WO_3制备超细钨粉的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选取煅烧仲钨酸铵自制的三氧化钨(WO_3)为原料,通过氧化—还原法来制备超细钨粉,并对其还原过程的动力学进行了初步研究。
     本实验所采用的氧化—还原法是一种全新的工艺,是先将三氧化钨还原成钨粉,然后在空气中氧化成三氧化钨后再次还原,如此反复进行多次,则可得超细钨粉。
     对于三氧化钨还原过程动力学的研究,采用热重分析方法,利用样品发生相变时常伴有重量变化的现象,得到不同还原条件下的动力学(热失重—时间或还原率—时间)曲线,由失重情况判断反应速度及其影响因素。分别对三氧化钨(WO_3)到蓝钨(WO_(2.90))和蓝钨到钨粉两个阶段进行了研究。
     通过研究,得到如下结论:
     (1)本研究选取的三氧化钨原料,通过氧化—还原法(4次氧化5次还原)是可以制备出超细钨粉的;所得金属钨粉的平均粒度约为0.38μm。
     (2)也可用任意粒度的钨粉做初始原料,将其在一定条件下氧化和还原,便能得到可作为高性能硬质合金原料的超细钨粉。
     (3)金属钨粉在规定条件下进行氧化,得到的三氧化钨粒度与初始原料金属钨粉的粒度无关。对于金属钨粉的氧化,低温慢速氧化可得到松散多孔状态的三氧化钨颗粒,还原此种三氧化钨可得到超细钨粉。
     (4)在490~500℃的温度下,约35min即可完成WO_3到WO_(2.90)的还原过程。而且,还原温度越高、氢气流量越大,实现完全转化的时间越短,即反应速度越快。
     (5)实现WO_(2.90)还原到W粉的最低还原温度约为750℃,低于该温度反应时间则较长或者反应进行得不完全。此过程可能伴有WO_2的生成,从而WO_2的挥发和WO_2→W的快速反应成为反应速度发生变化的可能原因。另外,在更高的温度下(>775℃),反应过程中往往会生成WO_(2.72)相,可能会越过WO_(2.72)→WO_2这一阶段直接发生WO_(2.72)→W的快速反应,而生成的大量W晶核的新表面对还原反应具有很强的催化作用,从而使还原反应始终处于较快的速度下进行。
     (6)氢气流量对物料反应速度的影响较温度更为强烈。
Self-made tungsten trioxide (WO_3) by calcining ammonium paratungstate (APT) was selected as the raw material to produce ultrafme and homogenous tungsten powder by oxidation-reduction method. The mechanics of the oxidation-reduction method and the reduction kinetics characteristic of tungsten trioxide were studied.The oxidation-reduction method in this article is a quite new processs for preparing ultrfme tungsten powder. The process is that as follows: tungsten trioxide is reduced to tungsten powder at first, then the tungsten powder will be oxidated to tungsten trioxide, and then the tungsten trioxide will be reduced to tungsten powder again, ultrafine and homogenous tungsten powder will be produced by repeating this cyclic process several times.The studies on kinetics of hydrogen reduction of tungsten trioxide were carried out by thermogravimetry. According to the phenomenon of the sample's weight will change if phase transformation occur during the reduction, the weight changing of tungsten trioxide during the reduction was investigated by balance. To draw the reduction kinetics curves of tungsten trioxide, two stages of tungsten trioxide being reducing to tungsten were studied respectively. From the data of weight loss, reaction speed and the factors affecting it could be determined.
     The main conclusions are as following:
     (1) Ultrafine tungsten powder can be produced from tungsten trioxide choosen in this research through the oxidation-reduction method (4 oxidations and 5 reductions) in right conditions; the average grain size of ultrafine tungsten powder is about 0.38μm
     (2) Through several circles of oxidation-reduction, tungsten powders in random grain sizes can be used as the starting material to produce ultrafine tungsten powders which can be used as raw material for high-performence cemented carbide.
