用户名: 密码: 验证码:
不同土地利用方式潮棕壤营养元素剖面分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为探索土地利用方式变更对土壤营养元素剖面分布的影响,本文对中国科学院沈阳生态实验站(41°31′N, 123°22′E)的水稻田、玉米地、撂荒地和人工林地0~150 cm土体10 个土层中土壤营养元素含量的剖面分布、储量等进行了比较研究。四种供试农田或林地均发育于潮棕壤,以不同方式利用已经达14 年时间。所得主要结果如下:
    土壤有机C、全N、全S 含量剖面分布因土地利用方式不同而产生明显的差异,林地剖面土壤有机C、全N 含量较撂荒地、玉米地、水稻田高。0~20cm 土层,林地和撂荒地土壤有机C 和全N 储量高于玉米地和水稻田,而土壤全S 储量无显著差异。0~100cm 及0~150cm 土层,土壤有机C、全N、全S 储量均为林地>玉米地>撂荒地>水稻田。土壤有机C 与全N 极显著相关,且林地和撂荒地土壤C 与N 的相关性略高于水稻田和玉米地。土壤剖面中C/N,无论水田、玉米田,还是林地和撂荒地,均随深度而下降,但同一深度层次比较,林地最高,稻田最低,玉米地与撂荒地居于中。
    土壤全P 含量在不同深度土层基本呈现出林地>撂荒地>玉米地>水稻田的趋势,0~20 cm 土层土壤全P 储量水田、玉米地、撂荒地和林地间差异不显著,但在0~100cm和0~150cm 深度,林地和撂荒地土壤显著高于玉米地和水稻田土壤。林地、水田、玉米地和撂荒地土壤C/P 均随剖面深度增加而降低,在40 cm 以下有林地和玉米地高于撂荒地和水稻田的趋势。
    土壤交换性阳离子储量以林地为最高,但不同利用方式间差异不显著。4 种土地利用方式比较,土壤交换性Ca/Mg 水田最高,林地最低; 水稻田和玉米地土壤交换性Ca/K明显大于的撂荒地和林地。在东北平原南部的气候条件下,经过十几年的时间土壤交换性盐基离子的种类、数量剖面分布等方面差异已经相当明显。
    土壤DTPA 浸提态Fe、Mn、Cu、Zn 含量剖面分布特点是随土层深度增加其含量降低,且在林地、撂荒地、水稻田和玉米地间也出现明显分异。除DTPA 浸提态Fe 的这一差异主要发生在较深土壤层次外,DTPA 浸提态Mn、Cu、Zn 含量在大多土层中均差异明显。DTPA 浸提态Fe、Mn、Cu、Zn 含量与SOC、全N、碱解N、全S 含量等存在显著的相关关系。
This paper studied the storage and dynamics of soil nutrients at the Shenyang Experimental Station of Ecology, Chinese Academy of Sciences (41°31′N, 123°22′E), aimed to explore the nutrients distribution in soil profile under four land use patterns over 14 years. The four land use patterns are paddy field (PF), maize field (MF), fallow field (FF) and woodland (WL). In each profile at 0~150 cm depth, soil samples were collected from the layers 0~5, 5~10, 10~20, 20~30, 30~40, 40~60, 60~80, 80~100, 100~120, and 120~150 cm. The four test farmlands and woodland are originated from aquic brown soil. Following results were obtained.
    The profile distribution of SOC, total N and S were differed with different land use patterns. Soil organic C and total N contents in each soil layer were higher in WL than in FF, MF and PF. At the depth of 0~20 cm, the storage of SOC and total N were higher in WL and FF than in MF and PF, but no significant difference was found for soil total S. At the depths of 0~100 cm and 0~150 cm, The sequence of SOC, total N and S storages was WL >MF> FF > PF. Soil organic C had a significant correlation with soil total N, and the correlation was slightly closer in WL and FF than in PF and MF. The C/N ratio in the profiles of PF, MF, FF and WL decreased with soil depth, and was comparatively higher in WL and lower in PF.
    Soil total P contents in different soil layers were WL> FF> MF> PF. At the depth of 0~20 cm, soil total P storage had no significant difference among PF, MF, PF and WL, but at the depths of 0~100 cm and 0~150 cm, it was significantly higher in WL and FF than in MF and PF. The C/P ratio was decreased with depth in WL, PF, MF and FF, but tended to be higher in layers below 40 cm in WL and MF than in FF and PF.
