钙在蓝猪耳双受精过程中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙在被子植物双受精过程的作用一直是植物学家的兴趣热点。早期有关钙对植物有性生殖影响的研究主要集中在研究钙对花粉萌发和花粉管生长的作用方面。与花粉萌发和花粉管生长过程中的作用的研究相比,对雌蕊组织中,尤其是胚囊中的钙的作用的研究十分有限。到目前为止,对植物胚囊中钙的研究也绝大多数局限于总钙和膜钙的的测定,而对于被子植物胚囊内胞质游离钙的研究则几乎是空白。这方面的研究之所以比较滞后,一方面是由于大多数被子植物胚囊深藏于子房内,为处理和观察带来很大困难。同时研究胚囊胞质游离钙的技术手段也有很大的局限。因此,材料本身的结构限制和研究手段的限制使得植物双受精过程中胚囊内胞质游离钙的研究相比之下显得落后。
     针对这种现状,本工作选用具有裸露胚囊的玄参科的蓝猪耳植物为研究材料,研究Ca~(2+)与受精过程中相关的细胞学事件的关系,探索[Ca~(2+)]_(cyt)在被子植物双受精过程中的作用。工作之一首先是检测受精过程中雌性生殖单位中发生的显著的细胞学变化,以此作为受精与否的标志;然后经过外源导入钙(A23187诱导)研究[Ca~(2+)]_(cyt)在受精过程中的这一细胞学事件发生中所起的作用。另一相关的工作是构建转YC2.1基因的蓝猪耳植株(YC2.1是钙的荧光指示剂),然后对不同发育时期的蓝猪耳胚囊中[Ca~(2+)]_(cyt)的动态变化进行研究。
     通过荧光染色技术,我们首先观察了自然受精过程中胚囊内雌性生殖单位细胞壁的变化。结果表明,开花前蓝猪耳的卵细胞的胞壁是完整的;开花时胚囊已发育成熟,此时卵细胞在合点端部分区域是裸的;受精后(大约授粉后20小时)卵细胞的胞壁恢复完整。表明细胞壁的合成是受精后早期发生的细胞学事件。在此基础上,我们分离了胚囊细胞的原生质体。通过外源导入钙离子检查钙能否引发类似受精过程发生的细胞学事件。结果显示:外源钙的流入导致卵细胞内发生了与钙有关的细胞学事件,但不同状态的雌性生殖单位的细胞原生质体对外源钙的流入产生不尽相同的反应。胚囊已发育成熟(柱头已张开)时期的未受精的卵细胞原生质体,钙离子载体A23187处理后引发了卵细胞壁的形成,类似于发生在自然受精过程中的现象,而在对开花前分离的卵细胞原生质体以及受精后(授粉后20小时)分离的卵细胞原生质体作相同的处理后则未发现细胞壁的再生;同作为双受精参与者之一的中央细胞经过处理后,无论受精前还是受精后(授粉后20小时)均未发现细胞壁的再生。这些结果表明,外源钙流入导致的胞质Ca~(2+)浓度的升高,有促进卵细胞细胞壁快速形成的作用;而且,卵细胞对Ca~(2+)信号的反应与发育状态有关,可能仅成熟的未受精的卵细胞处于一种特殊的“感受态”,能对Ca~(2+)信号发生反应而快速形成细胞壁。
     转基因蓝猪耳植株构建工作已取得阶段性结果。从质粒扩增、农杆菌转化、侵染一直到叶盘法转化蓝猪耳,经过多次筛选,得到抗性苗,目前正在筛选表达YC2.1荧光指示剂的转基因苗。
Functions of Calcium during fertilization of angiosperm is one of research focuses for botanists. Prior studies of calcium on sexual reproduction of angiosperm mainly covered these about pollen germination and tube growth processes; there are, however, few works on pistil tissue. So far, achieved studies on calcium in embryo sac of angiosperm mostly located in memebrane-binding calcium and total calcium but little in free cytoplasmic calcium ([Ca2+]cyt ). Obstacles to progress are : (1) the double fertilization of most angiosperms occurs internally, deep within ovary tissues, as a result it is very difficult to investigate the truth. (2) There are few ideal techniques for mearsuring [Ca2+]cyt. In conclusion, both limitation delay studies of [Ca2+]cyt in embryo sac during fertilization.