     (3) The particle size of tungsten trioxide prepared from the oxidation of tungsten powder in right conditions has nothing to do with the starting material tungsten powder. By oxidation of tungsten powder at low temperature and slow speed, porous tungsten trioxide can be produced, and reduce this kind of tungsten trioxide will prepare ultrafine tungsten powder.
     (4) Tungsten trioxide can be completely reduced to TBO (WO_(2.90)) at 490~500℃after about 35 minutes. Furthermore, the complete conversion time will be shorten with the reduction temperature rising and the hydrogen flowrate increasing.
     (5) The lowest temperature of the TBO (WO_(2.90)) being reduced to tungsten is about 750℃. If the temperature below 750℃, the reaction time will delay or the reduction will be incomplete. In the process of TBO reduction to tungsten, tungsten dioxide (WO_2) formation may occurr simultaneously, so the tungsten dioxide volatilization and the quick-reaction of reducing WO_2 to W may be the possible reason why the reaction speed changing. Furthermore, at a higher reaction temperature (above 775℃), WO_(2.72) phase may be formed in this reduction process, then the quick-reaction of reducing WO_(2.72) to W may directly be occurred without the path of reducing WO_(2.72) to WO_2, and those large numbers of new surfaces of produced W-nuclei have catalytic activity for the reducing reaction, so the reducing reaction have a quicker reaction speed from the beginning to the end.
     (6) The influence of hydrogen flowrate on reaction speed is more enormous than reaction temperature.
引文
[1] 陈世瑞.钨及仲钨酸铵[J].江西冶金,1997,17(5):57-60
    [2] 莫似浩.钨冶炼的原理和工艺[M].北京:轻工业出版社,1984
    [3] 周菊秋.中国钨业[J].世界有色金属,1994,(12):17-20
    [4] 徐秀茹,吴建社.中国钨业现状与发展对策的分析研究[J].中国钨业,1998,(5):7-11
    [5] 赵武壮.WTO与中国钨业[J].中国钨业,2001,16(2):3-5
    [6] 李洪桂.稀有金属冶金学[M].北京:冶金工业出版社,1993
    [7] 泽列克曼AH,克列茵OE,萨姆索诺夫ΓВ.稀有金属冶金学[M].北京:冶金工业出版社,1982:11-85
    [8] 屠海令,赵国权,郭青蔚.有色金属冶金、材料、再生与环保[M].北京:化学工业出版,2003
    [9] 黎先财,柯勇,杨沂凤,等.超细三氧化钨的制备及催化应用[J].中国钨业,2003,18(4):26-31
    [10] Haubner R, Shubert W D. Mechanism of Tungsten Reduction [J]. International Journal of Refractory Metals and Hard Materials, 1983, 2(4): 156-163
    [11] 印协世.钨丝生产原理、工艺及其性能[M].北京:冶金工业出版社,1998
    [12] Tao Zhengji. Production of Submicron Tungsten Powder on the Hydrogen Reduction of WO_3[J]. International Journal of Refractory Metals and Hard Materials, 1986, (6): 108-112