    The storage of soil exchange base cations was tended to be higher in WL than PF, MF and FF, but the difference was not significant. Generally, soil exchangeable Ca/Mg and Ca/K ratios were in the sequence of PF>MF>FF>WL, and were significantly higher in PF and MF than in FF and WL. Under the climate conditions in South Northeast Plain of China, the effects of land use on the sorts and contents of soil exchangeable base cations in the profiles were obvious over more than a decade.
    DTPA-extractable soil Fe, Mn, Cu and Zn were decreased with increasing soil depth,
    and the differentials were obvious among WL, FF, PF and MF. The differences of DTPA-extractable soil Fe under different land uses were mainly occurred in deeper layers, while DTPA-extractable soil Mn, Cu and Zn varied significantly in most layers. The DTPA-extractable soil Fe, Mn, Cu and Zn were positively correlated with SOC, total N, alkali N and total S in WL, FF, PF and MF. Cluster analysis and principal component analysis showed that soil chemical properties could be classified into three groups, of which, SOC, total N, alkali N, NO3--N, Olsen-P, and total S were clustered in group one, NH4+-N, exchangeable Ca and the sum of exchangeable base cations were in group two, and soil pH was in group three. Of the principal components affecting the profile distributions of SOC and nutrients under different land uses, plant cycling, including the accumulation and turnover of organic matter and the uptake and transport of nutrients, was considered as the leading foctor that affecting the profile distributions of C, N, S and microelements, and leaching and anthropogenic disturbance were the secondary factors that influence the profile distributions of soil exchangeable base cations and pH. The effects of land use change on the profile distributions of SOC and nutrients were obvious. Woodland had obvious advantages in improving SOC storage and maintaining soil fertility. Compared with maize field, fallow field could significantly increase SOC content in topsoil (0~20 cm), but had no significant difference in SOC storage at the depth of 0~100 cm. The results obtained could potentially provide theoretic support for understanding the effects of land use change on soil eco-environment, nutrient use efficiency, and establishment of sustainable land use models. Moreover, it could be helpful for nutrient biogeochemical cycling.
引文
1. 蔡晶,柴社立,陆继龙. 2002. 黑龙江省主要类型土壤中微量元素含量的垂向分异研究. 世界地质, 21(4): 364-367.
    2. 党廷辉, 郭胜利, 郝明德. 2003. 黄土旱塬长期施肥下硝态氮深层累积的定量研究. 水土保持研究, 10(1): 58-60.
    3. 樊军,郝明德. 2002. 旱地长期定位土壤剖面中有效硫积累及其影响因素. 植物营养与肥料学报, 8(1): 86-90.
    4. 樊军,邵明安,郝明德,王全九. 2005,黄土旱塬塬面生态系统土壤硝酸盐累积分布特征. 植物营养与肥料学报, 11(1): 8-12.
    5. 高超, 张桃林, 吴尉东. 2001. 农田土壤中的磷向水体释放的风险评价. 环境科学学报, 21(3): 343-348.
    6. 高富,沙丽清,许建初. 2000. 西庄河流域土地利用方式对土壤肥力影响的研究. 土壤与环境, 9(3): 223-226.
    7. 高美荣, 朱波, 蒋明富, 成延鏊. 2003. 不同利用方式下石灰性紫色土的锌形态剖面分布特征初探. 应用生态学报, 14(2): 201-204.
    8. 高雪松,邓良基,张世熔. 2005. 不同利用方式与坡位土壤物理性质及养分特征分析.水土保持学报, 19(2): 53-56.
    9. 葛京凤,黄志英,梁彦庆,滑丽萍. 2005. 河北太行山区土地利用/覆被变化及其环境效应. 地理与地理信息科学, 21(2): 62-65.
    10. 巩杰, 陈利顶, 傅伯杰, 李延梅, 黄志霖, 黄奕龙, 彭鸿嘉. 2004. 黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响. 应用生态学报, 15(12): 2292-2296.
    11. 郭旭东,傅伯杰,陈利顶,马克明,李俊然. 2001. 低山丘陵区土地利用方式对土壤质量的影响――以河北省遵化市为例. 地理学报, 56(4): 447-456.