    The thesis work is to investigate the connection of [Ca2+]cyt and fertilization by avoiding drawbacks noted above, say, employing an ideal experimental plant, Torenia fournieri , with a naked embryo sac that protrudes from the micropyle. Methods to be applied include extracellular Ca2+ influx treatment and intracellular Ca2+ measure by transgenical expression of Ca2+ fluorescence indicator during fertilization. The former is first to obtain protoplasts of female germination unit in different development stages, then Ca2+ lonophore treatment; the latter is to express transgenically the Ca2+-sensing cameleon protein in Torenia fournieri, which allows long term measuring stimulus-induced cytoplasmic Ca2+ changes.
    First we employed C.W.M2R, a fluorescent fabric brightener, to investigate changes of wall of female germ unit before and after fertilization. Before anthesis wall of egg apparatus is complete; most part of egg wall at the chalazal end disappears at the day of anthesis; after frtilization (20h after pollinating) egg wall becomes intact. The results suggest that rebuilding of wall is one of the early cytological events during fertilization. Based on these observations, we isolated protoplasts from female germ unit and performed extracellular Ca2+ influx experiment in order to check whether the cytological event similar to what happens during fertilization will be induced by extracellular Ca2+ influx. The results of extracellular Ca2+ treatment revealed that influx of extracellular Ca2+ induced some cellular event and protoplasts of female germ unit in different development stages respond to the treatment differently. Ca2+ ionophore treatment induced occurrence of new cellulosic wall around protoplasts of unfe
    rtilized egg cells from mature embryo sac , which just does occur during fertilization. New wall in protoplasts from fertilized egg cells or from egg cells before anthesis, however, weren't detected, as well as protoplasts of central cell. These results indicated that the increase of cytoplasmic Ca2+ from extracellular Ca2+ influx contributes to the rapid establishment of cellulosic cell wall. Moreover, these results also suggest that only mature unfertilized egg cells, which are at a "special" state, are able to respond to Ca2+ signal to establish new wall rapidly.
    As for construction of transgenic Torenia fournieri, some foundermantal works have been done including plasmid amplification, Agrobactarium transformation, leaf disk transformation- regeneration, etc.. The work for screening transgenic plant which expresses YC2.1 is in progress.
引文
胡适宜等.被子植物受精生物学. 2002:4-108
    孙大业等.细胞信号转导.北京:科学出版社,1998:171-285
    Allen GJ, Kwak JM, Chu SP et al. Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. Plant J. (1999), 19, 735-747
    Allen GJ, Chu SP, Schumacher K et al. The Aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos. Devel. Biol. (1995), 171:123-129. (Zebrafish)
    Antoine AF et al. A calcium influx is triggered and propagates in the zygote as a wavefront during in vitro fertilization of flowering plant. Proc Natl Acad Sci USA (2000), 97(19): 10643
    Antoine AF et al. Differential contribution of cytoplasmic Ca~(2+) and Ca~(2+) influx to gamete fusion and egg activation in maize. Nature Cell Biology, 2001, 3, 1120-1123
    Bednarska E. The Effects of exogenous Ca2+ ions on pollen grain germination and pollen tube growth:investigations with ~(45) Ca2+ together with verapamii, La3+ and ruthenium red. Sex Plant Reprod (1989a), 2:53-58
    Bednarska E. The effect of intercellular calcium level regulators on the synthesis of pollen tube caliose in Oenothera biennis L. Acta. Soc. Bot. Pol. (1989c), 58:39-50
    Bednarska E. Localization of calcium on the stigma surface of Ruscus aculeatus L.: studies by the chlortetracycline and x-rayss microanalysis. Pianta (1989), 179:11-16
    Berliner MD, Wood NL, Damico, J. Vital and Calcofluor staining of Cosmarium and its protoplasts. Protoplasma (1978), 96:39-46.
    Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signaling. Nat Rev(Molecular Cell Biology) (2000), 1:11-21
    Berridge MJ. The AM and FM of calcium signaling. Nature (1997), 386(24): 759-760
    Brauer M, Sanders D, Stitt M. Regulation of photosynthetic sucrose sythesis: a role for calcium. Planta(1990), 182:236-243
    Brownlee C. Signal transduction during fertilisation in algae and vascular plants. New Phytol (1994),127:399-423
    Brownlee C, Goddard H, Hetherington A. et al. Specificity and integration of responses: Ca2+ as a signal in polarity and osmotic regulation. J Exp Biol (1999), 50:1001-1011
    Busa Wb, Ferguson JE, Joseph SK. Activation of frog (xenopus laevis) egg by inositol trisphosphate I. Caracterization of Ca2+ release from intracellular stores. J. Cell Biol (1985), 101:677-683
    Bush DS. Regulation of cytosolic calcium in plants. Plant Physiol (1993), 103:7-13
    Bush DS. Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Plant Mol
    
    Biol (1995), 46:95-122
    Cass DD, Karas I. Ultrastructural organization of the egg of Plumbago zeylanica Protoplasma (1974), 81:49-62
    Chaboud A, Perez R. Generative cells and male gametes: isolation, physiology and biochemistry. Int Rev Cytol (1992), 140:205-232
    Chalfie M, Tu Y, Euskirchen G et al. Green fluorescent protein as a marker for gene expression. Science(1994), 263:802-805. (Caenorhabditis elegans)
    Chandler JA, Battersby S. X-ray microanalysis of zinc and calcium in ultrathin sections of human sperm cells using the pyroantimonate technique. J Histochem Cytochem (1976), 24:740-748
    Chaubal R, Reger BJ. Relatively high calcium is localized in synergid cells of wheat ovaries. Sex Plant Reprod. (1990), 3:98-102
    Chaubal R, Reger BJ. Calcium in the synergid cells and other regions of pearl millet ovaries. Sex. Plant Reprod. (1992a), 5:34-46
    Chaubal R., Reger BJ. Tha dynamics of calcium distribution in the synergid cells of wheat after pollination. Sex. Plant Reprod. (1992b), 5:206-213
    Chaubai R, Reger BJ. Prepollination degeneration in mature synergids of pearl millet: an examination using antimonite fixation to localize caicium. Sex. Plant Reprod. (1993), 6:225-238
    Chaubal R, Reger BJ. Dynamics of antimonite-precipitated calcium and degeneration in unpollinated pearl millet synergids after maturity. Sex. Plant Reprod. (1994), 7:122-134
    Chiu WL, Niwa Y, Zeng W et al. Engineered GFP as a vital reporter in plants. Curr. Biol. (1996), 6(3): 325-330. (Arabidopsis thaliana, onion, tobacco & Zea mays [maize])
    Ciapa B, Chiri S. Egg activation: upstream of the fertilization calcium signal. Biol Cell (2000),92:215-233
    Creton R, Jaffe L. Role of calcium influx during the latent period in sea urchin fertilization. Der Growth Differ (1995), 37:703-709
    Digonet C, Aldon D, Leduc N et al. First evidence of a calcium trensient in flowering plants at fertilization. Development (1997), 124:2867-2874
    Dong JB, Tang TS, Sun FZ. Xenopus and chicken sperm contain a cytosolic sobluble protein factor which can trigger calcium oscillations in mouse eggs. Biochemical and Biophysical Research Communications (2000), 268:947-951
    Ehlers MD, Augustine GJ. Calmodulin at the channel gate. Nature (1999), 399 (13):105-108
    Eisen A, Reynolds GT. Calcium transients duringearly development in single starfish(Asterias forbesi) oocytes. J. Cell Biol (1984), 99:1878-1882
    Epel D. Mechanisms of activation of sperm and egg during fertilization of sea urchin gametes. Curr. Top. Der. Biol. (1978), 12:185-261
    Epel D. The initiation of development at fertilization. Cell Differ Dev (1990), 29:1-12
    Evans JP, Kopf GS. Molecular mechanisms of sperm-egg interactions and egg activation. Andrologia (1998), 30:297-307
    
    
    Feijo JA, Malho R, Obermeyer. Ion dynamics and its possible role during in vitro pollen germination and tube growth. Protoplasma (1995), 187:155-167
    Fischer JMC, Peterson CA, Bols NC. A new fluorescent test for cell vitality using Calcofluor White M2R. Stain Technology (1985), 60, 2: 69-79.
