二元冰流动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二元冰蓄冷空调系统具有非常显著的特点,二元冰具有换热面积大、可泵送等优点,近10年来二元冰蓄冷空调的应用与研究已成为国内外蓄冷的一个重要的研究方向。加快研制和开发二元冰蓄冷空调系统具有重要意义,其技术可行,经济效益巨大。
     本文主要做了以下工作:第一,介绍了我国能源电力情况,分析了冰蓄冷空调的优点和冰蓄冷空调的应用前景,说明了为什么冰蓄冷空调在中国会有广大的市场;第二,阐述了蓄冷介质的蓄冷原理和蓄冷介质的选择原则,讨论了氟利昂对环境的影响及其解决办法,介绍了载冷剂HCFC123的性质;第三,对二元冰蓄冷空调系统进行了介绍,对系统中几个比较大的回路:制冷回路、载冷回路、电气控制回路作了简单的介绍,对各个回路中一些部件的情况和工作原理作了说明;第四,介绍了数据采集和系统测试系统,着重介绍了温度、压力、流量、压差等几个重要参数的测试方法及其相关设备;第五,介绍了各种制冰方法和本试验的制冰方法,然后实验研究了不同IPF的二元冰在各种工况下的流动特性,并对实验结果进行了分析与总结,试验发现:各种不同IPF下的二元冰摩擦阻力都比清水大,二元冰与清水相比较其相对差值在流速较小的时候一般较大,随着流速的增大,有减小和趋于平稳的趋势。随着流速的增大,流动阻力都呈现出增大的趋势。随着IPF的增大,二元冰的摩擦阻力变大。随着管道倾角的增大,二元冰的摩擦阻力减小,也就是说相同条件下水平管道内的摩阻最大,这是因为重力的影响导致管道内二元冰和乙二醇分层现象更加明显,从而导致紊流程度增大,最终使得摩阻增大;第六,对二元冰蓄冷空调系统运行前的准备工作进行了介绍,由于在试验过程我们遇到了很多问题,针对这些问题,我们有自己的方法和解决办法,本文介绍了这些问题和相应的解决办法。
     最后,对与本文相关的重要领域做了分析,希望有关学者、研究人员能在这方面继续研究探讨,使我国的冰蓄冷技术走向成熟。
The binary ice thermal storage air conditioning system (BITSACS) has many remarkable merits, which has very large total heat exchanging surface and excellent pumpability, in the recent ten years, the application and research of BITSACS was a very important research direction. So it has very important significance to develop BITSACS.
    In my thesis, firstly, Chinese energy and electric power condition were introduced, and also introduced the merits of BITSACS and the reasons why the BITSACS has a hopeful future. Secondly, Interpreted the thermal storage theory, the fundamental of medium selection, the influence of freon to the atmosphere and the character of HCFC123 as well. Thirdly, introduced each part of the BITSACS and the circuits of the refrigeration circuit, cold-carrying circuit and the electric control circuit, discussed the equipments of every circuit and working principal. Fourthly, introduced the collection and testing of all kinds of data, for example, temperature, pressure, flux and the difference of pressure. Fifthly, introduced the different ways of producing ice slurry and the way of our experiment, also studied the fluidity of ice slurry in different IPF. Then, the fluidity of ice slurry was analyzed and we come to a conclusion at last. That is, the friction resistance of different IPF is larger than that of the water's,
    the difference is large when the velocity of flow is not very great, the difference was apt to stable as the velocity of flow become more and more larger. The flow resistance became larger by the increase of velocity. When the IPF increases, the flow resistance of the ice slurry became larger. The flow resistance of Ice slurry increases if the pipe's obliquity increases. That means the ice slurry that in the level pipe has the largest flow resistance, the reason is: the gravitation make the flow became more and more foul-up, accordingly, lead to the increase of flow resistance. Sixthly, introduced all of the preparative tasks before we began the experiment, because we met many problems during the test, we had our own methods which could solve these problems. In this paper, problems and these methods were introduced.
    Finally, pointed out the aspects which are important to the paper, we hope the researchers who study this field can do something about it that ice thermal
    