    12. 郝庆菊,王起超,王跃思,王长科. 2003. 开垦利用对三江平原湿地土壤硫含量的影响. 环境科学学报, 23(5): 614-618.
    13. 胡雪峰, 许世远, 陈振楼. 2002. 上海市郊中小河流水污染现状及对策. 农业环境保护, 21(3): 204-207, 231.
    14. 黄昌勇(主编). 2000. 土壤学. 北京:中国农业出版社.
    15. 黄绍文, 金继运, 杨俐苹, 程明芳. 2001. 粮田土壤磷、钾养分的垂直分布特征. 土壤肥料, (4): 8-12.
    16. 黄运湘, 郭春秋, 张杨珠, 周清, 郭朝晖. 2000. 湖南省稻田土壤硫素状况研究. 土壤与环境, 9(3): 235-238.
    17. 贾文锦. 辽宁土壤. 1992. 沈阳: 辽宁科学技术出版社. 117-176, 256-276.
    18. 姜勇, 张玉革, 梁文举, 乔德波. 2003a. 耕地土壤交换性钙镁比值的初步研究. 土壤通报, 34(5): 414-416.
    19. 姜勇, 庄秋丽, 梁文举, 施春健, 欧伟. 2005a. 空间变异在土壤性质长期定位观测及取样中的应用. 土壤通报, 36(4): 532-536.
    20. 姜勇,梁文举,闻大中. 2003b. 沈阳郊区农业土壤中微量元素. 北京:中国农业科学技术出版社.
    21. 姜勇,张玉革,梁文举, 孟凡祥,刘艳军. 2005b. 土地利用方式对潮棕壤磷素剖面分布的影响. 农业环境科学学报,24(3): 512-516
    22. 姜勇,张玉革,梁文举,闻大中,陈文波. 2003c. 沈阳市苏家屯区耕层土壤养分空间变异性研究. 应用生态学报, 14 (10): 1673-1676.
    23. 姜勇,张玉革,梁文举. 2004. 沈阳市郊区蔬菜保护地土壤交换性钙镁含量及钙镁比值的变化. 农村生态环境,20(3): 24-27.
    24. 孔祥斌,张凤荣,王茹,徐艳. 2005. 城乡交错带土地利用变化对土壤养分的影响. 地理研究, 24(2): 213-221.
    25. 李德军,莫江明,方运霆,薛塬花. 2004. 鼎湖山自然保护区不同演替阶段森林土壤中有效微量元素状况研究. 广西植物, 24(6): 529-534.
    26. 李克让(主编). 2002. 土地利用变化和温室气体净排放与陆地生态系统碳循环. 北京:气象出版社.
    27. 李明锐, 沙丽清. 2005. 西双版纳不同土地利用方式下土壤氮矿化作用研究. 应用生态学报, 16(1): 54-58.
    28. 李新宇,唐海萍,赵云龙,张新时. 2004. 怀来盆地不同土地利用方式对土壤质量的影响分析. 水土保持学报, 18 (6): 103-107.
    29. 李跃林,彭少麟,赵平,任海,李志安. 2002. 鹤山几种不同土地利用方式的土壤碳储量研究. 山地学报, 20(5): 548-552.
    30. 梁涛,张秀梅,章申,于兴修,王浩. 2002. 西苕溪流域不同土地类型下氮元素输移过程. 地理学报, 57(4): 389-396.
    31. 廖继佩,张杨珠,林先贵,曹志洪. 2003. 湖南省某些稻田土壤固定态铵的剖面分布. 生态环境,12(1): 59-62
    32. 廖晓勇,陈治谏,刘邵权,王海明. 2005. 三峡库区小流域土地利用方式对土壤肥力的影响. 生态环境, l4(1): 99-101.
    33. 刘多森, 曾志远. 1987. 土壤和环境研究中的数学方法与建模. 北京: 农业出版社.
    34. 刘方,黄昌勇,何腾兵. 2001. 不同类型黄壤旱地的磷素流失及其影响因素分析. 水土保持学报,15(2): 37-40.
    35. 刘方春,聂俊华,刘春生,付连刚,肖秋生. 2005. 不同施肥措施对土壤硝态氮垂直分布的特征影响. 土壤通报, 36(1): 50-54.
