区域耕地耕层土壤氮磷储量及其价值时空变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤氮磷是陆地生态系统中重要的环境因子,其含量及其迁移状况直接影响着土壤生态系统的生产力和水体环境质量,土壤氮磷储量已成为生态和环境研究中的热点问题。本研究以厦门市同安区耕地为研究对象,利用同安区第二次土壤普查(1983年)和耕地地力调查(2007年)样点数据,借助GIS与数学模型集成技术分别估算并建立1983年和2007年同安区耕地耕层土壤氮磷密度、储量栅格数据库;利用土壤养分价格法测算同安区耕地耕层土壤氮磷价值,并建立1983年和2007年同安区耕地土壤氮磷价值栅格数据库,进而开展同安区耕地土壤氮磷密度、储量和价值的时空变化分析与分区评价。研究结果表明:
     1. 1983年和2007年全区氮密度分别变化于0.10kg/m2-0.24kg/m2和0.12kg/m2-0.26 kg/m2,平均氮密度分别为0.14kg/m2和0.18kg/m2。全区耕地耕层土壤氮密度空间变异明显,氮密度较低的乡镇包括南部的洪塘、西柯镇及凤南农场,氮密度较高的乡镇主要分布于北部的莲花和汀溪镇,全区1983年和2007年耕地耕层土壤氮密度均呈现北高南低的空间变化规律。
     2. 1983年和2007年全区耕地耕层土壤氮总储量分别为12563.33t和15815.30t,1983年和2007年耕地耕层土壤氮储量较高的乡镇均是莲花和五显镇,氮储量较低的乡镇也都是西柯镇和凤南农场,全区氮储量也基本呈现北高南低的空间变化规律。
     3. 1983年和2007年全区磷密度的变化范围分别为0.03kg/m2-0.20kg/m2和0.13kg/m2-0.37kg/m2,平均磷密度分别为0.09kg/m2和0.23kg/m2。1983年磷密度较低的乡镇主要分布于洪塘和五显镇,磷密度较高的乡镇主要分布于大同街道、汀溪镇和凤南农场;2007年耕地耕层土壤磷密度较低的乡镇主要分布于莲花和汀溪镇,磷密度较高的乡镇主要分布于祥平街道和五显镇;全区1983年耕地耕层土壤磷密度呈北高南低的空间变化规律,而2007年耕地耕层土壤磷密度则呈南高北低的空间变化规律。
     4. 1983年和2007年全区耕地耕层土壤磷总储量分别为8145.38t和19903.14t,1983年和2007年耕地耕层土壤磷储量较高的乡镇均是莲花和五显镇,磷储量较低的乡镇均是西柯镇和凤南农场,全区磷储量也基本呈现南低北高的空间变化规律。
     5. 1983年和2007年全区耕地耕层土壤氮总价值分别为4700.33万元和5916.98万元,1983年各乡镇耕地耕层土壤氮价值变化于123.50万元-1025.82万元,均值为522.26万元;2007年各乡镇氮价值变化于151.1万元-1308.41万元,均值为657.44万元,全区耕地耕层土壤氮价值也呈现北高南低的空间变化规律。
     6.全区1983年和2007年耕地耕层土壤磷总价值分别为2572.58万元和6286.07万元,1983年各乡镇耕地耕层土壤磷价值变化于68.36万元-553.37万元,均值为285.84万元;2007年各乡镇磷价值变化于177.09万元-1521.59万元,均值为698.45万元,全区耕地耕层土壤磷价值也呈现北高南低的空间变化规律。
     7.同安区1983年和2007年耕地耕层土壤氮高储量区面积分别为68.66hm2和1704.89hm2,1983年高储量区主要分布于大同街道、五显和新民镇,2007年高储量区主要分布于莲花镇;中储量区面积分别为2684.64hm2和5349.59hm2,1983年中储量区主要分布于莲花、汀溪和五显镇,2007年中储量区主要分布于莲花和五显镇;低储量区面积分别为5466.99hm2和1165.87hm2,1983年低储量区主要分布于五显和莲花镇,2007年低储量区主要分布于新民和洪塘镇。
     8.同安区1983年耕地耕层土壤无磷高储量区,2007年耕地耕层土壤磷高储量区面积为1438.26hm2,主要分布于五显镇。1983年和2007年磷中储量区面积分别为4.55hm2和5696.38hm2, 1983年中储量区主要分布于大同街道,2007年中储量区主要分布于莲花和五显镇。1983年和2007年磷低储量区面积分别为8215.80hm2和1083.95hm2,1983年低储量区主要分布于五显和莲花镇,2007年低储量区主要分布于莲花和汀溪镇。
     9. 1983年至2007年同安区耕地耕层土壤氮密度、氮储量及氮价值总体呈上升趋势。全区氮密度升高的耕地面积合计占耕地总面积的96.78%,少量的氮密度降低区主要分布于新民镇西北部和大同街道的部分地区。全区1983年至2007年耕地土壤氮储量、氮价值空间变化趋势与氮密度变化完全一致。
     10. 1983年至2007年同安区耕地耕层土壤磷密度、磷储量及磷价值上升趋势明显,磷素呈现非常明显的富集趋势。全区磷密度升高的耕地占耕地总面积的98.00%,少量的降低区主要集中分布于汀溪镇的北部山区和河谷坡地。全区24年来耕地土壤磷储量、磷价值变化趋势与磷密度变化也完全一致。
