.T. Alligood, T.D. Sauer, J.A. Yorke, An introduction to dynamical systems [M]. GER: Springer Verlag, 2000.
    [50] M.W. Hirsch, S. Smale, R. Devaney, Differential Equations, dynamical systems, and an introduction to chaos [M]. Netherlands: Academic Press, 2003.
    [51] J.C. Sprott, Chaos and time-series analysis [M]. UK: Oxford University Press, 2003.
    [52] http://en.wikipedia.org/wiki/Eigenvalue
    [53] http://baike.baidu.com/view/1196645.htm
    [54] F.J. Palella, K.M. Delaney, et al., Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection [J]. The New England Journal of Medicine, 1998, 338 (13): 853–860.
    [55] AIDS epidemic global report 2009 [M]. World Health Orgabization, 2009.
    [56] G. Pantaleo, J.F. Demarest, T. Schacker, M. Vaccarezza, O.J. Cohen, M. Daucher, C. Graziosi, S.S. Schnittman, T.C. Quinn, G.M. Shaw, The qualitative nature of the primary immune response to HIV infection is a prognosticator of disease progression independent of the initial level of plasma viremia [J]. Proceedings of the National Academy of Sciences of the United, 1997, 94 (1): 254–258.
    [57]钟首斌,广州市1995~2008年艾滋病哨点人群行为学特征分析与HIV防控建议,中山大学硕士学位论文[J]. 2009.
    [58] S.M. Blower, H. Dowlatabadi, Sensitivity and Uncertainty Analysis of Complex Models of Disease Transmission: An HIV Model, as an Example [J]. International Statistical Review, 1994, 62(2): 229–243.
    [59] B. Auvert, G. Buonamico, E. Lagarde, B. Williams, Sexual behavior, heterosexual transmission, and the spread of HIV in Sub-Saharan Africa: a simulation study [J]. Computers and Biomedical Research, 2000, 33: 84-96.
    [60] D. Sahu, N. Saggurti, A. Pandey, HIV/ AIDS: trends, forecasts, exploring HIV policy and program alternative predictions using deterministic Asian epidemic model [J]. (In Press).
    [61] W.Y. Tan, X. Zhu, A stochastic model of the HIV epidemic for heterosexual transmission involving married couples and prostitutes: II the chain multinomial model of the HIV epidemic [J]. Mathematical and Computer Modelling, 1997, 26(11): 17-92.
    [62] R.M. Anderson, R.M. May, Infectious diseases of humans: dynamics and control [J]. Oxford: Oxford University Press, 1991, 304-318.
    [63] D. Kristine, Using Mathematics to Understand HIV Immune Dynamics [J]. Notices of the AMS, 1996, 43(2): 191-202.
    [64] M.A. Nowak, R.M. May, R.M. Anderson, The evolutionary dynamics of HIV-1 quasispecies and the development of immunodeficiency disease [J]. AIDS, 1990, 4(11): 1095-1103.
    [65] M.A. Nowak, R.M. May, AIDS pathogenesis: mathematical models of HIV and SIV infections [J]. AIDS 1993, 7(suppl 1): S3—S18.
    [66] L.M. Wein, S.A. Zenios, M.A. Nowak, Dynamic multidrug therapies for HIV: a control theoretic approach [J]. Journal of Theoretical Biology, 1997, 185: 15–29.
    [67] D. Wodarz, A. Lloyd, A. Jansen, M.A. Nowak, Dynamics of macrophage and T cell infection by HIV [J]. Journal of Theoretical Biology, 1999, 196(1): 101-113.
    [68] D. Wodarz, M.A. Nowak, Mathematical models of HIV pathogenesis and treatment [J]. BioEssays, 1999, 24: 1178–1187.
    [69] A.S. Perelson, D. Kirschner, R.D. Boer, The dynamics of HIV infection of CD4+ T cells [J]. Mathematical biosciences, 1993, 114: 81—125.
    [70] A.S. Perelson, P.W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo [J]. SIAM Review, 1999, 41(1): 3–44.
    [71] X. Wang, X. Song, Global stability and periodic solution of a model for HIV infection of CD4+ T-cells [J]. Applied Mathematics and Computation, 2007, 189: 1331–1340.
    [72] D. Kirschner, G.F. Webb, Immunotherapy of HIV-1 Infection [J]. Journal of Biological Systems, 1998, 6(1): 71-83.
    [73] A.R. Sedaghat, J.B. Dinoso, L. Shen, Decay dynamics of HIV-1 depend on the inhibited stages of the viral life cycle [J]. Proceedings of the National Academy of Sciences, 2008, 105(12): 4832–4837.
    [74] R.V. Culshaw, S. Ruan, A delay-differential equation model of HIV infection of CD4+ T-cells [J]. Mathematical Biosciences, 2000, 165(1): 27-39.
    [75]沈成利,吴昊,抗HIV治疗的副作用(一)—核苷类及非核苷类逆转录酶抑制剂[J].中国艾滋病性病,2005, (11)3: 228–229.
    [76]沈成利,吴昊,抗HIV治疗的副作用(二)—蛋白酶抑制剂[J].中国艾滋病性病, 2005, 11(4): 314–318.
    [77] J. Murray, Mathematical Biology [M]. Springer, 2003.
    [78]袁朝晖,吕翠芳, HIV-1复合药物疗法模型的动力学行为分析[J].湖南大学学报(自然科学版), 2008, 35(11): 87-89.
    [79] K.R. Fister, S. Lenhart, J.S. McNally, Optimizing Chemotherapy in an HIV Model [J]. Electronic Journal of Differential Equations, 1998, 1998(32): 1-12.