    36. 刘纪远,王绍强,陈镜明,刘明亮,庄大方. 2004. 1990~2000年中国土壤碳氮蓄积量与土地利用变化. 59(4): 483-496.
    37. 刘梦云,安韶山,常庆瑞,杜崇松. 2005. 不同土地利用方式下土壤化学性质特征研究. 西北农林科技大学学报(自然科学版), 33(1): 39-42.
    38. 刘世梁,傅伯杰, 陈利顶, 吕一河,马克明. 2002. 卧龙自然保护区土地利用变化对土壤性质的影响. 地理研究, 21(6): 682-688.
    39. 刘世全,蒲玉琳,张世熔,王昌全,邓良基. 2004. 西藏土壤阳离子交换量的空间变化和影响因素研究. 水土保持学报, 18(5): 1-5.
    40. 刘学军, 廖晓勇,张扬珠,张福锁,黄运湘. 2002. 不同稻作制对红壤性水稻土中锰剖面分布的影响. 生态学报, 22(9): 1440-1445.
    41. 刘铮. 1991. 微量元素的农业化学. 北京:农业出版社.
    42. 鲁如坤(主编). 1998. 土壤-植物营养学原理和施肥. 北京:化学工业出版社.
    43. 鲁如坤. 1996. 我国典型地区农业生态系统养分循环和平衡研究Ⅱ,农田养分收入参数. 土壤通报, 27(4):151-154.
    44. 鲁如坤. 2000. 土壤农业化学分析方法. 北京: 中国农业科技出版社.
    45. 吕家珑, Fortune S, Brookes P C. 2003. 土壤磷淋溶状况及其Olsen 磷突变点研究. 农业环境科学学报, 22(2): 142-146.
    46. 彭令发, 郝明德, 来璐, 李丽霞. 2003. 黄土旱塬区长期施氮对土壤剖面养分分布的影响. 西北植物学报, 23(8): 1475-1478.
    47. 沙丽清,邱学忠,甘建民. 2003. 云南保山西庄山地流域土地利用方式与土壤肥力关系研究. 生态学杂志,22 (2): 9-11.
    48. 沈善敏(主编). 1998. 中国土壤肥力. 北京:中国农业出版社.
    49. 沈善敏, 宇万太, 张璐. 1993. 杨树主要营养元素内循环及外循环研究Ⅱ.落叶前后养分在植株体内外的迁移和循环. 应用生态学报, 4(1): 27-31.
    50. 盛学斌,孙建中,刘云霞. 2002. 坝上地区土地利用与覆被变化对土壤养分的影响. 农村生态环境, 18(4): 10-14.
    51. 史培军, 宫鹏, 李晓兵. 2000. 土地利用/覆盖变化研究的方法与实践. 北京: 科学出版社, 16-105.
    52. 孙维侠, 史学正, 于东升. 2003. 土壤有机碳的剖面分布特征及其密度的估算方法研究――以 我国东北地区为例. 土壤, 35(3): 236-241.
    53. 王洪杰,李宪文,史学正,于东升. 2003. 不同土地利用方式下土壤养分的分布及其与土壤颗粒组成关系. 水土保持学报, 17(2): 44-46.
    54. 王琳, 欧阳华, 周才平, 张锋, 白军红, 彭奎. 2004. 贡嘎山东坡土壤有机质及氮素分布特征. 地理学报, 59(6): 1012-1019.
    55. 王清奎,汪思龙, 高洪, 刘艳, 于小军. 2005. 土地利用方式对土壤有机质的影响. 生态学杂志, 24(4): 360-363.
    56. 王绍强, 刘纪远. 2002. 土壤碳蓄积量变化的影响因子研究现状. 地球科学进展, 17: 528-534.
    57. 王正直, 刘春生, 邱德峰, 常红岩. 2002. 果园土壤铜素的含量、形态及剖面特征研究. 土壤通报, 33(5): 369-371.
    58. 吴建国, 张小全, 徐德应. 2003. 土地利用变化对生态系统碳汇功能影响的综合评价.中国工程科学, 5(9): 65-71.
    59. 吴建国, 张小全, 徐德应. 2004. 土地利用变化对土壤有机碳贮量的影响. 应用生态学报, 15(4): 593-599.