    Fissore RA, Robl JM. Intracellular Ca2+ responses of rabbit oocytes to electrical stimulation. Mol. Reprod. Developent (1992), 32:9-16
    Franklin-Tong VE, Ride J P, Read ND et al. The self-incompatibility response in Papaver rhoeas is mediated by cytosolic free calcium. Plant J. (1993), 4:163-177
    Franklin-Tong VE, Ride J P, Franklin FCH. Recombinant stigmatic self- incompatatibility (s-) protein elicits a Ca2+ transient in pollen of Papaver rhoeas. Plant J (1995), 8:299-307
    Franklin-Tong VE, Drobak BK, Allan AC et al. Growth of pollen tubes of Papaver rhoeas is regulated by a slow-moving calcium wave propagated by inositol 1,4,5-triphosphate. Plant cell (1996), 8:1305-1421
    Franklin-Tong V. Signaling and the modulation of pollen tube growth. Plant Cell (1999), 11:727-738
    Fu Y, Huang BQ, Yang HY et al. Canges in actin organization in th living egg apparatus of Torenie fournieri during fertilization. Sex Plant Reprod (2000), 12:315-322
    Gilkey JC, Jaffe LF, Ridgway EB et al. A free calcium wave traverses the activating egg of the medaka, Oryzias Iatipes. J. Cell Biol (1978), 184:213-2
    Gillot I, Whitaker M. Imaging calcium waves in eggs and embryos. J Exp Biol (1993), 184:213-219
    Gilroy S, Fricker MD, Read ND, Trewavas AJ. Role of calcium in signal transduction of Commelina guard cells. Plant Cell (1991), 3:333-344
    Gilroy S, Bethke PC, Jones RL. Calcium Homeostssis in plants. J Cell Sci (1993),106:453-462
    Grabov A, Blatt MR. Membrane voltage initiates Ca2+ increases with abscisic acid in stomatal guard cells. Proc. Natl.Acad. Sci.USA (1998a), 95:4778-4783
    Grabov A, Blatt MR. Co-ordination of signaling elements inguard cell ion channel control. J.Exp. Bot (1998b), 49:351-360
    Hafner M, Petzelt C, Nobliling R et al. Wave of free calcium at fertilization in the sea urchin egg visualizedwith fura-2. Cell Motil. Cytoskel (1988), 9:271-277
    Hamon AC. The calcium connection. Trends Plant Sci (1997), 2:121-122
    Han YZH, Huang BQ, Zee Sy et al. Symplastic communication between the central cell and the egg apparatus cells in the embryo sac of Torenia founieri Lind. Before and during fertilization. Planta (2000), 211:158-162
    Han YZH, Huang BQ, Guo Flet al. Sperm extract and inositoi 1,4,5-triphosphate induce cytosolic calcium rise in the central cell of Torenia founieri Lind. Sex Plant Reprod (2002), 15:187-193
    Hancock JT. Cell signaling. Addison Wesley Longman (1997).