Nitrogen(N) and phosphorus(P)are important environmental factors in terrestrial ecosystem, their content and migration can directly influence soil ecosystem productivity and water environmental quality, the storage of soil N and P has become a hot issue in ecological and environmental research. Based on the data of the second survey of soil samples in 1983 and the survey of samples of farmland capability in Tong’an district, Xiamen in 2007, the grid database of the storage and density of N and P in the plough horizon of farmland soil in Tong’an district in 1983 and 2007 was evaluated and established by GIS and mathematical model respectively in this study; The value of N and P of the soil in the plough horizon in Tong’an district was calculated by Soil nutrient price method. In addition, the grid database of the value of N and P about the farmland soil in Tong’an district in 1983 and 2007 was also established respectively. Then the temporal and spatial variation of the value of storage and density about N and P in this district was analyzed and the division was evaluated. The results of the study are as follows:
     1. In 1983 and 2007, the density of N in the soil of plough horizon in Tong’an district was between 0.10kg/m2-0.24kg/m2 and 0.12kg/m2-0.26kg/m2 respectively, and the average was 0.14kg/m2 and0.18 kg/m2 respectively. The spacial variation of the density of N in the whole district was distinct. The towns with lower include Hongtang, Xike Town and Fengnan farm in the south. The towns with higher density of N include Lianhua and Tingxi town in the north. In Tong’an district, the density of N in the north was higher than the south in both 1983 and 2007.
     2. The total storage of N in the soil of plough horizon in Tong’an district was 12563.33t and 15815.30 t in 1983 and 2007 respectively. Both in 1983 and 2007, the mainly towns with higher storage of N are Lianhua and Wuxian, and the storage of N was lower in Xike and Fengnan farm, the storage of N in the north was also higher than the south in space.
     3. In 1983 and 2007, the density of P in the soil of plough horizon in Tong’an district was between 0.03kg/m2-0.20kg/m2 and 0.13kg/m2-0.37kg/m2 respectively and the average was 0.09kg/m2 and 0.23kg/m2 respectively. In 1983, the towns with lower density of P included Hongtang and Wuxi Town, the towns with higher density of P included Datong, Tingxi town and Fengnan farm. In 2007, the towns with lower density of P included Lianhua and Tingxi, the towns with higher density of P included Xiangping and Wuxian town. In Tong’an district, the density of P was higher in the north and lower in the south in 1983, but in 2007, the density of P was higher in the south and lower in the north.
