VIC大尺度陆面水文模型在中国区域的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以大尺度陆面水文模型VIC为基础,模拟中国区域内各流域的径流分布情况。基于50×50km~2网格分辨率,将全国划分为4355个网格,结合1:25万全国数字高程模型、土地利用、植被和土壤分类等地理信息,确定中国区域内运行VIC模型所需参数。VIC模型中新的地表径流参数化方案考虑了蓄满产流、超渗产流机制,以及土壤性质非均匀性对产流的影响。本研究将该参数化方案应用到整个中国区域,定性分析模型计算的水资源量在全国空间分布上的合理性,结果表明模拟的平均年径流量与观测的平均年降雨量在空间分布上具有较好的一致性。为了检验VIC模型的模拟性能,本研究选取淮河和黄河流域作为研究对象,结合汇流模型,利用单位线法计算坡面汇流,线性圣维南方法计算河道汇流,将流域内各网格中模拟的日径流汇至流域出口断面,然后将VIC模型模拟的月流量过程与相应的水文站实测月流量资料进行比较,结果表明该模型对径流的模拟具有一定的合理性与适应性。
     尽管VIC模型中绝大多数参数都可通过地理信息来确定,但一些敏感性参数还须通过观测的流量资料来标定。为了标定无资料地区的模型参数,本研究介绍了一种参数移植方法将资料丰富地区的参数移植到资料匮乏区域。该方案将全国划分为不同的气候区域,然后选取各气候区中的部分子流域进行参数的率定,并将结果移植到同类气候区的其它流域,以检验参数移植后模型的模拟性能。与以往工作中对无资料区域选取统一参数相比,该参数移植方案可提高模型的模拟精度。
     此外,本研究将VIC模型与区域气候模式PRECIS相结合,预测气候变化对中国水资源的影响。根据PRECIS模式在基准年(1961~1990年)、IPCC温室气体释放情景特别报告SRES中A2情景下(2071~2079年),及B2情景下(2071~2090年)的输出结果,利用VIC模型模拟上述三种气候情景下全国各省多年平均径流深变化情况。结果表明在A2和B2情景中尽管降雨有所增加,但与基准年相比,模拟的平均年径流深在北方减少,而在南方增加,说明气候变化将进一步加剧我国洪涝灾害的状况。
This paper presents an application of variable infiltration capacity (VIC) macro-scale land surface hydrological model to simulate runoff for river basins in China. The entire land area of China is represented by 4355 cells with a spatial resolution of 50 X 50km2 for each cell. Most of the parameters needed by VIC are derived from geographic information, such as the 1:250 000 digital elevation model data, land use, vegetation and soil classification data. The VIC model combined with a new surface runoff parameterization, which takes into account the effects of soil heterogeneity on Horton and Dunne runoff, is applied to runoff simulation over the mainland area of China. The qualitative analysis shows that the spatial patterns of the simulated mean annual runoff and precipitation are consistent with each other. To test the modeling performance of the VIC model, streamflow simulation is conducted in catchments within Huaihe and Yellow River Basins, where a routing scheme with the unit hydrograph method for ove
    rland flow and the linear Saint-Venant method for channel flow is used to route the simulated daily runoff to the outlet of each catchment. Then, the simulated monthly runoff of VIC is compared to the monthly observed streamflow at the related gauge stations. Results show that the model can simulate the observations
    accurately.
    Generally, although most of parameters can be deduced from geographic information, some sensitive parameters in VIC have to be calibrated based on observed streamflow data. To calibrate model parameters where measured discharge data is unavailable, a methodology for model parameter transfer is introduced to transfer model parameters from data-rich areas to data-sparse areas. As a first attempt to transfer parameter, the land area in China is grouped by climate zones. The model parameters are calibrated for some catchments within zones, and then transferred to other catchments within the similar zones to validate the model performances. The transfer scheme can improve the simulation results as compared with the case of using uniform model parameters to data-sparse areas in previous work.
    In addition, the VIC model is coupled with the Providing Regional Climate for Impacts Studies (PRECIS) regional climate model to predict the effects of climate change on water resources in China. By using the results from PRECIS on reference years (1961-1990), A2 (2071-2079) scenario and B2 (2071-2090) scenario, which were developed in the IPCC Special Report on Emissions Scenarios (SRES), the VIC model is used to calculate the corresponding runoff changes in each province of China
    II
    
    
    in response to different climate scenarios. Results show that compared with the case in on reference years, mean annual runoff under A2 and B2 scenarios is predicted to be a decrease in the north and an increase in the south of China in spite of a rise in precipitation, which indicates more serious and frequent floods and drought in the future of China.
