纳米级钨基复合粉末的制备及其合金特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高密度钨基合金由于具有一系列优异的物理、力学性能,如密度高、强度高、延性好等,被广泛地应用于动能穿甲弹、平衡配重块、放射屏蔽和电触头材料,在国防军工、航空航天等领域中具有不可替代的作用。随着科学技术的飞速发展,对材料性能提出了更为苛刻的要求,制备高性能钨基合金材料已成为当今世界致力研究的热点之一。而制备高性能钨基合金材料的核心在于:粉末原料的纳米化及其合金的特性研究。本论文围绕这一核心课题,对纳米级W-Ni-Fe复合粉末的制备及其合金特性等方面进行了较系统、较深入的研究。
     对含(W,Ni,Fe)盐溶胶体系的电化学特征进行了深入研究。研究了体系Zeta电位、pH值和所加表面活性剂,对含(W,Ni,Fe)盐溶胶体系的配制、颗粒分散性和稳定性的影响。着重研究了十六烷基三甲基溴化铵、N,N—二甲基甲酰胺和聚乙二醇-1000这三种表面活性剂对颗粒表面静电位阻、空间位阻及静电-空间位阻协调作用的影响。首次采用配置溶胶并进行喷雾干燥来制备(W,Ni,Fe)前驱体复合氧化物粉末。深入探讨了表面活性剂在喷雾干燥过程中的作用机制,并提出了颗粒在干燥过程中所受毛细管作用力的示意图模型。
     对所制备的(W,Ni,Fe)复合氧化物粉末的还原机理进行了大量研究。结果表明:还原温度与时间均对W—Ni—Fe复合粉末的特性有显著的影响,其最佳还原参数是:温度700℃、时间90min,此时可得到颗粒的平均Fsss粒度小于0.61μm、平均BET粒度小于100nm、晶粒尺寸小于30nm、氧含量小于0.23%,且颗粒分散均匀、绝大部分为球形的纳米级W-Ni-Fe复合粉末。同时指出颗粒的长大机理主要是由还原过程中化学气相迁移所控制,随还原过程的进行,所生成的水蒸汽逐渐增多,钨的氧化物与水蒸汽化合成易挥发的水合物WO_x·nH_2O(一般认为是WO_2(OH)_2),而后通过气相迁移,沉积在低价氧化钨或金属钨粉的颗粒表面,导致颗粒长大,因此,采用两步还原和添加稀土La、Y来抑制其长大。所加稀土以钨酸盐La(Ni_(0.75)W(0.25))O_3或Y(Ni_(0.75)W_(0.25))O_3的形式附着在钨颗粒或钨氧化物颗粒表面,阻止了还原过程中钨的氧化物与水蒸汽化合生成易挥发水合物WO_2(OH)_2的生成速度,从而减少了其气相迁移,有效地阻止了粉末颗粒的长大。当稀土元素质量百分数在0-0.8%范围内(占90W-7Ni-3Fe复合粉末的质量百分数),随着稀土元素含量的增大,还原粉末特性有显著改善;添加相同含量稀土元素时,对粉末特性影响程度的大小顺序是Y>La-Y>La。
     采用DTA仪测得纳米级90W-Ni-Fe复合粉末体系中固-液共存的温度区间是1341.2℃-1365.8℃,比传统粉末的温度区间降低了70-90℃。研究了烧结温度、时间对纳米粉90W-Ni-Fe合金烧结特性的影响,在此基础上建立了该合金的低温烧结制度。
     深入研究了稀土元素对纳米粉90W-Ni-Fe合金性能和显微结构的影响,建立了合金中钨颗粒的三层微观结构模型图,并据此较好地解释了稀土元素与合金性能和显微
High density tungsten based alloys possess an unique combination of physical and mechanical properties, such as high density, strength and ductility, which are used extensively as kinetic energy penetrators, counterbalance weights, radiation shields and electrical contacts. They cannot be replaced in the field, such as national defence, military industry, aviation and spaceflight. With the quick development of science and technology, higher demand for material properties is put forward and preparation of tungsten based alloys with high properties is one of the hotspot in the world. But the cores of preparation of tungsten based alloys with high properties are preparation of nanometer powder and study for properties of alloy. Preparation of nanometer W-Ni-Fe composite powder and properties of alloy were systemic studied according to the cores.Electrochemistry characters of (W,Ni,Fe) solution colloid system were studied deeply. Influence of Zeta potential, pH value and surfactants added on particle dispersity and stability of colloid solution system were investigated. The roles of cetyl trimethyl ammonium bromide (CTAB), N,N-dimethylformampe and polyethylene glycol-1000 (PEG-1000) on electrostatic hindrance, steric hindrance and electrostatic-steric hindrance cooperation function of particle surface were studied in detail. (W,Ni,Fe) precursor composite oxide powders were first synthesized by preparation of solution colloid and spray drying. Action mechanism of surfactants in spray drying process was discussed deeply and schematics of capillary action force during particle drying was established.Reduction mechanism was studied deeply during reduction of (W,Ni,Fe) composite oxide powder. Results showed: influence of reduction temperature and time on properties of W-Ni-Fe composite powder was remarkable, and the best reduction condition was 700℃ for 90min. Nanometer W-Ni-Fe composite powder, average Fsss of which was smaller than 0.61 μm, BET sizes smaller than 100nm, crystalline size smaller than 30nm, oxide content of reduced powder smaller than 0.23%, homogeneous disperse