用于铅酸蓄电池的大容量智能充电系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍了一种用于铅酸蓄电池组的大容量智能充电系统的设计过程,主要包括对蓄电池充电方法和充电系统的设计。
     在对蓄电池快速充电原理和目前各种充电方法研究的基础上,提出了两阶段充电模式,即在充电前期采用多段恒流充电和脉冲充电相结合的快速充电方法,而在充电后期采用定电压补足充电法。充电前期采用的充电方法结合了多段恒流充电和脉冲充电这两种充电方法的优点,使充电电流在总体上逼近蓄电池的可接受充电电流曲线,并且在整个快速充电期间内,始终适时地采取了消除蓄电池极化的措施,避免了蓄电池在充电过程中产生大量气体和温升过高的问题;充电后期采用的充电方法可使蓄电池恢复至完全充电态,达到额定容量。
     理论分析和实验数据表明,这种两阶段充电模式能够大大缩短充电时间,提高充电效率。
     在充电系统的设计中,采用了高频开关电源技术,主回路由三相整流电路、移相控制ZVS PWM DC/DC全桥变换电路和能量回馈电路组成,功率开关管选用IGBT,驱动芯片选用EXB841;控制电路以TMS320LF2407芯片为核心,通过采集蓄电池的端电压、温度以及充电电流等状态信息,送入DSP进行分析和处理,得到相应的控制信号,控制主回路IGBT的通断,从而实现蓄电池的智能充电;同时控制系统对主回路各部分的电压和电流以及对IGBT和高频变压器的温度进行监测,对充电系统起到了很好的保护作用。采用这种电源结构,能够有效地提高系统的工作频率,减小开关损耗。
     在快速充电的控制技术和充电方法的实现上,采用了以电池电压负增量为主、电池最高电压和电池温度为辅判断蓄电池是否充足电的综合控制法,以及采用了以改进型PID控制为主的控制方法来实现恒流充电和恒压充电。
This paper described the design of a high-capacity intelligent charging system for lead-acid batteries, including the research on charging methods and the design of the charging system.
    Based on the analysis of the charging theory and the investigation of many charging methods, a two-stage charging strategy was brought forward. At the former stage of charging, the fast charging method was used which is the combination of multi-section constant-current charging method with pulsant charging method. And at the latter stage, the constant-voltage charging method was adopted. The theory and the tests indicated that by application of the charge strategy, the charging efficiency was raised and the charging period was reduced.
    Ground on the HF SPS (High-Frequency Switching Power Supply), the charging system was designed which was composed of a three-phase rectifying cell, a phase-shifted zero-voltage-switching PWM DC/DC full-bridge cell and an energy recovery cell. In the DC/DC cell, IGBT (Isolated Gate Bipolar Transistor) was selected as the switch that was driven by EXB841 module. And the charging control system was based on TMS320LF2407 chip, which can produce controllable PWM signal with dead time. Using this construction of power supply, switching loss was much reduced and higher frequency could be gained.
    Based on the analysis of many charge-termination control methods, an integrated control method was adopted to judge whether batteries was full-charge or not. And an improved PID control algorithm was used to realize the constant-current charging and the constant-voltage charging.
引文
[1]朱松然,铅蓄电池技术,机械工业出版社(第二版),2002
    [2]王鸿麟、钱建立、周晓军,智能快速充电器设计与制作,科学出版社,2001
    [3]朱小同、赵桂先,蓄电池快速充电的原理与实践,煤炭工业出版社,1996
    [4]张廷鹏,通信用高频开关电源,人民邮电出版社,1997
    [5]王兆安、黄俊,电力电子技术,机械工业出版社,2000
    [6]阮新波、严仰光,直流开关电源的软开关技术,科学出版社,2000
    [7]王志良,电力电子新器件及其应用技术,国防工业出版社,1995
    [8]阮新波、严仰光,脉宽调制DC/DC全桥变换器的软开关技术,科学出版社,1999
    [9]张占松、蔡宣三,开关电源的原理与设计,电子工业出版社,1998
    [10]马明建、周长城,数据采集与处理技术,西安交通大学出版社,1998
    [11]刘和平、严利平、张学锋、卓清锋,TMS320LF240Xdsp结构、原理及应用,北京航空航天大学出版社,2002
    [12]章云、谢莉萍、熊红艳,DSP控制器及其应用,机械工业出版社,2001
    [13]Pei-Hsuan Cheng, Chern-Lin Chen. A High-Efficiency Fast Charger For Lead-Acid Batteries. IEEE 2002 p1410-1415
    [14]Ningliang Mi, et al. A Novel Economical Single Stage Battery Charger with Power Factor Correction. IEEE 2003 p760-763
    [15]Huang-Jen Chiu, et al. A Novel Rapid Charger of Lead-Acid Batteries with Energy Recovery. IEEE 2003 p756-759
    [16]G. E.M.D.C. Bandara, et al. Intelligent Fuzzy Controller for a Lead Acid Battery Charger Erickson IEEE 1999 p185-189
    [17]J. Herminjard. Three-Phase Unity Power Factor AC/AC Converter(PFC) with Dual Isolated DC/DC Converter for a Battery Charger. EPE' 99-Lausanne
    [18]K Mark Smith, Keyue Ma Smedley. Engineering Design of Lossless Passive Soft Switching Methods for PWM Converters. IEEE transactions on Power Electronics, 2001, vol 16, No. 3, p336-344
    [19]ALABC Project Number A001.1. EV Range and Battery Cycle Life Improvement
    