    He CP, Yang HY. Ultracytochemical localization of calcium in the embryo sac of sunflower. Chin. J. Bot (1992), 4:99-106
    Heim R, Cubitt AB, Tsien RY. Improved green fluorescence. Nature (1995), 373:663-66
    
    
    Hepler PK. Tip growth in pollen tubes: calcium leads the way. Trens Plant Sci. (1997), 2:79-80
    Heslop-Harrison J, Heslop-Harrison Y. Dynamic aspects of apical zonation in the angiosperm pollen tube. Sex Plant Reprod (1990), 3:187-194
    Holdaway-Clarke TL, Feijo JA, Hackett GR et al. Pollen tube growth and the intracellular cytosolic calcium gradient oscilate in phase while extracellular calcium influxe is delayed. Plant Cell (1997), 9:1999-2010
    Tian HQ, Zhu H., Russell SD. Calcium distribubtion in fertilized and unfertilized ovules and embryo sacs of Nicotiana tabacum L. planta (1997a), 202: 93-105
    Tian HQ, Zhu H., Russell SD. Micromanipulation of male and female gametes of Nicotiana tabacum L. Ⅰ.Isolation of gametes. Plant Cell Reorts (1997b), 16:555-560
    Tian HQ, Zhu H., Russell SD. Micromanipulation of male and female gametes of Nicotiana tabacum L. Ⅱ.Preliminary attempts for in vitro fertilization and egg cell culture. Plant Cell Reports (1997c), 16:657-661
    Tian HQ, Zhu H, Russell SD. The fusion of sperm cells and the function of male unit (MGU) of tobacco (Nicotiana tabacum L.)Sex Plant Reprod (1998), 11: 171-176
    Tian HQ, Zhu H., Russell SD. Isolation of male germ unit: organization and function in tobacca (Nicotiana tabacum L.) Plant Cell Reorts (1998), 18:143-147
    Tian HQ, Zhu H., Russell SD. Calcium changes in ovules and embryo sacs of Plumbago zeylanica L. Sex Plant Reprod (2000), 13:11-20
    Huang BQ, Russell SD. Synergid degeneration in Nicotiana: a quatative, fluorochromatic and chlorotetracycline study. Sex Plant Reprod (1992), 5:151-155
    Igusa Y, Miyazaki S. Periodic increase in cytoplasmic calcium in fertilized hamster and mouse eggs measured with calcium-sensitive electrodes. J. Physiol (1986), 377:193-205
    Jaffe LA, Weisenseel MH, Jaffe LF. Calcium accumulations within the growing tips of pollen tubes J Cell Biol (1975), 67:488-492
    Jaffe LF. The role of calcium explosions, waves and pulses in activating eggs. In: Biology of Fertilization (C.B.Metz and A.Monroy, Eds) (1985), 127-165. Academic Press, New York.
    Jaffe L. Calcium explosions as triggers of developement. Ann NY Acad Sci (1980), 339:86-101
    Jaffe LA. Organization of early development by calcium patterns. BioEssays (1999), 21:657-667
    Jones KT, Soeller C, Cannell MB. The passage of Ca2+ and fluorescent markers between the sperm and egg after fusion in the mouse. Development (1998), 125:4627-4635
    Jensen WA. Reproduction in flowering plants. Im: Rodard A W ed. Dynamic Aspects of Plants Ultrastructure. New York: McGraw-Hill (1974), 481-503
    Kohno T, Shimmen T. Ca2+-induced fragmentation of actin filaments in pollen tubes. Protoplasma (1987), 141:177-179
    Kohno T, Shimmen T. Mechanism of Ca2+ inhibition of cytoplasmic streaming in Lily pollen tubes. J. Cell Sci (1988), 91:501-509
    Kornél Imre , Zoltán Kristóf. Isolation of living megaspores of Torenia fournieri. Protoplasma (1996),
    
    192:245-248
    Kornél Imre , Zoltán Kristóf. Isolation and osmotic relations of developing megagametophytes of Torenia fournieri. Sex Plant Reprod (1999), 12:152-157
    Kovács M, Barnabás B, Kranz E. The isolation of viable egg cells of wheat (Triticum aestivum L.). Sex Plant Reprod (1994a), 7:311-312
    Kovacs M, Barnabas B, Kranz E. Electro-fused isolated wheat (Triticum aestivum L.) gametes develop into multicellular structures. Sex Plant Reprod (1994b), 7:311-312
    Kranz E, Wiegen P von, Lrz H. Early cytological events after induction of cell division in egg cells and zygote development following in vitro fertilization with angiosperm gametes. Plant J (1995), 8:9-23