and spherical morphology, was fabricated at 700℃ for 90min. Air phase transfer which mainly resulted in growth of particles during reduction was put forward. With the increasing of vapour produced during reduction, volatility WO_2(OH)_2 was easy synthesized by tungsten oxide and vapour. WO_2(OH)_2 deposited in surface of oxide tungsten with lower chemistry value or metal tungsten powder and resulted in growth of particles. Then two-stage reduction method and adding rare earth La or Y were put forward in order to inhibit growth of particles in this paper. When adding rare earth elements La or Y, new phase La(Ni_(0.75)W_(0.25))O_3 or Y(Ni_(0.75)W_(0.25))O_3 produced and adsorbed on surface of metal tungsten particles or tungsten oxide particles. Producing speed of volatility WO_2(OH)_2 was prevented from synthesizing of tungsten oxide and vapour, then air phase transfer was decreased. Growth of powder
    particles were hold back. When the rare earth element content was below 0.8 wt%, with the increasing of the rare earth elements content, the properties of the composite powder improved distinctly. When same content of rare earth elements were added, the effect degree on powder properties was Y>La-Y(mixing rare earth)>La.Coexistence field of solid and liquid is in the temperature range of 1341.2°C to 1365.8 °C by means of DTA apparatus. The field is lower about 70-90 °C than conventional 90W-Ni-Fe powder. Influence of sintering temperature and time on sintering properties of nanometer powder 90W-7Ni-3Fe alloy were studied according to this viewpoint. Low-temperature sintering mechanism of nanometer powder 90W-7Ni-3Fe alloy was investigated.Influence of adding rare earth elements La or Y on properties and microstructure of 90W-Ni-Fe alloy were investigated deeply and three-layer microstructure model images of W particle in alloy was established. Relation between adding La or Y and properties or microstructure of alloy was explained commendably by three-layer microstructure model images of W particle.It was not evident that W crystal was prevented from growing and properties of alloys improved by adding rare earth La. Transgranular cleavage fracture of W crystal and ductile avulsion of matrix phase are main fracture modes in the samples when adding Y. Inhibiting function from growing of W crystal was distinct and W crystal sizes decreased from 20-25 u m to 12 u m by adding 0.4% Y. Emergence chance of cavities and vapour reduced during liquid sintering in dry-tb atmosphere was decreased, and properties of alloys improved prominently by adding some Y. Relative density, tensile strength and elongation of samples was 99.6%, 1027.5MPa and 18.6% by adding 0.4% Y, respectively. When adding 0.6% Y, relative density, tensile strength and elongation of samples was 99.3%, HOOMPa and 16.3%, respectively. The properties of alloys are enhanced 25-30% than conventional 90W-Ni-Fe alloys. But W crystal morphology changed by adding some Y, W crystal morphology was nearly spherical by adding 0.4% Y or polyhedron by adding 0.8% Y. When same content of rare earth elements were added, the effect degree on properties of alloys was Y>La-Y(mixing rare earth)>La.When adding some rare earth elements, diffuse speed and solubility of tungsten in matrix phase descended, and solubility of tungsten in matrix phase decreased from 58.65 wt%(without rare earth) to 29.86 wt%(adding 0.4% La-Y). Therefore, deformation adjustability of matrix phase enhanced greatly.