    60. 向万胜,李卫红. 2001. 湘北丘岗地区红壤和水稻土微量元素的有效性研究. 土壤通报, 32(1): 42-46.
    61. 徐克学. 1999. 生物数学. 北京: 科学出版社.
    62. 于君宝,王金达,刘景双,齐晓宁,王洋. 2002. 典型黑土pH 值变化对微量元素有效态含量的影响研究. 水土保持学报, 16(2): 93-95.
    63. 于群英,李孝良. 2003. 土壤有机磷组分动态变化和剖面分布. 安徽技术师范学院学报,17(3): 225-227.
    64. 于淑芳,杨力. 2001. 石灰性土壤Ca-P 分布及转化特征的研究. 土壤学报, 38 (3):373-378.
    65. 于兴修,杨桂山,王瑶. 2004. 土地利用/覆被变化的环境效应研究进展与动向. 地理科学, 24(5): 627-633.
    66. 袁东海,王兆骞,郭新波,陈欣,张如良. 2002. 红壤小流域不同利用方式水土流失和有机碳流失特征研究. 水土保持学报, 16(2): 24-28.
    67. 曾曙才,谢正生,俞元春,刘月秀. 2002. 北亚热带森林土壤有效微量元素状况研究. 生态学报, 22(12): 2141-2146.
    68. 张玉革, 姜勇, 梁文举, 孟凡祥. 2004. 潮棕壤不同利用方式pH 和Olsen-P 的垂直变化特征. 水土保持学报, 18(4): 89-92.
    69. 赵淑苹,陈立新,包雪丽. 2005. 落叶松人工林土壤微量元素的有效性. 东北业大学学报,33(3): 26-28.
    70. 周剑芬,管东生. 2004. 森林土地利用变化及其对碳循环的影响. 生态环境, 13(4): 674-676.
    71. Adger W N, Brown K, Shiel R S, Whitby M C. 1992. Carbon dynamics of land use in Great Britain. Journal of Environmental Management, 36(2): 117-133.
    72. Ajayi O C, Franzel S, Kuntashula E, Kwesiga F K. 2003. Adoption of improved fallow technology for soil fertility management in Zambia: Empirical studies and emerging issues. Agroforestry Systems, 59: 317-326.
    73. Andraski TW, Bundy LG. 2003. Relationships between phosphorus levels in soil and in runoff from corn production systems. Journal of Environmental Quality, 32: 310-316.
    74. Aubert M, Bureau F, Vinceslas-Akpa M. 2005. Sources of spatial and temporal variability of inorganic nitrogen in pure and mixed deciduous temperate forests. Soil Biology & Biochemistry 37: 67-79.
    75. Berg B, Meentemeyer V. 2002. Litter quality in a north European transect versus carbon storage potential. Plant and Soil, 242: 83-92.
    76. Blevens R L, Thomas G W, Smith M S. 1983. Changes of soil properties after 10 years continuous non-tilled and conventionally tilled corn. Soil and Tillage Research, 3: 135-146.
    77. Brady A C, Weil R R. 2002. The Nature and Properties of Soils (13eds). Prentice Hall, New Jersey: USA.
    78. Burke I C, Lauenroth W K, Vinton M A, Vinton M A, Hook P B, Kelly B H, Epstein H E, Aguair M R, Bobles M D, Aguilera M O, Murphy K L, Gill R A. 1998. Plant-Soil interactions in temperate grasslands. Biogeochemistry, 42: 121-143.
    79. Cambardella C, Elliott E. 1994. Carbon and nitrogen dynamics of soil organic matter fractions from cultivated grassland soils. Soil Science Society of America Journal, 58: 122-130.
    80. Chae Y M, Krouse H R. 1986. Alteration of sulfur-34 natural abundance in soil by application of feedlot manure. Soil Science Society of America Journal, 50: 1425-1430.
    81. Chikowo, R., Mapfumo P., Nyamugafata P. 2004. Mineral N dynamics, leaching and nitrous oxide losses under maize following two-year improved fallows on a sandy loam soil in Zimbabwe. Plant and Soil, 259: 315-330.
    82. Corre M D, Schnabel R R, Shaffer J A. 2000. Evaluation of soil organic carbon under forests, cool-season grasses and warm-season grasses in the northeastern US. Soil Biology and Biochemistry, 31(11): 1 531-1 539.