    through fast Charging and Partial State of Charge Operation. Progress Report, No. 2, April 30,1998
    [20]Shoji Tange. Feasibility Study of Supper Quick Charging System. Proceedings of 1992 International Congress on Transportation Electronics. IEEE 1992 p211-221
    [21]J.K. Nor, Pavlovic. Ultra Rapid Battery Charging: Charging Time, Efficiency, and Battery Life Considerations. Proc. Of the 13th International Electric Vehicle Symposium, Osaka, Japan, Oct. 1996
    [22]T.G. Chang, D.M. Jochim. Rapid Partial Charging of Lead-Acid Batteries. LABAT' 96 International Conference, Varna, Bulgaria, June 1996
    [23]J.G. Cho, J.W. Won, H.S. Lee. Reduced conduction loss zero-voltage-transition power factor correction converter with Low Cost. IEEE Trans. Industrial Electron, vol. 45, No. 3, Jun. 1998, p395-400
    [24]E.M. Valeriote, et al. Fast Charging of Lead-Acid Batteries. Proceedings of the Ninth Annual Battery Conference on Applications and Information Display, Hsinchu, Taiwan, March 1999, p17-19
    [25]黄赞武,高频开关电源的设计,中国农业大学硕士学位论文,2000
    [26]龙永涛,移相控制ZVS PWM DC-DC全桥变换器软开关技术及应用,湖南大学硕士学位论文,2002
    [27]冯义,一种智能充电系统的初步研究,中国农业大学硕士学位论文,2000
    [28]郭丽芳,智能充电装置及其控制技术,河海大学硕士学位论文,2003
    [29]李敬兆,采用神经网络预测和变结构模糊控制的铅酸蓄电池最有充电技术研究,合肥工业大学博士论文,2003
    [30]陈体衔,VRLA蓄电池变电流间歇充电方法,电池.1998年第6期
    [31]张贵峰、李永兵、王士元,EXB841的自身保护及驱动电压的调整,电焊机.2000年第2期
    [32]张培铭等,电气系统的温度在线检测技术,电气开关.1994年第5期
    [33]黄武中、梁建烈、农正,高效智能充电器设计,广西民族学院学报.2002年第2期
    [34]王库、冯义,快速充电技术的探讨,中国农业大学学报.2001年第6期
    [35]李戌、何福友、王长龙,单片机控制的大功率IGBT蓄电池放电系统,电力电子技术.1998年第1期
    
    
    [36]单晓庆,单片机控制的蓄电池快速充电系统,电工技术杂志.1996年第4期
    [37]胡信国、贺勤、童一波,阀控铅酸蓄电池内阻研究,电源技术.1999年第6期
    [38]颜湘武等,微机控制晶闸管充电、浮充电装置的研制,华北电力学院学报.1996年第1期
    [39]钱良国、刘长寅,智能充电技术和智能充电机,铁道标准设计.1999年第12期
    [40]勾长虹、杜津玲,铅酸蓄电池充电接受能力及充电方式选择,电源技术.1996年第6期
    [41]童晓阳、童晓霞,蓄电池快速充电模糊控制的初步探讨,计算机应用研究.1997年第10期
    [42]陈红雨、吴玲、任超华,从欧洲蓄电池会议看国外铅酸蓄电池的研究动态,蓄电池.2000年第4期
    [43]王先泉、张海呈,PWM型开关电源中的损耗与谐振型开关电源的进展,国外电子元器件.1997年第10期
    [44]沈稼树,高频开关电源中滤波与抗干扰,通信电源技术.1997年第3期
    [45]吴爱国、李际涛,DC-DC变换器控制方法研究研究现状,电力电子技术.1999年第2期

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700