引文
[1] 赵慕岳,王伏生,梁容海.高比重合金在国防工业和民用工业中的应用[J].粉末冶金技术,1983,1(6):20-23.
    [2] 殷为宏.世纪之交我国难熔金属加工业[J].稀有金属材料与工程,1998,27(增刊):1-8.
    [3] Schubert W S, Bock A, Lux B. General aspects and limits of conventional ultrafine WC powder manufacture and hard metal production[J]. International journal of refractory metal and hard materials, 1995, 13(5): 281-296.
    [4] McCandlish L E, Kear B H, Bhatia S J. Spray conversion process for the production of nanophase composite powders[P]. World Pat. WO91/07244, 1991.
    [5] Hogwood M C, Bentley A R. The development of high strength and toughness fibrous microstructures in tungsten-nickel-iron alloys for kinetic energy penetrator applications[J]. Proceedings of tungsten refractory metal, 1994, 37-45.
    [6] Brookes K J A. 50 years of hardmetal technology[J]. Metal powder report, 1995, (12): 22.
    [7] 白春礼.纳米科技及其发展前景[J].科学通报,2001,46(2):89-92.
    [8] 张立德.纳米材料研究的新进展及在21世纪的战略地位[J].中国粉体技术,2000,6(1):1-5.
    [9] 朱桂森.高比重钨合金[J].稀有金属材料与工程,1988,17(1):34-41.
    [10] German R M. Limitations in net shaping by liquid phase sintering[J]. Advanced in powder metallurgy, 1991, (4): 183-193.
    [11] Fredriksson H, Eliasson A, Ekbom L. Penetration of tungsten grain boundaries by a liquid W-Ni-Fe matrix[J]. International journal of refractory metal and hard materials, 1995, 13(1): 173-179.
    [12] Edmonds D V. Structure/Property relationships in sintered heavy alloys[J]. International journal of refractory metal and hard materials, 1991, 9(10): 15-25.
    [13] Bose A, Herve R, Coque A, etal. Development and properties of new tungsten based composites for penetrators[J]. International journal of powder metallurgy, 1992, 28(4): 383-393.
    [14] 赵慕岳,范景莲,王伏生.我国钨基高密度合金的发展现状与展望[J].中国钨业,1999,14(5-6):38-43.
    [15] 葛启录,肖振声,韩欢庆.高性能难熔材料在尖端领域的应用与发展趋势[J].粉末冶金工业,2000,10(1):7-13.
    [16] German R M. Microstructure limitation of high tungsten content heavy alloys[J]. Journal of metals, 1985, 37(8): 36-39.
    [17] Raghavan V. Phase diagrams of ternary iron alloys[M]. Calcutta: Indian institute of metals, 1992, 41.
    [18] 王玉金,宋桂明,周玉等.合金元素及第二相对钨的影响(Ⅰ)[J].宇航材料工艺,1998,(5):11-18.
    [19] 王辅忠,李荣华,费英.高密度钨合金中沉淀相的研究进展[J].稀有金属与硬质合金,2002,30(4):39-41.
    [20] 范景莲,赵慕岳,徐国富.高比重合金的研究现状[J].稀有金属材料与工程,1993,22(3):7-12.
    [21] 周国安,赖和怡,吴青莲.钴、锰在W-Ni-Fe合金中的作用及其浸润机理的探讨[J].稀有金属,1987,11(5):342-347.
    [22] 白淑珍,张宝生.合金元素钴和锰对W-Ni-Fe合金性能的影响[J].稀有金属,1995,19(1):357-361.
    [23] 罗述东.钽添加钨基高密度合金的弹性模量研究:[硕士学位论文].长沙:中南大学,2003,36-42.
    [24] Kemp R B, German R M. Mechanical properties of molybdenum alloyed liquid phase sintered tungsten based composites[J]. Metallurgy and materials Transaction A, 1995, 26A: 2187-2189.
    [25] Kemp R B, German R M. Grain growth in liquid phase sintered W-Mo-Ni-Fe alloys[J]. Journal of the Less Common Metals, 1991(175): 353-368.
    [26] Bose A, German R M. Microstructural refinement of W-Ni-Fe heavy alloys by alloying additions[J]. Metallurgical Transaction A, 1988, 19: 3100-3103.
    [27] 范景莲,赵慕岳,徐国富.钼对钨基合金砧块性能的影响[J].粉末冶金技术,1993,11(2):119-124.