    83. Davidson E A, Ackerman I L. 1993. Changes in soil carbon inventories following cultivation of previously tilled soils. Biogeochemistry, 20: 161-164.
    84. Davidson E A, Keller M, Erikson H E et al. 2000. Testing a conceptual model of soil emissions of nitrous and nitric oxides. Bioscience, 50: 667-680.
    85. Dersch G, B?hm K. 2001. Effects of agronomic practices on the soil carbon storage potential in arable farming in Austria. Nutrient Cycling in Agroecosystems, 60: 49-55.
    86. Eriksen J, Askegaard M. 2000. Sulphate leaching in an organic crop rotation on sandy soil in Denmark. Agriculture, Ecosystems and Environment, 78: 107-114.
    87. Eriksen J, Mortensen J V, Dissing Nielsen J, et al. 1995. Sulphur mineralisation in five Danish soils as measured by plant uptake in a pot experiment. Agriculture, Ecosystems and Environment, 56: 43-51.
    88. Eriksen J, Olesen J E, Askegaard M. 2002. Sulphate leaching and sulphur balances of an organic cereal crop rotation on three Danish soils. European Journal of Agronomy, 17: 1-9.
    89. Finzi A C, van Breemen N, Canham C D. 1998. Canopy tree-soil interactions within temperate forests: tree species effects on soil pH and exchangeable cations. Ecological Applications, 8: 447-454.
    90. Franzen D W, Horman V L, Halvorson A D, et al. 1996. Sampling for site-specific farming: Topography and nutrient considerations. Better Crop, 80(3): 14-18.
    91. Gebhart D L.1994. The CRP increases in soil organic carbon.Journal of Soil and Water Conservation,49: 488-492.
    92. Grünzweig J M, Sparrow S D, Chapin ⅢF S. 2003. Impact of forest conversion to agriculture on carbon and nitrogen mineralization in suarictic Alaska. Biogeochemistry, 64: 271-296.
    93. Houghton R A. 1994. The worldwide extent of land-use change. Biosciences, 44: 305-313.
    94. Islam K R, Weil R R. 2000. Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agriculture, Ecosystems and Environment, 79 (9): 9-16.
    95. Jiang Y, Liang WJ, Wen D, Zhang YG, Chen WB. 2005a. Spatial heterogeneity of DTPA-extractable zinc in cultivated soils induced by city pollution and land use. Science in China Series C, 48(Supp. I): 82-91
    96. Jiang Y, Zhang Y G, Liang W J, Wen D Z. 2005b. Profile distribution and storage of soil organic carbon in an aquic brown soil as affected by land use. Agricultural Sciences in China, 4(3): 199-206.
    97. Jiang Y, Zhang YG, Liang WJ, Li Q. 2005c. Pedogenic and anthropogenic influence on calcium and magnesium behaviors in Stagnic Anthrosols. Pedosphere, 15(3): 341-346.
    98. Jobbáge E G, Jackson R B. 2001. The distribution of soil nutrients with depth: Global patterns and the imprint of plants. Biogeochemistry, 53: 51-77.
    99. Jug, A., Makeschin, F., Rehfuess, K.E., et al. 1999. Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. III. Soil ecological effects. Forest Ecology Management, 121: 85-99.
    100. Kaur B, Gupta S R, Singh G. 2000. Soil carbon, microbial activity and nitrogen availability in agroforestry systems on moderately alkaline soils in northern India. Applied Soil Ecology, 15(3): 283-294.
    101. Kaur B, Gupta S R, Singh G. 2002. Carbon storage and nitrogen cycling in silvopastoral systems on a sodic soil in northwestern India. Agroforestry Systems, 54: 21-29.
    102. Kaya B, Nair P K R. 2004. Dynamics of particulate organic matter following biomass addition from fallow-improvement species in southern Mali. Agroforestry Systems, 60: 267-276.
    103. Kern J S, Johnson M G. 1993. Consequences of tillage impacts on national soil and atmospheric C levels. Soil Science Society of America Journal, 57: 200-210.
    104. Kirchmann H, Pichlmayer F, Gerzabek M H. 1996. Sulfur balances and sulfur-34 abundance in a long-term fertilizer experiment. Soil Science Society of America Journal, 60: 174-178.