     4. The total storage of P in the soil of plough horizon in Tong’an district was 8145.38t and 19903.14t in 1983 and 2007 respectively. Both in 1983 and 2007, the towns with higher storage of P are mainly Lianhua and Wuxian town, at the same time storage of P in Xike and Fengnan farm was lower, storage of P in the north was also higher than the south in space.
     5. In Tong'an district, the total value of N in the soil of plough horizon in 1983 and 2007 was 4.70×107 yuan and 5.92×107 yuan respectively. In 1983, the value of N in different town was between 1.24×106 yuan and 1.03×107 yuan with the average of 5.22×106 yuan. In 2007, the value of N in different town was between 1.51×106 yuan and 1.31×107 yuan with the average of 6.57×106 yuan. The in different town was also higher in the north and lower in the south.
     6. In Tong'an district, the total value of P in the soil of plough horizon in 1983 and 2007 was 2.57×107yuan and 6.29×107yuan respectively. In 1983, the value of P in different town was between 6.84×105yuan and 5.53×106yuan with the average of 2.86×106yuan. In 2007, the value of P in different town was between 1.77×106yuan and 1.52×107yuan with the average of 6.98×106yuan. The value of P was also higher in the north and lower in the south.
     7. In Tongan district, the area with higher Storage of N was 68.66hm2 and 1704.89hm2, took up 15.04% and 2.88% of the total arable land respectively in 1983 and 2007, Such area mainly located in Datong, Wuxian, Ximin Town. The area with medium Storage of N was 2684.64hm2 and 5349.59hm2, took up 62.66% and 65.08% of the region's total area of arable land respectively in 1983 and 2007, Such area mainly located in Lianhua, Tingxi and Wuxian town in 1983 while in Lianhua and Wuxian Town in 2007. The area with low Storage of N mainly located in Wuxian and Lianhua Town in 1983 and in Xinmin and Hongtang Town in 2007, and accounted for 66.51% and 14.18% of the total area of arable land in this region in 1983 and 2007 respectively. The area with low Storage of N was 5466.99 hm2 and 1165.87 hm2.
     8. In Tong’an district, there was no areas with high Storage of P reserved in 1983. The area with higher Storage of P was 1438.26hm2, took up 17.50% of the total arable land in 2007, Such area mainly located in Wuxian Town. The area with medium Storage of P mainly located in Datong Town in 1983 and in Lianhua and Wuxian Town in 2007, and accounted for 0.06% and 69.30% of the total area of arable land in this region in 1983 and 2007 respectively. The area of medium Storage of P was 4.55hm2 and 5696.38hm2. The area with low Storage of P was 8215.80hm2 and 1083.95hm2, took up 99.94% and 13.19% of the region's total area of arable land respectively in 1983 and 2007, Such area mainly located in Lianhua and Wuxian town in 1983 while in Lianhua and Tingxi Town in 2007.
     9. During 1983 and 2007, there was a general trend of increasing of the density of N, the storage and value of N in the arable layer of the farm land took up 96.78% of the total arable land in Tong’an district. The region where the density of N descended mainly in the northwest of Xinmi Town and parts of Datong street. The change of the storage of soil N and the value of N spatial were the same as the density of N from 1983 to 2007 in the whole area .
     10. During 1983 and 2007, there was a general trend of increasing of the density of P, the storage and value of P in the arable layer of the farm land took up 98.00% of the total arable land in Tong’an district. The region where P density descended mainly in the north of Tingxi Town with Mountain or Valley slope. The change of the storage of soil P and the value of P spatial were the same as the density of N during this 24 years.
引文
[1]程先富,史学正,于东升等.基于GIS的土壤全氮空间分布估算—以江西兴国县为例[J].地理研究,2007,26(1):110-116.
    [2] Sharpley A N, Chapra S C, Wedeplhl R. Managing agricultural phosphorus for protection of surface waters: issues and options [J]. Journal of Environmental Quality. 1994, 23(3): 437-451.