    [28] Hsu Chensheng, Lin Shuntian. Coalescence of Tungsten Grains Around Molybdenum Grains in the Presence of a Liquid Phase[J]. Scripta Materialia, 2002 (46): 869-873.
    [29] 聂常绅,吴琳,刘金红,等.W-Ni-Fe-Co系重合金中锰的作用机制的研究[J].兵器材料科学与工程,1994,17(5):10-14.
    [30] Kim Eun-pyo, Hong Moon-hee, Baek Woon Hyung, et al. The Effect of Manganese Addition on the Microstructure of W-Ni-Fe Heavy Alloy[J]. Metallurgical and Materials Transactions A, 1999, 30(3): 627-632.
    [31] 周国安,刘勇,邓欣,等.Si、Na掺杂对W-Ni-Fe高比重合金界面结构的影响[J].兵器材料科学与工程,1999,22(3):3-8.
    [32] 周国安,刘勇,邓欣.Si和Na掺杂对钨基高密度合金物理机械性能的影响[J]. 中国钨业,1999,(4):29-33.
    [33] 周国安,刘勇,邓欣,等.Si、Na掺杂W基高比重合金液相烧结过程中的界面反应[J].粉末冶金技术,1999,17(1):3-9.
    [34] 葛荣德,王盘新,赖怡和.微量含Si杂质对W-7Ni-3Fe高比重合金性能的影响[J].材料科学与工艺,1995,3(1):38-43.
    [35] 葛荣德,王盘新,赖怡和.微量SiO_2对W-7Ni-3Fe高比重合金性能的影响[J].机械工程材料,1995,19(3):32-35.
    [36] Andrade V. Proceedings of the first international conference on tungsten and tungsten alloys[C]. Virginia, 1992, Nov. 119.
    [37] 李秋娟,赵慕岳.W-Ni-Cu-Sn系高比重合金的研究[J].粉末冶金技术,1988,6(4):200-205.
    [38] 刘志国,张宝生,庄育智.新型W-Ni-Fe-TiB_2合金[J].中国有色金属学报,1995,5(4):107-111.
    [39] Hong Seong-hyeon, Kang Suk-joong L., Yoon Duk N., et al. The Reduction of the Interfacial Segregation of Phosphorus and Its Embrittlement Effect by Lanthanum Addition in a W-Ni-Fe Heavy Alloy[J]. Metallurgical Transaction A, 1991, 22A(12): 2969-2974.
    [40] Wu G. C., Q. Wang You, D.. Influence of the Addition of Lanthanum on a W-Ni-Fe Heavy Alloy[J]. Refractory Metals and Hard Materials, 1999, 17(4): 299-304.
    [41] 冯庆芬,丁华东,方民宪,等.La,Ce对93WNiFe合金动态拉伸性能的影响[J].兵器材料科学与工程,2003,26(3):7-10.
    [42] 赵慕岳,易屏华,王伏生.添加CeO_2与La_2O_3的新型钨基合金的研究[J].稀有金属材料与工程,1988,(3):9-12.
    [43] Park Sanghyun, Kim Dong-kuk, Lee Sunghak, etal. Dynamic deformation behavior of an oxide-dispersed tungsten heavy alloy fabricated by mechanical alloying[J]. Metallurgical and materials transactions A, 2001, 32A(8): 2011-2020.
    [44] Ryu Ho J., Hong Soon H. Fabrication and properties of mechanically alloyed oxide-dispersed tungsten heavy alloys[J]. Materials science & engineering A, 2003, 363: 179-184.
    [45] Cheynet M C. Strengthening of liquid phase sintered W-Ni-Fe-Base heavy alloys[J]. International journal refractory metals and hard materials, 1986, 5(1): 55-60.
    [46] 黄继华,赖和怡,周国安,等.高比重钨合金的微观结构和性能的关系[J].粉末冶金技术,1992,10(1):63-68.
    [47] 朱桂森,刘铭威,林忠杰,等.氢对高比重合金(W-3.5Ni-1.5Fe)力学性能的影响[J].金属学报,1981,17(1):39-43.
    [48] Yoon H K, Lee S H, Kang J L, etal. Effect of vacuum-treatment mechanical properties of W-Ni-Fe heavy alloy[J]. Journal of materials science, 1983, 18(5): 374-380.
    [49] 张玉华,吕海波.90W-7Ni-3Cu重合金真空热处理的研究[J].粉末冶金技术,1988,6(2):289-294.