    [80] J. David, H. Tran, H.T. Banks, HIV Model analysis and estimation implementation under optimal control based treatment strategies [J]. International Journal of Pure and Applied Mathematics, 2009, 57(3): 357-392.
    [81] J. David, H. Tran, and H.T. Banks, Receding Horizon Control of HIV [J]. Optimal Control Applications and Methods, 2010, (In Press).
    [82] J. Karrakchou, M. Rachik, S. Gourari, Optimal control and infectiology: Application to an HIV/AIDS model [J]. Applied Mathematics and Computation, 2006, 177: 807–818.
    [83] M. Joly, Role of Mathematical Modeling on the Optimal Control of HIV-1 Pathogenesis [J]. Process Systems Engineering, 2006, 52(3): 856-884.
    [84] H. Zarei, A.V. Kamyad, S. Effati, Multiobjective Optimal Control of HIV Dynamics [J]. Mathematical Problems in Engineering, 2010, 568315: 1-29.
    [85] H. Zarei, A.V. Kamyad, Optimal Control of HIV Dynamic Using Embedding Method [J]. Mathematical Problems in Engineering, 2011, 674318: 1-9.
    [86] J.M. Grégio, M.A.L. Caetano, T. Yoneyama, State estimation and optimal long period clinical treatment of HIV seropositive patients [J]. Annals of the Brazilian Academy of Sciences, 2009, 81(1): 3–12.
    [87] A.E. Amsalework, An Efficient Treatment Strategy for HIV Patients Using Optimal Control [J]. African Institute for Mathematical Sciences, 2008, 1-29.
    [88] K.W. Blayneh, A.B. Gumel, S. Lenhart, T. Claytond, Backward Bifurcation and Optimal Control in Transmission Dynamics of West Nile Virus [J]. Bulletin of Mathematical Biology, 2010, 72: 1006–1028.
    [89] D. Kirschner, S. Lenhart, S. Serbin, Optimal control of the chemotherapy of HIV [J]. Journal of Mathematical Biology, 1997, 35: 775–792.
    [90] R.V. Culshaw, S. Ruan, R.J. Spiteri, Optimal HIV treatment by maximizing immune response[J]. Journal of Mathematical Biology, 2004, 48:545–562.
    [91] W. Garira, S.D. Musekwa, T. Shiri, Optimal Control of Combined Therapy in a Single Strain HIV-1 Model [J]. Electronic Journal of Differential Equations, 2005, 2005(52): 1–22.
    [92] H.D. Kwon, Optimal treatment strategies derived from a HIV model with drug-resistant mutants [J]. Applied Mathematics and Computation, 2007, 188: 1193–1204.
    [93] H. Shim, S.J. Han, C.C. Chung, S.W. Nam, J. H. Seo, Optimal Scheduling of Drug Treatment for HIV Infection: Continuous Dose Control and Receding Horizon Control [J]. International Journal of Control, Automation, and Systems, 2003, 1(3): 282-288.
    [94] A. Landi, A. Mazzoldi, C. Andreoni, Matteo Bianchi, Modeling and control of HIV dynamics [J]. Computer Methods and Programs in Biomedicine, 2008, 89: 162–168.
    [95] B.M. Adams, H.T. Banks, M. Davidian, H.D. Kwon, H.T. Tran, S.N. Wynne, E.S. Rosenberg, HIV dynamics: Modeling, data analysis, and optimal treatment protocols [J]. Journal of Computational and Applied Mathematics, 2005, 184: 10–49.
    [96] B.M. Adams, H.T. Banks, H.D. Kwon, H.T. Tran, Dynamic multidrug therapies for HIV: optimal and STI control approaches [J]. Mathematical Biosciences and Engineering, 2004, 1(2): 223–241.
    [97] W.H. Fleming, R.W. Rishel, Deterministic and stochastic [M]. New York:Spreinger Verlag, 1975.
    [98]李国勇等编著,最优控制理论及参数优化[M].北京:国防工业出版社, 2005, 67-80.
    [99] D.E. Kirk, Optimal control theory: an introduction [M]. Courier Dover Publications, 2004.
    [100]吴受章,最优控制理论与应用[M].北京:机械工业出版社, 2008.
    [101]胡寿松,最优控制理论与系统[M].北京:科学出版社有限责任公司, 2010.
    [102] D.L. Lukes, Differential Equations: Classical to Controlled, Mathematics in Science and Engineering [M]. New York: Academic Press, 1982.
    [103] A. Bryson, Y. Ho, Applied optimal control [M]. New York: Wiley Press, 1975.
    [104] L.S. Pontrygin, V.G. Boltyanskii, R.V. Gamkrelidze, The Mathematical Theory of Optimal Processes [M]. Interscience Publishers, 1962, chapter 2: 75-108.
    [105] http://baike.baidu.com/view/240447.htm
    [106] http://en.wikipedia.org/wiki/Calculus_of_variations
    [107] M. Struwe (斯特沃),变分法[M].世界图书出版公司, 2006.
    [108]唐焕文,贺明峰,数学模型引论[M].高等教育出版社, 2001, 208–237.
    [109]陆征一,王稳地,生物数学前沿[M].科学出版社, 2008.
    [110] http://en.wikipedia.org/wiki/Heat_equation
    [111] A.B. Gumel, P.N. Shivakumar, B.M. Sahai, A mathematical model for the dynamics of HIV-1 during the typical course of infection [J]. Third World Congress of Nonlinear Analysts, 2001(47): 2073–2083.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700