    [3]白军红,邓伟,张玉霞.莫莫格湿地土壤氮磷空间分布规律研究[J].水土保持学报,2001, 15(4):79-81.
    [4]李庆逵等主编.中国农业持续发展中的肥料问题[M].江西科学技术出版社,南昌,1997,38-51.
    [5]赵其国.现代土壤学与农业持续发展[J].土壤学报,1996,33(1):1-12.
    [6]金继运,白由路.精准农业与土壤养分管理[M].中国大地出版社,2001,172-181.
    [7] Sharpley, A. N. Identifying sites vulnerable to phosphorus loss in agriculture runoff [J]. Journal of Environmental Quality. 1995, 24(5):947-951.
    [8] Sharpley, A. N. Dependence of runoff phosphorus on extractable soil phosphorus [J]. Journal of Environmental Quality. 1995, 24(5):920-926.
    [9] Isermann, K. Share of agriculture in nitrogen and phosphorus emissions into the surface waters of Western Europe against the background of their eutrophication [J]. Nutrient Cycling in Agroecosystems. 1990, 26: 253-269.
    [10] Foy, Whithers. The contribution of agricultural phosphorus to eutrophication [M]. Fertiliser Society, Peterborough, 1995, UK, 211-23.
    [11]张维理,武淑霞,冀宏杰等.中国农业面源污染形势估计及控制对策—21世纪初期中国农业面源污染的形势估计[J].中国农业科学,2004,37(7):1008-1017.
    [12]李宝贵,伊澄清,周怀东.中国“三湖”的水环境问题和防治对策与管理[J].水问题论坛,2001,(3):36-39.
    [13]崔玉亭.化肥与环境保护[M],北京:化学工业出版社,2000,112-115.
    [14] Tiessen H, Cuevas E, Chacon P. The role of soil organic matter in sustaining soil fertility [J]. Nature. 2002, 371(27): 783-785.
    [15]白军红,邓伟,朱颜明等.湿地土壤有机质和全氮含量分布特征对比研究[J].地理科学. 2002,22(2):232-237.
    [16] Sainju, U. M., B. P. Singh, W. F. Whitehead, and S. Wang. Carbon supply and storage in tilled and nontilled soils as influenced by cover crops and nitrogen fertilization [J]. Journal of Environmental Quality. 2006, 35:1507-1517.
    [17]全国土壤普查办公室,中国土壤[M].北京:中国农业出版社,1998.
    [18] McLauchlan, K. K. Effects of soil texture on soil carbon and nitrogen dynamics after cessation of agriculture [J]. Geoderma. 2006, 136:289-299.
    [19] Giardina, C. P., M.G. Ryan, R. M. Hubbard, and D. Binkley. Tree species and soil textural controls on carbon and nitrogen mineralization rates [J]. Soil Science Society of America Journal. 2001, 65:1272-1279.
    [20]王洪杰,李宪文,史学正等.不同土地利用方式下土壤养分的分布及其与土壤颗粒组成关系[J].水土保持学报. 2003,17(2):44-46.
    [21]黄道友,陈桂秋,刘守龙等.红壤丘陵区坡地固体径流基本理化性状探析[J].中国生态农业学报. 2005,13(3):87-90.
    [22] Shahandeh, H., A. L. Wright, F. M. Hons, and R. J. Lascano. Spatial and Temporal Variation of Soil Nitrogen Parameters Related to Soil Texture and Corn Yield [J]. American Society of Agronomy. 2005, 97:772-782.
    [23] Davidson, E. A., P.M. Vitousek, P. A. Matson, R. Riley, G. Garciamendez, and J.M. Maass. Soil Emissions of Nitric-Oxide in a Seasonally Dry Tropical Forest of Mexico [J]. Journal of Geophysical Research-Atmospheres. 1991, 96:15439-15445.
    [24]全国土壤普查办公室,中国土种志[M].北京:农业出版社,1996.
