无线电设备射频一致性自动测试系统的不确定度分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不确定性原理是自然界的一个基本性质。发现测量不确定度是现代误差理论的重要内容。为了克服误差评定存在的问题,更科学地表达测量结果,从1993年开始,国际计量组织发布了《测量不确定度表示指南》(GUM),我国根据国际标准的要求,也制定了JJF1059-1999《测量不确定度评定与表示》规范。从此用不确定度评定测量结果已成为主要表示方法,广泛应用于校准、检定、建标和标准考核等各个方面。
     随着电子技术、通信技术、计算机技术的飞速发展,各种测试技术也得到了快速的发展。在计算机控制下的测试过程变得更加的高效、简捷、灵活。在通信领域,自动测试系统作为主流测试手段的趋势已经越来越明显。通过自动测试软件,实现对多台仪表的统一控制,自动完成复杂、繁琐的测试工作,避免人为因素造成的误差。目前,无线电设备的型号核准测试,如调频对讲机、PHS、DECT、GSM、CDMA、WCDMA、蓝牙、WLAN等等终端设备的射频性能都是由自动测试系统完成的。
     自动测试系统作为测量工具,它对测量结果的不确定度产生不可忽略的影响。根据ISO/IEC 17025的要求,必须要对自动测试系统的进行不确定度评估。但由于电磁兼容性测试的不确定度评估在我国起步较晚,特别在无线电测量领域,对测量不确定度的评定有其自身的特点,即使对给定的同一参数,由于对评定计算的不同理解,得到的标准不确定度及合成标准不确定度结果不同,导致无法作出测量结果的符合或不符合判定。目前国内在这一领域的相关标准还未出台,本文将不确定度原理引入测量系统分析讨论实际测量系统模型,通过对ETSI(欧洲电信标准协会)技术报告ETSI 100 028等相关文献的理解,详细给出无线电指标测量中测量不确定度的评定过程,供相关人员参考。
     本文采用从整体到部分,从一般到特殊的研究思路。首先综述了测量不确定度在国内外的研究及应用的进展,阐明本课题研究的现实意义。然后从基本理论入手,简要介绍不确定度的基本概念、计算方法评定流程,以及自动测试系统的基本结构和原理,为后续的研究分析奠定理论基础。接着,文章根据前述的基本理论,给出利用自动测试系统进行射频传导测试的不确定度数学模型和数学处理方法,它能准确、全面、条理地找出影响不确定度的各个因素。在处理失配不确定时用到的简化方法使得自动测试系统复杂的不确定度分析和计算变得简洁、可行。随后,文章以自主研制的GSM终端射频一致性自动测试系统为例,根据前一章的方法,计算系统不确定度,并给出不确定度报告。最后,本文根据对报告的分析,对减少自动测试系统不确定度提出有效的建议。
Uncertainty principle is the essence of nature. Found measurement uncertainty is an important aspect of the modern theory of error. In order to overcome the existing problems of error evaluation and to express the measurement result more scientifically, from 1993, International Bureau of Weights & Measures issued the "Guide to the Expression of Uncertainty in Measurement, (GUM)". In accordance with international standards, China has developed its uncertainty norm JJF1059-1999 "Uncertainty of Measurement Evaluation". Since then assessed by measurement uncertainty has become the main method that is widely used in calibration, testing, evaluation, and other aspects.
     As the fast development of computer technology, electronic technology, and communications technology, testing technology has also been developed rapidly. The testing processes become more efficient, simple and flexible under the control of computer. In the communications field, the trend that automatic test system as a mainstream means of testing has become increasingly evident. Through automated testing software, we can control more than one instrument.The automatic test system would complete complicated and tedious work of test, and avoid errors caused by human factors. At present, radio equipment RF performance approval tests, such as FM walkie-talkie devices, PHS, DECT, GSM, CDMA, WCDMA, bluetooth, WLAN, are completed by the automatic test system.
     As a measurement tool, automatic test system has its system uncertainy, and this uncertainty would produce non-negligible impact to the measurement result. However, uncertainty research in electromagnetic compatibility start late in China. Especially in radio measurement, the evaluation of measurement uncertainty has its own characteristics. Even given the same parameters, the standard uncertainty and the combined uncertainty will be different, because of the different interpretations of uncertainty assessed meathod, and will lead to the results of being incapable to make determination that wether the measurements comply with standard or not. At present, the relevant domestic standards in this area hawe not yet introduced. This article will introduce uncertainty principle into measurement system, discussed the actual measurement system model.Through the understanding of the ETSI technical reports, and other related documents,this article will give measurement uncertainty evaluation process in the radio measurement in detail for the relevant reference.