    [13] 廖寄齐,石刚,王华.超细钨粉的制取及其氧化钨原料和钨粉的粒度测量[J].理化检验-物理分册,2002,38(8):337-341
    [14] 邵刚勤,吴伯麟,魏明坤,等.超细晶粒WC硬质合金的研制动态[J].武汉工业大学学报,1999,21(6):18-20
    [15] 陈绍衣.超细钨粉、碳化钨粉研制方法的述评——推荐用传统流程生产超细碳化钨粉[J].中国钨业,1999,14(5-6):146-149
    [16] 张凤林,朱敏,王成勇.纳米硬质合金进展[J].稀有金属,2002,26(1):54-58
    [17] 熊小明,张秋和,张倩.钨粉还原工艺优化与合金球齿硬度[J].中国钨业,2003,18(6):38-40
    [18] 张汉林,王柱.超细硬质合金的制备[J].硬质合金,1995,12(1):53-56
    [19] 彭少芳.钨冶金学[M].北京:冶金工业出版社,1981
    [20] 李凡,吴炳尧.机械合金化——新型的固态合金化方法[J].机械工程材料,1999,23(4):22-25
    [21] 杨华明,邱冠周.机械合金化(MA)技术的新进展[J].稀有金属,1998,22(4):313-316
    [22] 刘维平.高能球磨法制备钨、铁纳米粉的正交试验研究[J].有色冶金,2000,16(5):40-43
    [23] Wagner C N J, Yang E, Boldrick M S. the Structure of Nanocrystalline Fe, W and NiAl Powders Prepared by High-energy Ball-milling [J]. Nanostruct Mater. 1996, (7): 1-11
    [24] 刘维平.高能球磨法制备纳米钨粉的主要影响因素分析[J].中国粉体技,2002,8(1):26-27
    [25] Qu Xuanhui, Fan Jinglian, Li Yimin, etc. Synthesis and Characteristics of W-Ni-Fe Nano-composite Powders Prepared by Mechanical Alloying [J]. Transactions of Nonferrous Metals Society of China.2000, 10(2): 172-175
    [26] 张彩霞.超细钨粉高能球磨工艺的探讨[J].江西有色金属,2005,19(1):33-35
    [27] 任奎.纳米α-W粉体的制备与热稳定性研究[D].杭州:浙江大学,2001
    [28] 钟俊辉.纳米粉末的制取方法[J].粉末冶金技术,1995,13(1):48-56
    [29] Kawakami Y, Seto T, Ozawa E. Characteristics of Ultrafine Tungsten Particles Produced by Nd: YAG Laser Irradiation [J]. Applied Physics A: Materials Science and Processing, 1999, 69(7): 249-255
    [30] 赵斌,刘志杰,程起林,等.金属超细粉体制备方法的概述[J].金属矿山,1999,(4):30-34
    [31] 刘诗责,赖志华.纳米材料的制备进展[J].江西化工,2003,(3):45-48
    [32] 唐振方,刘彭义,叶勤,等.等离子体反应合成WC超细粉体[J].机械工程材料,2003,27(5):28-31
    [33] 魏建红,官建国,袁润章.金属纳米粒子的制备与应用[J].武汉理工大学学报,2001,23(3):1-4
    [34] Moriysohi Y. the Preparation and Characterization of Ultrafine Tungsten Powder [J]. Journal of Materials Science Letter, 1997, 16(5): 347-349
    [35] Fan Yousan, Fu Lei. Preparing Ultrafine Tungsten Powders by H_2 Plasma Reduction [J]. Journal of Materials Science Letters, 1996, 15: 2130-2140
    [36] 姜文伟,普崇恩.等离子喷雾法制取球形钨粉工艺探讨[J].硬质合金,2000,13(2):85-88
    [37] Zhang Ting'an, Wang Yanling, Dou Zhihe, etc. Study of Preparation Process of Tungsten Powder by SHS with a Magnesium Thermit Stage [J]. Acta Metallurgica Sinica (English Letters), 2004, 17(5): 719-724
    [38] 李劲凤,郑子樵.自蔓延高温合成(SHS)工艺简介[J].稀有金属与硬质合金,2000,(1):39-43
    [39] 周彩楼.自蔓延高温合成技术[J].天津城市建设学院学报,1998,4(1):60-65
    [40] 顾建忠.自蔓延高温合成工艺及其应用[J].特殊钢,1994,15(3):6-12
    [41] 李强,于景媛,穆柏椿.自蔓延高温合成技术(sHs)简介[J].辽宁工学院学报,2001,21(5):61-63
    [42] 王延玲,张延安,杨欢,等.自蔓延高温还原法制备钨粉的研究[J].稀有金属材料与工程,2001,30(4):310-313