    [25] Ladd, J., N. M. Amato, and J. M. Oades. Decomposition of plant material in Australian Soil III: Residual organic and microbial C and N from Isotope-labeled legume material and soil organic matter, decomposing under field conditions [J]. Australian Journal of Soil Research. 1985. 23:603-611.
    [26] Post, W. M., J. Pastor, P. J. Zinke, and A. G. Stangenberger. Global patterns of soil nitrogen storage [J]. Nature. 1985 317:613-616.
    [27]李辉信,胡锋,蔡贵信等.红壤的供氮能力及化肥氮的去向[J].土壤学报. 2002,39(3):390-396.
    [28] Brye, K. R., and C. J. Kucharik. Carbon and nitrogen sequestration in two prairie topo chronosequences on contrasting soils in southern Wisconsin [J]. The American Midland Naturalist .2003, 149:90-104.
    [29]刘杏梅,徐建民,章明奎等.太湖流域土壤养分空间变异特征分析一以浙江省平湖市为例[J].浙江大学学报. 2003,29(1):76-82.
    [30]傅伯杰,郭旭东,陈利顶等.土地利用变化与土壤养分的变化一以河北省遵化县为例.生态学报[J]. 2001,21(6):926-931.
    [31] Paul, G. S., E. H. Janis, and V. H. Nguyen. Reforestation and topography affect montane soil properties, nitrogen pools and nitrogen transformations in Hawaii [J]. Soil Science Society of America Journal. 1985, 68:959-968.
    [32] Zhang, Y. G., Y. Jiang, and W. J. Liang. Vertical variation and storage of nitrogen in an aquic brown soil under different land use [J]. Journal of Forestry Research. 2004, 15:192-196.
    [33] B. J. Zebarth, J. W. Paul and R. Van Kleeck. The effect of nitrogen management in agricultural production on water and air quality: evaluation on a regional scale [J]. Agriculture, Ecosystems & Environment. 1999, 72(1): 35-52.
    [34]高云晖.粮油轮作中施肥对产量和土壤肥力的影响[J].土壤肥料. 2004,1:22-24.
    [35]黄昌勇,土壤学[M].北京:中国农业出版社,2004.
    [36]曹翠玉,张亚丽,沈其荣等.有机肥料对黄潮土有效磷库的影响[J].土壤. 1998,(5):235-238.
    [37]吕家珑.李祖荫石灰性土壤中固磷机制的探讨[J].土壤通报. 1991,22(5):204-206.
    [38]胡荣桂,陈家和.不同母质的砖红壤的磷组分研究[J].海南大学学报自然科学版. 1998,16(2):133-137.
    [39]刘建玲,张凤华.土壤磷素化学行为及影响因素研究进展[J].河北农业大学学报. 2000,23(3):36-45.
    [40] Rodriguez, D., J. Goudriaan, and M. Oyarzabal. Phosphorus nutrition and water stress tolerance in wheat plants [J]. Journal of Plant Nutrition. 1996, 19:29-39.
    [41]高超,张桃林,吴蔚东等.氧化还原条件对土壤磷素固定与释放的影响[J].土壤学报. 2002,39(4):542-549.
    [42] Gelsomino, A., L. Badalucco, L. Landi, and G. Cacco. Soil carbon, nitrogen and phosphorus dynamics as affected by solarization alone or combined with organic amendment [J]. Plant and Soil. 2006, 279:307-325.
    [43] Chen, F. S., D. H. Zeng, and X. Y. He. Small-scale spatial variability of soil nutrients andvegetation properties in semi-arid northern China [J]. Pedosphere. 1985, 16:778-787.
    [44] Donahue, R. L., R. W. Miller, and J. C. Schickluna, (eds.) Soils in introduction to soils and plant growth [M]. Prentice-Hall, New York, 1985.
    [45] Rubeak, G. H., and E. Sibbesen. Soil phosphorus dynamics in a long-term field experiment at Askov [J]. Biology and Fertility of Soils. 1995, 20:86-92.