引文
[1] Mannabe S.. Climate and the ocean circulation: The atmospheric circulation and the hydrology of the earth's surface. Mort Weath Rev., 1969, 97:739-805
    [2] Dickinson R. E., Henderson-Sellers A., Kennedy P. J., et al. Biosphere Atmosphere Transfer scheme (BATs) for the NCAR community climate model. NCAR Tech. Note NCAR/TN-275+STR, 1986, 69
    [3] Sellers P. J., Mintz Y., Sud Y. C., et al. A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci., 1986, 43:505-531
    [4] Bonan G B..A Land Surface Model(LSM Version 1.0) for ecological, hydrological, and atmospheric studies: technical description and user's guide. NCAR Tech. Note NCAR/TN-417+STR, 1996, 150
    [5] Colello G D., Grivet C., Sellers P. J., et al. Modeling of energy, water and C02 flux in a temperature grassland ecosystem with SiB2: May-October 1987. J. Atmos. Sci., 1998, 55:1141-1169
    [6] 季劲钧,余莉.地表面物理过程与生物地球化学过程耦合反馈机理的模拟研究.大气科学,1999,23(4):339-448
    [7] 付培健,王世红,林有恒.大气环流模式中地面参数化的发展.地球科学进展,1999,14:45-50
    [8] Henderson-Sellers A., Yang Z. L, Dickinson R.E.. The project for intercomparison of land-surface parameterization schemes. Bull Amer. Meteor. Soc., 1993, 74: 1335-1349
    [9] Arnell N. W.. A Simple water balance model for the simulation of streamflow over a large geophysical domain. J. Hydro., 1999, 217:314
    [10] 胡隐樵,高由禧,王介民等.黑河实验(HEIFE)的一些研究成果(代黑河实验专刊(4)前言).高原气象,1994,13:225-236
    [11] 汤懋苍,郑光.黑河实验区的自然地理状况及气候背景.高原气象,1994,13:237-245
    [12] 沈志宝,邹基玲.黑河地区沙漠和绿洲的地面辐射能收支.高原气象,1994,13:314-322
    [13] 张立盛,钱正安,陈伯民.黑河地区地面阻曳系数的估算及其影响的数值实验.高原气象,1994,13:257-264
    [14] 孙菽芬,金继明.陆面过程研究中的几个问题.应用气象学报,1997,8(增刊):50-57
    [15] 林朝晖.气候模式中的反馈机制及模式改进的研究:[中国科学院大气物理研究所博士论文].北京:中国科学院大气物理研究所,1995,224
    
    
    [16] 戴永久.陆面过程模式及其与GCM耦合模拟研究:[中国科学院大气物理研究所博士论文].北京:中国科学院大气物理研究所,1995,287
    [17] 张晶,丁一汇.一个改进的陆面过程模式及其模拟试验研究第一部分:陆面过程模式及其“独立(off2tine)”模拟试验和模式性能分析.气象学报,1998,56:1-19
    [18] 丁一汇,张晶,赵宗慈.一个改进的陆面过程模式及其模拟试验研究第二部分:陆面过程模式与区域气候模式的耦合模拟试验.气象学报,1998,56:385-400
    [19] Liang X., Xie Z. H.. A New Surface Runoff Parameterization with subgrid-scale soil heterogeneity for land surface models. Advances in Water Resources, 2001, 24: 1173-1193
    [20] Xie Z. H., Su F. G, Liang X., et al. Applications of a surface runoff model with Horton and Dunne runoff for VIC. Advances in atmosphere science., 2003, 20(2): 165-172
    [21] Liang X., Xie Z. H.. The role of PILPS: Two important processes identified for VIC model. Accepted. Global Planetary Change, 2002
    [22] Henderson-Sellers A., Mcguffie K., Pitman A. J.. The project for intercomparison of land-surface parameterization schemes (PILPs): 1992 to 1995. Climate Dyn., 1996, 12:849-859
    [23] Jolley T. J., Weater H. S.. The introduction of runoff routing into large - scale hydrological models. Hydrol. Proc, 1997, 11:1917-1926
    [24] Variable Infiltration Capacity (VIC) Macroscale Hydrologic Model. http://www. hydro.washington.edu/Lettenmaier/Models/VIC/VIChome.html, 2002-1-22
    [25] Liang X., Dennis P. L., Wood E. F., et al. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J Geophys Res, 1994, 99(D7): 14415-14428
    [26] Liang X, Wood E. F., Dennis P. L., et al. Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Global and Planetary Change, 1996, 13:195-206
    [27] Lohmann D., Raschke E., Nijssen B., et, al. Regional scale hydrology: Ⅰ. Formulation of the VIC-2L model coupled to a routing model. Hydrol. Sci. J., 1998a, 43(1): 131-142
    [28] Nijssen B., Lettenmaier D. P.. Streamflow simulation for continental-scale river basins. Water Resour.Res., 1997, 33(4), 711-724
    [29] Abdulla F. A., Lettemnaier D.P., Wood E. F., et al. Application of a macroscale hydrologic model to estimate the water balance of the Arkansas-Red river basin. J. Geophys. Res., 1996, 101(D3): 7449-7459