    [43] 叶帷洪,王崇敬.钨——资源、冶金、性质和应用[M].北京:冶金工业出版社,1983
    [44] 冯乃祥,孙阳,葛贵军.NaCl-Na_2WO_4-WO_3系熔盐电解法制备超细钨粉的研究[J].稀有金属,2001,25(5):374-377
    [45] 廖寄乔,黄志锋,吕海波,等.不同氧化钨氢还原制取超细钨粉[J].中南工业大学学报,2000,31(1):337-348
    [46] 廖寄乔,唐美英.氧化钨相成分对超细钨粉均匀性的影响[J].稀有金属材料与工程,2001,30(6):453-456
    [47] Lassner E, Schubert W D. Tungsten Blue Oxide [J]. International Journal of Refractory Metals and Hard Materials, 1995, 13(1-3): 111-117
    [48] 黄飞.紫色氧化钨氢还原制取微晶硬质合金用超细钨粉的研究[J].湖南有色冶金,2002,18(1):32-34
    [49] 陈绍衣.紫色氧化钨制取钨粉[J].中南矿业学院学报,1994,25(5):607-611
    [50] 彭泽辉,李玲.紫色氧化钨制取工艺的研究及其应用[J].稀有金属与硬质合金,2003,31(2):8-11
    [51] 陈树茂,廖小英,张秋和,等.传统流程生产超细钨粉的工艺优化[J].中国钨业,2005,20(2):36-39
    [52] Schubert W D, Lassner E. Production and Characterization of Hydrogen-reduced Submicron Tungsten Powders (part 1) [J]. International Journal of Refractory Metals and Hard Materials, 1991, 10:133-141
    [53] Zou Zhiqiang. Formation of Tungsten Oxide and Its Hydrogen Reduction [A]. Hubert B, Hygo M O. Proceedings of the 11th Plansee Seminar [C]. Reutte: Metallwerk Plansee, 1985, 1: 337-348
    [54] Zou Zhiqiang, Q Chungliang, W Enxi, etc. H_2 Reduction Dynamics of Different Forms of Tungsten Oxide [J]. International Journal of Refractory Metals and Hard Materials, 1988, 7 (1): 57-60
    [55] 曾昭明.不同形态结构的仲钨酸铵对还原钨粉粒度影响的探讨[J].稀有金属,1983,2(2):155-161
    [56] Tang Xinhe, Cao Rongjiang. New Processes for the Production of Blue Tungsten Oxide and Super- fine Tungsten Powder [J]. W-Ti-RE-Sb'88 International Conference Proceedings, Changsha China, 1988, (1): 162-167
    [57] 邹志强,schubert W D,Lux B.胺钨盐的性质及其在制取亚微米级钨粉方面的应用[J].中南矿冶学院学报,1990,21(6):622-631
    [58] 刘辉.用ART制造超细钨粉及碳化钨粉的工艺试验[J].稀有金属与硬质合金,1995,(2):8-10
    [59] Fang Zhigang, Eason Jimmy W. Study of Nanostructured WC-Co Composites [J]. International Journal of Refractory Metals and Hard Materials, 1995, 13 (5): 297-303
    [60] 赵海锋,朱丽慧,马学鸣.纳米WC硬质合金制备新工艺[J].材料科学与工程学报,2003,21(1):130-133
    [61] Kear B H, McCandlish L E. Nanostructured W-Base Materials. Synthesis, Processing and Properties [J]. Journal of advanced Materials, 1993, 25 (1): 11-16
    [62] 李在元,宫泮伟,翟玉春,等.封闭循环氢还原法制备纳米钨粉[J].硬质合金,2004,21(1):18-20
    [63] 王剑华,郭玉忠.超细粉制备方法及其团聚问题[J].昆明理工大学学报,1997,22(1):71-77
    [64] 柴永新,吴晓东,戴起勋.纳米金属钨粉的制备方法的研究进展[J].江西冶金,2005,25(5):37-41
    [65] 彭卫珍.蓝钨物理性能对钨粉和碳化钨粉性能的影响[J].硬质合金,2004,21(3):142-148
    [66] 傅小明,吴晓东.三氧化钨还原过程相成分探讨[J].稀有金属与硬质合金,2003,31(4):7-9
    [67] 齐宝森,王成国,姚新,等.高能球磨金属铬、铝粉末的特征[J].稀有金属,2000,24(5):325-329