    105. Kuhlmann H. 1990. Importance of the subsoil for the K-nutrition of crops. Plant and Soil, 127: 129-136.
    106. Leifeld J, Bassin S, Fuhrer J. 2005. Carbon stocks in Swiss agricultural soils predicted by land-use, soil characteristics, and altitude. Agriculture, Ecosystems and Environment 105: 255-266.
    107. Lemenih M, Karltun E, Olsson M. 2005. Assessing soil chemical and physical property responses to deforestation and subsequent cultivation in smallholders farming system in Ethiopia. Agriculture, Ecosystems and Environment, 105: 373-386.
    108. Li Q K 1990. Soils of China. Beijing: Science Press.
    109. Li Z, Zhao Q G. 2001. Organic carbon concentration and distribution in soils under different land uses in tropical and subtropical China. Plant and Soil, 231: 175-185.
    110. Litaor M I, Seastedt T R, Walker M D, Carbone M, Townsend A. 2005. The biogeochemistry of phosphorus across an alpine topographic/snow gradient. Geoderma, 124: 49-61.
    111. Lugo A E. 1986. Land use and organic carbon content of some subtropical soils.Plant and Soil Science, 96: l85-196.
    112. Mafongoya P L, Dzowela B H. 1999. Biomass production of tree fallows and their residual effect on maize in Zimbabwe. Agroforestry Systems, 47: 139-151.
    113. Meng F X, Liang W J, Ou W, Jiang Y, Li Q, Wen D Z. 2005. Vertical distribution of plant nematodes in an aquic brown soil under different land uses. Journal of Forestry Research, 16(1): 39-42.
    114. Mensah F, Schoenau J J, Malhi S S. 2003. Soil carbon changes in cultivated and excavated land converted to grasses in east-central Saskachewan. Biogeochemistry, 63: 85-92.
    115. Mikhailova E A , Bryant R B, Vassenev I I, Schwager S J, Post C J. 2000. Cultivation effects on soil carbon and nitrogen contents at depth in the Russian Chernozem. Soil Science Society of America Journal, 64, 738-745.
    116. Ogutu Z A. 1999. An investigation of the influence of human disturbance on selected soil nutrients in Narok District, Kenya. Environmental Monitoring and Assessment, 58: 39-60.
    117. Olson B M, Kowe L E. 1990. Effects of intensive vegetable production on chemical properties and nutrient mineralization of a British Colunbia Humisol. Canadian Journal of Soil Science, 70: 445—460.
    118. Osher L J, Matson P A, Amundson R. 2003. Effect of land use change on soil carbon in Hawaii. Biogeochemistry, 65: 213-232.
    119. Ou W, Liang WJ, Jiang Y, Li Q, Wen D Z. 2005. Vertical distribution of soil nematodes under different land use types in an aquic brown soil. Pedobiologia, 49: 139-148.
    120. Page A L, Miller R H, Keeney D R. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties (2nd eds). ASA and SSSA, Madison, Wisconsin, USA. 1982. 595-734.
    121. Post W M, Kwon K C.2000. Soil carbon sequestration and land-use change. Global Change Biology, 6: 317-327.
    122. Potter K N, Torbert H A, Johnson H B, Tischler C R. 1999. Carbon storage after long-term grass establishment on degraded soils. Soil Science, 164: 718-725.
    123. Puget P, Lal R. 2005. Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use. Soil & Tillage Research, 80: 201-213.
    124. Qafoku, N.P., Summer, M.E., Radcliffe, D.E. 2000. Anion transport in columns of variable charge subsoils: nitrate and chloride. Journal of Environmental Quality, 29: 484-493.
    125. Quideau S A, Chadwick O A, Graham R C. 1996. Base cation biogeochemistry and weathering under oak and pine: A controlled long-term experiment. Biogeochemistry, 35; 377-398.
    126. Quideau S A, Graham R C, Chadwick O A, Wood H B. 1999. Biogeochemical cycling of calcium and magnesium by ceanothus and chamise. Soil Science Society of America Journal, 63: 1880-1888.
    127. Ramkens P F A M, Salomons W. 1998. Cd, Cu and Zn solubility in arable and forest soils: consequences of land use changes for metal mobility and risk assessment. Soil Science, 163: 859-871.