    [46]陈庆强,孙彦敏,沈承德等.华南亚热带山地土壤有机质更新特征定量研究[J]. 2002,22(2) :196-201.
    [47] Pierzynski, G. M., and T. J. Logan. Crop, Soil, and Management Effects on Phosphorus Soil Test Levels [J]. Journal of Production Agriculture. 1993, 6:513-520.
    [48] Zhang, H. C., Z. H. Cao, Q. R. Shen, and M. H. Wong. Effect of phosphate fertilizer application on phosphorus (P) losses from paddy soils in Taihu Lake Region I. Effect of phosphate fertilizer rate on P losses from paddy soil [J]. Chemosphere. 2003, 50:695-701.
    [49] Zhao, J. N., Q. R. Shen, and W. Ran. Phosphorus loss with runoff from a side bleaching paddy soil under continual P application in Taihu Lake Region [J]. Nongcun Shengtai Huanjing . 2005, 21:29-33.
    [50] Burns, R. C., and R.W. F. Hardy, (eds.) Nitrogen Fixation in Bacteria and Higher Plants [M]. Springer-Verlag, New York, 1975.
    [51] Stevenson, F. J. Origin and distribution of nitrogen in soils, p. 1-42, In F. J. Stevenson, ed. Nitrogen in Agricultural Soils[M]. American Society of Agronomy, Madison, 1982.
    [52] Mcelroy, M. Global Change: A biogeochemical perspective [M]. 1983, JPL-Publ:83-51
    [53] Batjes, N. H. Total carbon and nitrogen in the soils of the world [J]. European Journal of Soil Science. 1983, 47:151-163.
    [54]郭然,王效科,刘康,杨帆.樟子松林下土壤有机碳和全氮储量研究[J].土壤,2004,36(2):192-196.
    [55]邓仁菊,杨万勤,张健等.川西亚高山森林土壤有机层碳、氮、磷储量特征[J].应用与环境生物学报,2007,13(4):492-496.
    [56]曾希柏,黄雪夏,刘子刚等.种植年限对三江平原农田土壤剖面性质及碳、氮含量的影响[J].中国农业科学,2006,39(6):1186-1195.
    [57]焦加国,杨林章,武俊喜等.中国典型丘陵区人口密集乡村景观的土壤碳氮磷分布特征[J].应用生态学报,2007,18(7):1471-1478.
    [58]白军红,王庆改,丁秋祎.不同芦苇沼泽湿地土壤全氮季节动态变化和氮储量研究(简报)[J].草业学报,2008,17(2):162-165.
    [59]孙志高,刘景双,李新华.三江平原不同土地利用方式下土壤氮库的变化特征[J].农业系统科学与综合研究,2008,24(3):270-274.
    [60]武俊喜,焦加国,肖红生.长江平原区乡村景观的结构、管理及其对土壤氮磷的影响[J].生态学报,2008,28(8):3606-3717.
    [61]焦加国,武俊喜,杨林章等.不同区域人口密集的乡村景观中土地利用对土壤氮磷的影响[J].水土保持学报,2006,20(3):88-101.
    [62] Tian, H. Q., S. Q. Wang, J. Y. Liu, S. F. Pan, H. Chen, C. Zhang, and X. Z. Shi. Patterns of soil nitrogen storage in China [J]. Global Biogeochemical Cycles 20. 2006, 25:58-63.
    [63]张春娜,延晓冬,杨剑虹.中国森林土壤氮储量估算[J].西南农业大学学报(自然科学版),2004,26(5):572-579.
    [64]刘纪远,王绍强,陈镜明等. 1999-2000年中国土壤碳氮蓄积量与土地利用变化[J].地理学报. 2004,59(4):483-496.
    [65]王秋贤,孙根年,任志远.渭北高原植被包土保肥生态效益的计量研究[J].资源科学,2002,24(5):58-63.