    [68] 杨于兴,漆璿.X射线衍射分析(修订版)[M].上海:上海交通大学出版社,1994
    [69] 王英华.X光衍射技术基础[M].北京:原子能出版社,1987
    [70] 王超群.硬质合金X射线分析技术的某些进展[J].硬质合金,1995,12(3):152-161
    [71] Angastiniotis Nicos Costa. Synthesis of Nanostructured Tungsten and Tungsten-base Phases [D]. New Brunswick: the State University of New Jersey, 1994
    [72] 罗电宏,马荣骏.对超细粉末团聚问题的探讨[J].湿法冶金,2002,21(2):57-61
    [73] Schubert W D, Bock A, Lux B. Ultrafine WC Powder Manufacture and Hard Metal Production [J]. International Journal of Refractory Metals and Hard Materials, 1995, 13: 281-296
    [74] Liao Jiqiao, Huang Baiyun. Particle Size Characterization of Ultrafine Tungsten Powder [J]. Interna- tional Journal of Refractory Metals and Hard Materials, 2001, 19:89-99
    [75] 廖寄乔,黄伯云,王华.超细钨粉的粒度表征[J].中国有色金属学报,2002,12(3):448-453
    [76] 陶正已.近十年来钨粉和碳化钨粉的研究和开发[J].硬质合金,1992,9(2):66-75
    [77] Bock A, Schubert W D, Lux B. Grain/Particle Growth of Ultrafine WC during W-powder Carburiz- ation [A]. In: Proceedings of the 14th Plansee Seminar [C]. Austria Reutte, 1997, 4:347-349
    [78] Andreas Lackner, Andreas Filzwieser, Peter Paschen, etc. On the Reduction of Tungsten Blue Oxide in a Stream of Hydrogen [J]. International Journal of Refractory Metals and Hard Materials, 1996, 14: 383-391
    [79] Savin J A, Sichen D, Seetharaman S. Application of Nonisothermal Thermogravimetric Method to the Kinetic Study of the Reaction of Metallic Oxides [J]. Metal Transaction 1993, 24B: 475-480
    [80] 黄培云.粉末冶金原理[M].北京:冶金工业出版社,1982
    [81] Liao Jiqiao, Zou Zhiqiang, Lü Haibo, etc. Influence of Phase Components of Tungsten Oxide on Homogeneity of Ultrafine Tungsten Powder [J]. Transactions of Nonferrous Metals Society of China Trans, 2000, 10(3): 421-423
    [82] Schubert W D. Kinetics of the Hydrogen Reduction of Tungsten Oxides [J]. International Journal of Refractory Metals and Hard Materials, 1990, 9 (4): 178
    [83] 黄忠耿.蓝钨氢还原制取钨粉[J].稀有金属与硬质合金,1997,1:57-60
    [84] 彭泽辉,姜文伟,方克明.蓝钨微观结构的研究[J].稀有金属与硬质合金,2004,32(1):19-21
    [85] 吴晓东,柴永新,傅明喜.蓝钨氢还原工艺及其还原机理的探讨[J].硬质合金,2005,22(2):65-68
    [86] Fouad N B, Attiya K M E. Thermogravlmetry of WO_3 Reduction in Hydrogen Kinetic Characteriz- ation of Autocatalytic Effects [J]. Powder Technology, 1993, 74: 31-39
    [87] 徐晓娟,张丽英,郭志猛,等.纳米级WO_3粉的还原动力学特[J].粉末冶金技术,2002,20(3):147-150
    [88] 王志雄,舒代萱,唐新和.WO_(2.90)(四方晶形)纯组分蓝色氧化钨氢还原动力学及超细钨粉制取的新方法[J].化工冶金,1993,14(3):224-230

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700