    Kranz E, Von Wiegen P, Quader P et al. Endosperm development after fusion of isolated, single maize sperm and central cells in vitro. Plant Cell (1998), 10:511-524
    Khtreiber WM, Jaffe LF. Detection of extracellular calcium gradients with a alcium-specific vibrating electrode. J Cell Biol (1990), 110:1565-1573
    Kruhtreiber WM, Jaffe LF. Detection of extracellular calcium grandients with a calcium-specific vibrating electrode. J Cell Biol (1990), 110:1565-1573
    Lawrence Y, Ozil JP, Swann K. The effects of a Ca2+ chelator and heavy-metal-ion chelators upon Ca2+ oscillations and activation at fertilization in mouse eggs suggest a role for repetitive Ca2+ increases. Biochem J (1998), 335:335-342
    Longo FJ, Lynn JW, McCulloh DH, Chambers EL. Coreelative ultrastructural and electrophysiological studies of sperm-egg interactions of the sea urchin, Lytechinus variegates. Dev. Biol (1986), 118:155-166
    Malhò R, Read ND, Pals MS, Trewava AJ. Role of cytosolic free calcium in the reorientation of pollen tube growth. Plant J. (1994), 5:331-341
    Malhò R, Trewava AJ, Pais MS. Calcium channel activity during pollen tube growth and reorientation. Plant Cell (1995), 7:1173-1184
    Malhò R, Trewava AJ. Localized apical increase of cytosolic free control pollen tube orientation. Plant Cell (1996), 8:1935-1949
    Malhò R, Moutinho A, Van der Luit A. Spatial characteristics of calcium signaling: the calcium wave as a basic unit in plant cell calcium signaling. Phil Trans R Soc Lond Ser B (1998), 353:1463-1473
    McAinsh M, Brownlee C, Hetheringhton A. Abscisic acid-induced elevation of guard cell cytoplasmic Ca2+ precedes stomatal guard cells to abscisic acid. Plant Cell (1990), 4:1113-1122
    McAinsh M, Webb AAR, Taylor JE et al. Stimulus-induced oscillations in guard cell cytosolic free calcium. Plant Cell (1995), 7:1207-1219
    McAinsh M, Brownlee C, Hetheringhton A. Calcium ions as second messengers in guard cell signal transduction. Physiol Plant (1997), 100:16-29
    Mcculloh DH, Chambers EL. Fusion of membranes during fertilization:Increases of the sea urchin egg's membrane capacitance and membrane conductance at the site of contact with the sperm. J. Gen.
    
    Physiol (1992), 99:137-175
    McDougall A, Gillot I, Whitaker M. Thimerosal reveals calcium-induced calcium release in unfertilised sea urchin eggs. Zygote (1993), 1:35-42
    McDougall A, Sardet C, Lambert CC. Different calcium dependent pathways control fertilisation-triggered glycoside release and the cortical contraction in ascidian eggs. Zygote (1995) , 3:251-258
    Meldolesi J. Oscilation, activation, expression. Nature (1998), 392 (30):863-866.
    Miller DD. Free calcium ion in growing pollen tubes of Lilium. J. Cell. Sci. (1992), 110:1269-1278
    Miyawaki A, Llopis J, Heim R et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature (1997), 388, 882-887
    Miyawaki A, Griesbeck O, Heim R et al. Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci U S A (1999), 96:2135-2140
    Miyazaki S, Hashimoto N, Yoshimoto Y, Kishimoto T et al. Temporal and special dynamics of the periodic increase in intracellular free calcium at fertilization of golden hamster eggs. Dev. Biol (1986), 118:259-267
    Mòl R, Matthys-Rochon E, Dumas C.The kinetics of cytological events during double fertilization in Zea mays L. Plant J (1994), 5:197-206
    Moser F. Studies on the cortical layer response to stimulating agents in the Abacia egg. Ⅰ. Response to insemination. J Exp Zool (1939), 80:423-445
    Nagai R, Ishima Y, Takenaka T. Calcium and magnesium contents of ectoplasm and endoplasm of Physarum polycephalum plasmodium. Protoplasma (1975), 86:169-174
    Nakazawa S, Takamura K, Rhizoid ABE M. Differentiation in Fucus eggs labelled with Calcofluor White and birefringence of cell wall. Botanical Magazine, Tokyo (1969), 8:41-44