    [66] Neufeldt, H., J. E. da Silva, M. A. Ayarza, and W. Zech. Land-use effects on phosphorus fractions in Cerrado oxisols [J]. Biology and Fertility of Soils. 2000, 31:30-37.
    [67] Onthong, J., M. Osaki, C. Nilnond, and T. Tadano. Phosphorus status of some highly weathered soils in peninsular Thailand and availability in relation to citrate and oxalate application [J]. Soil Science and Plant Nutrition. 1999, 45:627-637.
    [68] Smil, V. Phosphorus in the environment: Natural flows and human interferences [J]. Annual Review of Energy and the Environment. 2000, 25:53-88.
    [69] Stevenson, F. J., and M. A. Cole, (eds.) Cycles of Soil Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients, pp. 1-637 [M]. John Wiley & Sons, Inc., New York, 1999.
    [70] Sims, J. T., R. R. Simard, and B. C. Joern. Phosphorus loss in agricultural drainage: historical perspective and current research [J]. Journal of Environmental Quality. 1998, 27:277-293.
    [71] Zhang, C., H. Q. Tian, J. Y. Liu, S. Q. Wang, M. L. Liu, S. F. Pan, and X. Z. Shi. Pools and distributions of soil phosphorus in China - art. no. GB1020 [J]. Global Biogeochemical Cycles. 2005, 19:B1020-B1029.
    [72] Jiang, Y., W. Liang, and Y. Zhang. Spatial variability of soil phosphorus in field scale [J]. Global Biogeochemical Cycles. 2005. 16(11):2086-2091.
    [73]武俊喜,焦加国,肖红生.长江平原区乡村景观的结构、管理及其对土壤氮磷的影响[J].生态学报,2008,28(8):3606-3717.
    [74]焦加国,武俊喜,杨林章等.不同区域人口密集的乡村景观中土地利用对土壤氮磷的影响[J].水土保持学报,2006,20(3):88-101.
    [75]郝伟罡,李畅游,魏永富等.干旱区草型湖泊湿地价值量化评估[J].中国水利水电科研研究院学报,2007,5(4):274-280.
    [76]李新,程国栋,卢玲.空间内插方法比较[J].地球科学研究,2000,15 (3):260
    [77] ESRI.Using Geostatistical Analyst[M]. ESRI Inc, 2004.
    [78]秦涛. Geostatistics Analyst中空间内插方法的介绍[J].化工矿产地质,2005,27(4):235-240.
    [79]许宏卫,王珂,JohnS.Baily等.土壤钾素空间变异性和空间插值方法的比较研究[J].植物营养与肥料学报,2000,6(3):318-322.
    [80]胡惠萍.土壤特性的空间差异及其空间插值的方法研究[J].湘潭师范学院学报(自然科学版),2001,23(3):99-101.
    [81]林忠辉,莫兴国,李宏轩等.中国陆地区域气象要素的空间插值[J].地理学报,2002,57(1):47-561.
    [82]白世彪,陈晔,王建等.等值线绘图软件SURFER7.0中九种插值法介绍[J].物探化探计算技术,2002,24(2):15-19.
    [83]邓晓斌等.基于ArcGIS两种空间插值方法的比较[J].地理空间信息,2008,6(6):85-87.
    [84]唐泽圣.三位数据场可视化[M].北京:清华大学出版社,1999.
    [85]王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1999.
    [86]秦涛,付宗堂. ArcGIS中几种空间插值方法的比较[J].物探化探计算技术,2007,29(1):72-75.
    [87]史周,李艳.地统计学在土壤学中的应用[M].北京:中国农业出版社,2006.
    [88]王援高,王人潮,王振华.耕地土壤养分价格的含义与测算方法及其应用之探讨[J].浙江农业大学学报,1999,25(3):337-340.
    [89]胡宏祥,洪天求,黄明等.巢湖马鞍山西北坡土壤侵蚀及其N、P时空变异研究[J].水土保持学报,2007,21(5): 30-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700