    
    storage can be improved in China.
引文
1. Sellgren. A, Paper F3. Proc. 10th International Confon the Hydraulic Transport of Solids in Pipes. Innsbruck, Austria, October 29-31, 1986
    2. Knodel. B. D, Pressure Drop Characteristics of Ice-Water Slurry in Plug Flow Horizontal Pipes, M. Sc. thesis, University of Illinois at Chicago, Nov, 1978
    3. Cho. Y. I, et al. ANovel Concept for Heat Transfer Fluids Used in District Cooling Systems, ASHRAE Trans, 1991
    4. E. Cho, et al. Effets of Emulsifier on Particle Size of a Phase Change Material in a Mixture with Water, Int Comm,Heat Mass Transfer .Vol. 18.pp.759-766,1991
    5.刘永红,冰浆流动特性和传热特性能研究,同济大学博士学位论文,1997.3
    6.明岗,冰浆在水平管中的流动于传热,同济大学大学博士学位论文,1999.10
    7. T.Graham, et al. Application of Crystal Ice Generation in District in District Heating and cooling. Proceeding of the 80th IDHCA, 1989, Virginia.
    8. Larkin. B, Progress Report to Advanced Energy Transmission Fluids Research Group, April, 1982
    9. Larkin B & Young.J.C, Influence of ice Slurry characteristic on Hydraulic Behaviors, Presented at 80th. Annual Conference of the international District Heating and CoolingAssociation, June, 1984, Virginia Beach, Va.
    10. Thomas.D.C.A.I.Ch.E.Journal , 8(2), 266-171,1962
    11. Durand, R, Basic Relationships of the Transportation of Solids in Pipes, Proc,Minnesota Hydraulics Convention, 89-103, 1953
    12. Stepauon.A.J, Mechatical Engineering, 24, 1964
    13. J.Aizawn, et al. Development of Cooing System Using Slurry Ice Transportation (No.1); Experiments on Elements of Slurry Ice Transoprtation, Preceedings of Air Conditioning in Hang Rise Building 97. Shanghai P R China, pp, 472-477,1997
    14. Ice Slurry Center Established ASHRAE, Journal, Jan, pp.14.1999
    15.刘永红,陈沛霖,蓄冷空调中的一种有效介质,建筑热能通风空调,18(4),35-37,53,1999
    16.刘永红,陈沛霖,水平管道中冰浆流动的摩阻特性的实验研究,力学与实践,19(6),36-38,1997
    17.明岗,陈沛霖,冰浆管内流动的絮网结构设想及阻力计算模型,同济大学学报:自然科学版,29(3),347-351,2001
    18.明岗,陈沛霖,冰浆在180°弯管内流动阻力特性的实验研究,力学与实践,23(1),51-53.2001
    
    
    19.明岗,陈沛霖,冰浆中冰晶与携流体的传热研究,华东电力,2001,29(2),24-26
    20.章学来,李瑞阳,郁鸿凌,直接接触式蓄冷传热特性的试验研究,制冷学报,2,2002
    21.舒碧芬,郭开华,张奕,气体水合物生成过程的特性研究,中国工程热物理学会传热传质学学术会议,963092,1996
    22.蔡毅,王世平,R141b气体水合物蓄冷过程现象与机理分析,暖通空调,28(1),1998:15-17,7
    23.章学来,HCFC123/水共混双相变传热特性及直接接触式冰蓄冷系统,上海理工大学工学博士学位论文,2000.10
    24.余华明,冷库及冷藏技术,人民邮电出版社,2003.2
    25.刘永红,贾晨霞 蓄冷空调的一种有效介质,1999.5
    26.方贵银,空调冰蓄冷火用分析,1998.11
    27.日本专利:特开平7-103519,蒸发式冰一生成方法及蒸发式冰一生成装置。
    28.日本专利:特开平10-227550,真空制冰机给水方法。
    29.日本专利:特开2000-346405,冰蓄热式真空冷卻装置。
    30.日本专利:平2-217770,直接接触式冰蓄热槽。
    31.日本专利:特开2002-52332,冰水用分散剂。
    32.日本专利:特开平11-281214,直接接触式制冰装置效率向上。
    33.日本专利:平2—263076,直接接触式制冰蓄热方法並装置
    34.日本专利:特开平8-303823,製冰器、蓄冰槽、及组直接接触式制冰蓄热装置。
    35.松本浩二 蓄热对象非定常线热源法熟伝导率测定。
    36. S .Ram N, Goldstein Vladimir L. Ice Melting in Thermal Storage systems, USA, 4809513, 1989-03-07
    37. Goldatein Vladimir, Refrigeration System, USA, 4640100, 1987-02-03
    38. Goldstein Vladimir (CA), La David (CA), Method and Apparatus for Cooling Fishon Board a Ship. USA, 4936102, 1990-06-26
    39. Goldstein Vladimir, Ice Storage and Distribution Unit, 4912935, 1990-04-03
    40. Heath Harold R, Storage System for Ice Slurry, USA, 5000008, 1991-03-19
    41. LI YAO-TZU, Heat Transfer Apparatus with Positive, USA, 5385645, 1995-01-31
    42. Stafford Donald C (US), Allo Vincent F. Falling Film Heat Exchanger with Memberto Distribute Liquid on External Surfaces of Tubes, USA,4564064, 1986-01-14
    