    Obermeyer G, Weisenseel MH. Calcium channel blocker and calmodulin antagonists affect the gradient of free calcium ions in lily pollen tubes. Eur J Cell Biol (1991), 56:319-327
    Ormo M, Cubitt AB, Kallio K. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science (1996), 273, 1392-1395
    Palevitz BA, Tiezzi A. Organization, composition, and function of the generative cell and sperm cytoskeleton. Int Rev Cytol (1992), 140:149-186
    Paul M, Johnston RN. Absence of a Ca2+ response following ammonia activation of sea urchin eggs. Dev Biol (1978), 67:330-335
    Penniston JT, Enyedi A. Modulation of plasma membrane Ca~(2+) pump. J Membr boil (1998), 165:101-109
    Picton JM, Steer MW. Evidence for the role of Ca2= ions in tip extension in pollen tubes. Protoplasma (1983), 115:11-17
    Pierson ES et al. Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular gradient: Effect of BAPTA-type buffers and hypertonic media. Plant Cel (1994), 1(6): 1815-1828;
    Pierson ES et al. Pulsatory growth of pollen tubes: investigation of a possible relationship with the
    
    periodic distribution of cell wall components. Acta. bot. Neerl (1995), 44:121-128
    Pierson ES et al. Tip-localized calcium entry fluctuates during pollen tube growth. Dev. Biol (1996), 174:160-173
    Raz T, Ben-Yosef D, Shalgi R. Segregation of the pathways leading to cortical reaction and cell cycle activation in the rat egg. Biol Reprod (1998), 58:94-102
    Reiss HD, Herth W. Visualization of Ca2+ gradient in growing pollen tubes of Liliurn longiflorum with chloroteracycline fluorescence. Protoplasma (1978), 97:373-377
    Reiss HD, Herth W. Calcium ionophore A23187 affects localized wall secretion in the tip of pollen tubes of L. longiflorum. Planta (1979), 145:225-232
    Reiss HD, Herth W. Broad-range effects of inophore x-537A on pollen tubes of L. longiflorum. Planta (1980), 147:295-301
    Reiss HD, Herth W, Schnepf E. The tip-to-base calcium gradient in pollen tubes of Lilium longiflorum measured by proton-induced x-ray emission (PIXE). Protoplasma (1983), 115:153-159
    Reiss HD, Herth W. Nifedipine-sensitive calcium channels are involved in pollar growth of Lily pollen tubes. J Cell Sci (1985), 76:247-254
    Nobiling R, Reiss HD. Quatitative analysis of calcium gradients and activity in growing pollen tubes of L. longiflorum. Protoplasma (1987), 139:20-24
    Reiss HD, Nobiling R. Fluorescence in Lily pollen tube: distribution of free cytoplasmic calcium. Protoplasma (1986), 131:144-146
    Rickauer M, Tanner W. Effects of ccCa2+ on amino acid transport and accumulation in roots of Phaselus vulgaris. Plant Physiol (1986), 82:41-46
    Roberts S, Brownlee C. Calcium influx, fertilisation potential and egg activation in Fucus serratus. Zygote (1995), 3:191-197
    Roberts S, Gillot I, Brownlee C. Cytoplasmic calcium and Fucus egg activation. Development (1994), 120:155-163
    Roger, Y. and Tsien, R.Y. The Green Fluorescent Protein. Annu. Rev. Biochem (1998), 67:509-544.
    Russell SD.Fertilization in Plumbago zeylanica: entry and discharge of pollen tube in the embryo sac. Can J. Bot (1982), 60:2219-2230
    Russell SD. Double fertilization. Int Rev Cytol (1992), 140:357-388
    Russell SD. The egg cell: development and role in fertilization and early embryogenesis. Plant Cell (1993), 5:1349-1359
    Sanders D, Brownlee C, Harper J. Communicating with calcium. Plant Cell (1999), 11:691-706
    Shen SS, Buck WR. Sources of calcium in sea urchin eggs during the fertilization response. Dev Biol (1993), 157:157-169
    Shen SS, Buck WR. Mechanisms of calcium regulation in sea urchin eggs and their activities during fertilization. Curr. Yop. Dev. Biol (1995), 30:63-101
    Shipley A, Feijò J. The use of the vibrating probe technique to study extracellular currents during pollen germination and tube growth. In: Cresti M, Cai G, Moscatelli A (eds) Fertilization in higher plants.
    
    Springer, Berlin Heidelberg New York (1999).