    [30] Famiglietti J. S., Wood E. F.. Evapotranspiration and runoff from large land areas:
    
    Land surface hydrology for atmospheric general circulation models. In: Land Surface-Atmospheric Interactions for Climate Modeling: Observations, Models and Analysis. Norwell, Mass.: Kluwer Academic, 1991, 179-204
    [31] Dümenil, L, Todini E.. A rainfall-runoff scheme for use in the Hamburg climate model. In: Advances in Theoretical Hydrology: European Geophysical Society Series on Hydrological Sciences. New York: Elsevier, 1992, 129-157
    [32] Stamm J. F., Wood E. F., Lettenmaier D. P.. Sensitivity of a GeM simulation of global climate to the representation of land surface hydrology. J. Clim., 1994
    [33] Deardorff J. W.. Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation. J. Geophy. Res., 1978, 83:1889-1903
    [34] Shuttleworth W. J.. Evaporation. In: Handbook of Hydrology, edited by D.R. Maidment. New York: McGraw-Hill, Inc., 1993, 4:1-53
    [35] Saugier B., Katcrji N.. Some plant factors controlling cvapotranspiration. Agric. And Forest Metcorol., 1991, 54:263-277
    [36] Dickinson R.E.. Modeling evapotranspiration for three-dimensional global climate models. In Climate Processes and Climate Sensitivity, edited by J.E. Hanson and T. Takahashi. Washington, D.C.: Geophys. Monogr. Ser., 1984, 29:58-72
    [37] Monteith J. L, Unsworth M. H.. Principles of Environemntal Physics. 2nd . New York: Routlcdge, Chapman and Hall, 1990, 291
    [38] Louis J.. A parametric model of vertical eddy fluxes in the atmosphere. Boundary Layer Meteorol., 1979, 17:187-202
    [39] Blondin C.. Parameterization of iand-surface processes in numerical weather prediction. In: Land Surface Evaporation: Measurements and Parameterization, edited by T. J. Schmugge and J. C. Andre. New York: Springer-Verlag, 1991, 31-54
    [40] Docoudre N. I., Laval K., Perrier A., et al. A new set of parameterizations of the hydrologic exchanges at the land atmosphere interface within the LMD atmospheric general circulation model. J. Clim., 1993, 6:248-273
    [41] Wood E. F., Lettenmaier D. P., Zattarian V. G. A land-surface hydrology parameterization with subgrid variability for general circulation models. J. Geophys Res., 1992, 97(D3): 2217-2228
    [42] Zhao R. J., Zhang Y. L., Fang L. R., et al. The Xinanjiang model. In: HydrologicalForecasting Proceedings Oxford Symposium. Helsinki: IAHS, 1980, 129:351-356
    [43] Crawford N. H, Linsley R. K.. Digital simulation in hydrology: Stanford watershed model IV. Dept. Civ. Eng., 1966, 210
    [44] 谢正辉,梁旭.陆面水文模型VIC的综合描述.中国科学院大气物理研究所模式文本,2003,1-66
    [45] Lee D. H., Aboriola L. M.. Use of the Richards equation in land surface
    
    parameterizations. Journal of Geophysical Research, 1999, 104(I)22): 27519-27526
    [46] Hansen M., DeFries R., Townshend J. R., et al. Global land cover classification at 1km resolution using a decision tree classifier. International Journal of Remote Sensing, 2000, 21:1331-1365
    [47] Cosby B. J., Hornberger G. M., Clapp R. B., et al. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of of soils. Water Resour. Res., 1984, 20:682-690
    [48] Liang Xu, Xie Zhenghui. A New Surface Runoff Parameterization with subgrid-scale soil heterogeneity for land surface models. Advances in Water Resources, 2001, 24(9-10): 1173-1192
    [49] Rawls W. J., Ahuja R. L., Brakensiek D. L., et al. Infiltration and soil water movement. In: Handbook of Hydrology, ed. by Maidment D.R.. New York: McGraw-Hill Inc., 1993, 5:1-51