    128. Richter D D, Markewitz D, Wells C G, Allen H L, April R, Heine P R, Urrego B. 1994. Soil chemical change during three decades in an old-field loblolly pine (Pinus taeda L.) ecosystem. Ecology, 75: 1463-1473.
    129. Riley, W J, Ortiz-Monasterio I, Matson P A. 2001. Nitrogen leaching and soil nitrate, nitrite, and ammonium levels under irrigated wheat in Northern Mexico. Nutrient Cycling in Agroecosystems, 61: 1385-1314.
    130. Ritter, E., Vesterdal, L., Gundersen P. 2003. Changes in soil properties after afforestation of former intensively managed soils with oak and Norway spruce. Plant and Soil, 249: 319-330.
    131. Robles M D, Burke I C. 1998. Soil organic matter recovery on conservation reserve program fields in southeastern Wyoming. Soil Science Society of America Journal, 62: 725-730.
    132. Saif H T, Smeck N E, Bigham J M. 1997. Pedogenic influence on base saturation and calcium/magnesium ratios in soils of Southeastern Ohio. Soil Science Society of America Journal, 61: 509-515.
    133. Sanchez, P.A., Buresh, R.J., Leakey R.R.B. 1997. Trees, soils, and food security [J]. Philosophical Transactions: Biological Sciences, 352: 949-961.
    134. Schlesinger W H. 1995. An overview of the carbon cycle. In: Lal R. (ed.), Soils and Global Change Advances in Soil Science. Lewis Publishers, Boca Raton. 9-25.
    135. Schwertmann U. 1988. Occurrence and formation of iron oxides in various pedoenvironments. In: Stucki J W, Goodman B A, Schwertmann U (eds), Iron in Soils and Clay Minerals. Reidel Publishing Company, Norwell, MA, USA. 267-308.
    136. Sharrow S H, Ismail S. 2004. Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agroforestry Systems, 60: 123-130.
    137. Shaw J N, West L T, Hajek B F. 2001. Ca-Mg ratios for evaluating pedogenesis in the piedmont province of the southeastern United States of America. Canadian Journal of Soil Science, 81: 415-421.
    138. Sommer R, Denich M, Vlek P L G. 2000. Carbon storage and root penetration in deep soils under small-farmer land-use systems in the Eastern Amazon region, Brazil. Plant and Soil, 219: 231-241.
    139. Staben M L, Bezdicek D F, Smith J L, Fauci M F. 1997. Assessment of soil quality in conservation reserve program and wheat-fallow soils. Soil Science Society of America Journal, 61: 124-130.
    140. Stevenson F J. 1982. Humus Chemistry: Genesis, Composition, Reactions. New York: John Wiley & Sons.
    141. Stinson G, Freedman B. 2001. Potential for carbon sequestration in Canadian forests and agroecosystems. Mitigation and Adaptation Strategies for Global Change, 6: 1-23.
    142. Thuille A, Buchmann N, Schulze E D. 2000. Carbon stocks and soil respiration rates during deforestation, grassland use and subsequent Norway spruce afforestation in the Southern Alps, Italy. Tree Physiology, 20: 849-857.
    143. Turner II B L, Skole D, Sanderson S. 1995. Land use and land cover change (LUCC): Science Research Plan, IGBP Report No. 35.
    144. Vaithiyanathan P, Correll D L. 1992. The Rhode river watershed: phosphorus distribution and export in forest and agricultural soils. Journal of Environmental Quality, 21: 280-288.
    145. Wang Z L, Shao M A. 2002. Effects of tillage erosion on soil nutrients in loess sloping land of China. Transactions of the CSAE, 18(6): 63-67.
    146. Wedin, D. A., Tilman, D. 1996. Influence of nitrogen loading and species composition on the carbon balance of grasslands. Science, 274: 1720-1723.
    147. Wilde SA. 1964 .Changes in productivity induced by pine plantations. Soil Sci, 97: 276-278.
    148. Yang J C, Huang J H, Pan Q M, Tang J W, Han X G. 2004. Long-term impacts of land-use on dynamics of tropical soil carbon and nitrogen pools. Journal of Environmental Sciences, 16: 256-261.
    149. Zhang Y G, Jiang Y, Liang W J, Wen D Z, Zhang Y L. 2004. Vertical variation and storage of nitrogen in an aquic brown soil under different land uses. Journal of Forestry Research, 15(3): 192-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700