     This paper adopts the research meathod of from the whole to part, from general to specific. Firstly, summarize the domestic and international research and enabling progress in measurement uncertainty. Then start from the basic theory, give a brief introduction to the basic concepts of uncertainty, methods of evaluation processes, and automatic test system's basic structure and principles, build the theoretical foundation for the follow-up research and analysis. Thirdly, in accordance with the aforementioned theory, the article will give the uncertainty mathematical models and approach of the RF conducted automatic test system. Various impact factors can be identified accurately, comprehensively by using these models. The simplified method in dealing with the mismatch Uncertainty will make the uncertainty analysis and calculation become simple and feasible. Subsequently, choose GSM Terminals RF Automatic Test System for instance, computing system uncertainty, and giving uncertainty report. Finally, according to the analysis of the report, the article will give some effective proposals to reduce the uncertainty of Automatic Test System.
引文
[1]国家质量技术监督局计量司组编,JJF1059-1999“测量不确定度评定与表示指南”,中国计量出版社,2001
    [2]李行善 于劲松,“自动测试系统的原理、应用与发展",中国测控网技术论坛
    [3]白韶红,“检测系统的测量不确定度评定与应用(一)”,仪器仪表用户,2003年01期,P52-P53
    [4]尚德军,王军,“测量不确定度的研究和应用进展”,理化检验.化学分册,2004
    [5]陈理渊,黄进,“不确定度问题研究情况综述”,电路与系统学报,2004年第3期
    [6]郎维川,“关于EMC测量不确定度的第一个IEC国际标准正式出版”,安全与电磁兼容,2002,(03)
    [7]钱绍圣,“测量不确定度试验数据的处理和表示”,清华大学出版社,2002
    [8]李金海,“误差理论与测量不确定度评定”中国计量出版社,2005
    [9]沙定国,刘智敏,“测量不确定度的表示方法”,中国科学技术出版社,1994
    [10]沙定国,“误差分析与测量不确定度评定”,中国计量出版社,2003
    [11]倪育才,“测量不确定度理解与应用(六)--关于测量误差的基本概念”,中国计量,2004年12期,P61-P63
    [12]宋明顺,“测量不确定度评定与数据处理”,中国计量出版社,2000
    [13]费业泰,“误差理论与数据处理”,机械工业出版社,2004
    [14]李慎安,“JJF1059-1999《测量不确定度评定与表示》讨论之二A、B两类标准不确定度",工业计量,2005年06期P37-P38
    [15]刘智敏,“不确定度及其实践”,北京:中国标准出版社,2000
    [16]叶德培,“测量不确定度”,国防工业出版社,1996
    [17]周尊英,“实用统计技术指南”中国标准出版社,2003
    [18]陈光禹,“VXI总线测试平台技术”,电子科技大学出版社,1996
    [19]李行善,“ATS(自动测试系统)及ATE技术”,电子产品世界,2002
    [20]罗辉,王萍,“无线电发射设备测试中的不确定度分析”,广西物理,2006年04期
    [21]苑克龙,“无线电发射机检测方法和标准介绍”,国家无线电监测中心设备检测处,2006
    [22]李兆宏,刘恒,“无线电测量中测量不确定度的评定方法(1)”,中国无线电2004年第7期
    [23]李兆宏,刘恒,“无线电测量中测量不确定度的评定方法(2)”,中国无线电,2004年第8期
    [24]刘恒,“无线电测量中测量不确定度的评定方法(3)”,中国无线电,2004年第9期
    [25]徐小文,苏东林,戴飞等等,“EMC测试及其测量不确定度",电子测量技术,2006,(01)
    [26]中华人民共和国信息产业部发布,中华人民共和国通信行业标准YD 884-1996《900MHz TDMA数字蜂窝移动通信网移动台设备技术指标及测试方法》,1996
    [27]中华人民共和国信息产业部发布,中华人民共和国通信行业标准YD 1214-2002{900/1800MHz TDMA数字蜂窝移动通信网通用分组无线业务(GPRS)设备技术要求:移动台》,2002
    [28]中华人民共和国信息产业部发布,中华人民共和国通信行业标准YD 1215-2002{900/1800MHz TDMA数字蜂窝移动通信网通用分组无线业务(GPRS)设备测试方法:移动台》,2002
    [29]ETSI,TR 100 028-1 vl.4.1,2001
    [30]ETSI,TR 100 028-2 vl.4.1,2001
    [31]IEC,CISPR 16-4 "Uncertainty in EMC Measurements",2002
    [32]Jing Xuedong,Wang Chengtao,Pu Gengqiang,etal,"Evaluation of measurement uncertainties of virtual instruments","The International Journal of Virtual Instruments",2005,27(11/12):1202-1210
    [33]EAL-R2,"Expression of the Uncertainty of Measurement in Calibration",1997
    [34]ISO,"Guide to the expression of Uncertainty in Measurement",1995
    [35]ETS 300 607-1 "Digital cellular telecommunications system(Phase 2);Mobile Station(MS)conformance specification;Part l:Conformance specification(GSM 11.10-1 version 4.22.1)"
    [36]HTTP://WWW.BIPM.FR
    [37]HTTP://WWW.ISO.ch/welcome.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700