    [50] Bristow K. L., Campbell G. S.. On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agricultural and Forest Meteorology, 1984, 31:159-166
    [51] Kimball J. S., Running S. W., Nemani R.. An improved method for estimating surface humidity from daily minimum temperature. Agricultural and Forest Meteorology, 1997, 85:87-98
    [52] Thornton P E, Running S. W.. An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity and precipitation. Agricultural and Forest Meteorology, 1999, 93:211-228
    [53] Dooge J. C. Deterministic input-output model models. In: The Mathematics of Hydrology and Water Resources, ed. by E. H. Lloyd, T. O'Donnell, J. C. Wilkinson. London: Academic Pres, 1979, 1-37
    [54] Singh V. P., Baniukiewicz A., Ram R. S.. Some empirical models of determining the unit hydrograph. In: Rainfall-Runoff Relationships, ed. by V. P. Singh. Mississippi: Water Resources Rublieations, 1982, 67-90
    [55] Duband D., Obled C., Rodriguez J. Y.. Unit hydrograph revisited: an alternative iterative approach to UH and effective precipitation identification. J. Hydrol., 1993, 150:115-149
    [56] Littlewood I. G., Jakeman A. J.. A new method of rainfall-runoff modeling and its application in catchment hydrology. In: Environment Modeling, ed. by P. Zannetti. Washington: Computational Mechanics Publications, 1994, 11:143-171
    [57] Box G. E. P., Jenkins G. M., Reinsel G C.. Time Series Analysis, Forecasting and Control.3rd. New Jersey: Prentice Hail, Englewood Cliffs,.1994
    
    
    [58] Lohmann D., Nolte-Holube R., Raschke E.. A large scale horizontal routing model to be coupled to land surface parameterization schemes. Tellusn, 1996, 48A: 708-721
    [59] Todini E.. Hydraulic and Hydrologic Flood Routing Schemes. In: Recent Advances in the Modeling of Hydrologic Systems, ed. by D. S. Bowles, P. E. O'Connell.. New York: NATO ASI Series C, 1991, 345:389-406
    [60] Jensen S. K.. Application of Hydrology information automatically extracted from digital elevation models. Hydrological Processes, 1991, 5(1): 31-44
    [61] Lohmann D., Raschke E., Nijssen B., et al. Regional Scale Hydrology: Ⅱ. Application of the VIC-2L Model to the Weser River, Germany, Hydrological Sciences Journal, 1998b, 43(1): 143-157
    [62] Hubert B., Francois L., Wamant R, et al. Stochastic generation of meteorological variables and effects on global models of water and carbon cycles in vegetation and soils. J. Hydrol., 1998, 212-213, 318-334
    [63] Nakicenovic N.. Greenhouse gas emissions scenarios. Technological Forecasting & Social Change, 2000, 65(3)
    [64] Houghton J. T., Jenkins G. J., Ephraums J. J.. The IPCC Scientific Assessment. In: Climate Change. Cambridge: Cambridge University Press, 1990, 365
    [65] Leggett J., Pepper W. J., Swart R. J.. Emissions scenarios for IPCC: An Update. In: Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment, ed. by J. T. Houghton, B. A. Callandar, S. K. Vamey. Cambridge: Cambridge University Press, 1992, 69-95
    [66] Pepper W. J., Leggett J., Swart R., et al. Emissions scenarios for the IPCC. An update: Assumptions, methodology, and results. Support document for Chapter A3. In: Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment, ed. by J. T. Houghton, B. A. Callandar, S. K. Varney. Cambridge: Cambridge University Press, 1992
    [67] IPCC. The Science of Climate Change. Summary for Policymakers and Technical Summary of Working Group One. In: Climate Change 2000. Cambridge: Cambridge University Press, 2001, 98
    [68] Met office. The Hadley Center regional climate modeling system: PRECIS-Update 2002. Providing Regional Climates for Impacts Studies, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700