    Smith PJS, Sanger RH, Jaffe JF. The vibrating Ca2+ electrode: a new technique for detecting plasma membrane regions of Ca2+ influx and efflux. Meth Cell Bioi (1994), 40:115-134
    Speksnijder JE, Corson DW, Sardet C et al. Free calcium pulses following fertilization in the ascidian egg. Dev. Bioi (1989), 135:182-190
    Steer MW, Steer MJ. Pollen tube tip growth. New Phytol (1989), 111:691-706
    Steinhardt R, Zucker R, Schatten G. Intracellular calcium release at fertilization in the sea urchin egg. Dev Biol (1977), 58:185-196
    Steinhardt RA, Epel D, Caroll EJ, Yanagimachi R. Is calcium ionophore a universal activator for unfertilised eggs? Nature (1974), 252:41-43
    Stephen A. Stricker. Repetitive Calcium Waves Induced by Fertilization in the Nemertean Worm Cerebratulus Lacteus. Developmental Biology (1996) ,176,248-263
    Stephano JL, Gould MC. The intracellular calcium increase at fertilization in Urechis caupo oocytes: activation without waves. Dev Biol (1997), 191:53-68
    Stricker SA. Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev Biol (1999), 211:157-176
    Sun FZ, Bradshaw JP, Galli C, Moor RM. Changes in intracellular calcium-concentration in bovine oocytes following penetration by spermatozoa. J. Reprod. Fertil (1994), 101:713-719
    Sun MX, Moscatelli A, Yang HY, Cresti M. In vitro double fertilization in Nicotiana tabacum (L.): fusion behavior and gamete interaction traced by video-enhanced microscopy. Sex Plant Reprod (2000), 12:267-275
    Swarm K, Parrington J. Mechanism of Ca2+ release at fertilization in mammals. J Exp Zool (1999), 285:267-275
    Tirlapur UK, Van Went JL, Cresti M Visualization of membrane calcium and calmodulin in embryo sac in situ and isolated egg ells, in vitro fusion products and zygotes of zea mays L. using the technique of image analysis and confocal laser scanning microscopy. Zygote (1993), 3:57-64
    Tirlapur UK, Kranz E, Cresti M. Characterisation of isolated egg cells, in vitro products and zygotes of Zea mays L. using the technique of image analysis and confocal laser scanning microscopy. Zygote (1995), 3:57-64
    Taylor A, Brownlee C. Calcium and potassium currents in the Fucus egg. Planta (1993), 189:109-119
    Theunis CH, Pierson ES, Cresti M. Isolation of male and female gametes in higher plants. Sex Plant Reprod (1991), 4:145-154
    Trawavas A, Malho R. Ca2+ signaling in plant cells: the big network! Curr. Opin. Plant Biology (1998), 1:428-433
    Van Went JL, Willemse MTM. Fertilization. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin Heidelberg New York Tokyo, (1984).
    Whitaker MJ, Steinhardt RA. Ionic regulation of egg activation. Quart Rev Biophys (1982), 5:593-666
    Whitaker MJ, Swann K, Crossley IB. What happens during the latent period at fertilization in sea urchin
    
    eggs. In Mechanisms of egg activation (ed.R.Nuccitelli) (1989), 63:159- New York: Plenum
    Whitaker MJ, Patel R. Calcium and cell cycle control. Development (1990), 108:525-542
    Whitaker M, Swann K. Lighting the fuse at fertilization. Development (1993), 117:1-12
    Wiilemse MTM, Van Went JL The female gametophyte. In: Johri B M ed. Embryology of Angiosperm. Berlin: Springer-Verlag (1984), 159-196
    Yanagimachi R. Mammalian fertilization. In :The physiology of reproduction ( E.Knobil, J.Neil and Eds.) (1988): 135-185. Raven Press, New York.
    Yoshimoto Y, Iwamatsu T, Hirano K, Hiramoto Y. The wave of free calcium upon fertilization in medaka and sand dollar eggs. Dev. Growth Differ. (1986) 28:583-596
    Yu FL, Liang HY. Ultracytochemical localization of calcium in micropyle and embryo sac of Brassica napus before and after pollination. Acta. Soc. Bot. Pol (1998) 40: 591-597(in Chinese)
    Yu FL, Liang HY. Ultracytochemical localization of calcium in the Gynoecium and embryo sac of rice. Acta. Soc. Bot. Pol (1999), 41:125-129 (in Chinese)
    Zhou C, Yang HY. observations on enzymatically isolated, living and fixed embryo sacs in several angiosperm species. Planta (1984), 165:225-231

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700