    
    43. Hino Toshiyuki, Method and Apparatus for Storing Heat in Ice by Using Refrigerant Jet, USA, 5327736, 1994-07-12
    44. Knodel Bryan D, Direct Contact Evaporator/Freezer, USA,4838039, 1989-06-13
    45. Model Bryan D, Costumer Joseph A, Apparatus and Method of Ice Production by Direct Refrigerant Contact with Aqueous Liquid, USA,4754610, 1988-07-05
    46. KOOY RICHARD J, Method and Apparatus for Producing Ice by Direct Contact of a Non-Hydrate Producing Refrigerant with Water, USA, 5307641, 1994-05-03
    47. Ehrsam Christian, Method and Apparatus for Generating an Ice Crystal Suspension, USA, 4734116, 1988-03-29 Sukhwal Ram N (CA), Goldstein Vladimir L. Ice Melting in Thermal Storage System, USA, 4809513, 1989-03-07
    48.汪训昌,从全球气候变暖角度评替代冷媒HFCF123和HFCl34a的使用前景,暖通空调,1998,6:23—26
    49.彦启林,氯氟烃(CFCs)与空调制冷,暖通空调,1993,4:7—10
    50.中国制冷空调工业协会简报,1993(10)
    51.雷鸣,华泽钊,在臭氧层消耗与全球变暖这两个全球性问题的制约下,CFCs/HCHC替代技术的新发展,制冷技术,2000,3:15-19
    52.中国制冷空调网,http:www.chinahvacr.com
    53. Petersen B, Thorsell H. Comparison of the refrigerants HFC-134a and CFC12.Int. J.Refr-1990, 13:176-180
    54. H.O.Sapauschus, HFC134a as a substitute refrigerant for CFC12, Rev. Int.Froid 1998 vol. 11 november:389-392
    55 H.Kruse and U.Hesese, Possible Substitutes for Fully Homogenate CFC Using Fluids Already Marketed, Int.J.Refrig 1988 vol 11 July:276-283
    55. Donald B. Bivens,Ph.D.,P.E.,Charles C.Allgood,Ph.d.,Joseph J.Rizze.
    56. HCFC22 Alternative for Air Conditioners and Heat Pumps, Ashrae Trans—actions, symposia:566-572
    57.朱明善,制冷空调行业的替代技术,国际学术动态,1996,8:82-86,90
    58. Eur Ing PA Morgan, BSc,Ceng,MI Mare and A Wilson,BSc(Eng), Ceng,MIMarE,FinstR, The Development of Classification Rules for Refrigerated Cargo Installations in Recognition of International Legislation on CFCS/HCFCS. Paperl,Marine refrigeration, 1 June 1995.
    59. Eric Granry, Hydrocarbons as Refrigerants—an overview. International Journal of Refrigeration 24(2001) 15-24.
    60. L P Roemended. Return to Ammonia, or Practical Experience with Ammonia as a
    
    Refrigerant in Modern Reefers. Marine Refrigeration, Paper 8,1 June 1995:73-76
    61.章学来,吴孟余.运输船舶的氟利昂对策,机电设备,1996,2:33-36
    62.吴孟余,中国航运界关于限制CFCs对策研究.中国航海,1994,2:22-29
    63.蒋能照,空调用热泵技术及应用.北京:机械工业出版社,1997
    64.上海市制冷学会编,卢士勋主编.制冷与空气调节技术—理论基础及工程应用.上海:上海科学普及出版社,1991
    65.吴喜平,蓄冷技术和蓄热电锅炉在蓄冷空调中的应用,同济大学出版社,2000
    66.方贵银,蓄冷空调工程实用新技术,人民邮电出版社,2000.255
    67.曹红奋,冰蓄冷空调的应用与技术经济分析:上海海运学院硕士论文 2000
    68. HRISTENSEN K G, KAUFFELD M. Ice slurry accumulation, IIR Conference, Natural Working Fluids, Oslo, 1998
    69. Anetoshi H, Method for Measuring Ice Slurry Particle Agglomeration in Storage Tanks, ASHRAE Transactions. 2000,106:117~123
    70. Kenenthe K, Kanetoshi H. Ice Slurry Cooling Research: Storage Tank Ice Agglomeration and Extraction, ASHRAE Transactions. 1999,105(PART 2):260-266
    71. Dickey L C, Radewonuk E R, Dallmer M F. Determining Ice Content of a Ice Slurry from Density Measurements, AIChE Journal, 1989, 35(12): 2033~2036
    72. Hansen T M, Kafuffled M, Measuring Principles for the Determination of Ice Concentration in Ice Slurry. ASHRAE Transactions, 2001, Vl07( PART2): 336-345

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700