    [50] 周国安,林国标,赖和怡,等.真空热处理对95W-3.5Ni-1.5Fe高密度合金组织和性能的影响[J].金属热处理,1995,(5):13-15.
    [51] 张云廷.钨合金真空热处理机理探讨[J].兵器材料科学与工程,1990,13(3):19-24.
    [52] 王富耻,王迎春,黄国华,等.碳含量对W-Ni-Fe系合金析出相及动态力学性能的影响[J].粉末冶金技术,1998,16(2):93-96.
    [53] 高兆祖,康志君,郑强.氧含量对W-Ni-Fe合金组织性能的影响[J].稀有金属,1999,23(2):81-84.
    [54] Lifu Y. In: International Conference on Tungsten and Tungsten Alloys, 1992: 256.
    [55] 王玉金,宋桂明,周玉,等.合金元素及第二相对钨的影响(Ⅱ).宇航材料工艺,1998,(6):13-15.
    [56] 鲍龙.化学复合——粉术冶金高比重合金研究[J].新技术新工艺,1995,(6):29-30.
    [57] 王伏生,赵慕岳,梁容海,等.W-Ni-Cu合金材质均匀性工艺因素的研究[J].粉末冶金技术,1993,11(1):39-41.
    [58] 王伏生,周载明,梁容海.提高W-Ni-Cu合金膨胀系数等性能的实例分析[J].中国有色金属学报,1997,7(1):103-106.
    [59] 吴成义,张丽英.粉体成形力学原理[M].北京:冶金工业出版社,2003,9:157,238,289.
    [60] 孙雪坤.金属粉末冷等静压下致密化过程的分析[J].中国有色金属学报,1998,8(增1):330-333.
    [61] 贺峻,王艳丽,康永林.粉末冶金零件等静压成形过程数值模拟[J].钢铁研究,2001,(1):62-64.
    [62] 张朝晖,王富耻,李树奎.静液挤压钨合金的显微组织与力学性能[J].中国有色金属学报,2001,11(S1):88-91.
    [63] 王换玉,才鸿年,李刚,等.液力挤压法制备新型钨合金穿甲弹芯材料技术[J].金属成形工艺,2003,21(5):35-36.
    [64] 高立,马浩然.钨骨架挤压成形工艺探讨[J].粉末冶金技术,1994,12(2):1009-1012.
    [65] 李益民,范景莲,曲选辉,等.注射成形高密度钨合金脱脂工艺的研究[J].材料科学与工艺,1999,7(3):65-69.
    [66] Fan Jinglian, Qu Xuanhui, Huang Baiyun. Injection Molding of Nano-structured 90W-7Ni-3Fe Alloy Powder Prepared by High Energy Ball Milling[J]. Trans. Nonferrous Met. Soc. China, 2000, 10(6): 794-797.
    [67] 范景莲,黄伯云,曲选辉.注射成形高密度合金的变形控制[J].稀有金属材料与工程,2001,30(5):369-371.
    [68] 范景莲,黄伯云,曲选辉.注射成形高比重合金的显微组织与性能[J].中国有 色金属学报,1998,8(4):590-594.
    [69] 范景莲,曲选辉.纳米晶钨高密度合金粉末的注射成形与固相烧结[J].材料研究学报,2001,15(1):131-134.
    [70] 范景莲,夏佩华,胡婧.钨基高比重合金注射成形脱脂工艺[J].中国有色金属学报,2001,11(4):651-654.
    [71] Leaner F P. Metal injection molding: the incubation is over[J]. International journal of powder metallurgy, 1988, 24(2): 123-127.
    [72] Fan Jinglian, Huang Baiyun, Qu Xuanhui. Low temperature thermal debinding behavior of wax based multi-component binder for tungsten heavy alloy[J]. Trans Nonferrous Met Soc China, 1999, 9(1): 93-98.
    [73] Hwang K S, Hsieh Y M. Comparative study of pore structure evolution during solvent and thermal debinding of powder injection molded parts[J]. Metall Trans A, 1996, 27(2): 245-253.
    [74] 李志林.W-Ni-Fe高比重合金的注射成形:[硕士学位论文].长沙:中南工业大学,1998,1-12.
    [75] Lu Peizhen, German Randall M, Marx Brian M.Liquid Phase Sintering of Tungsten Heavy Alloys[J]. The International Journal of Powder Metallurgy, 2001, 37(6): 45-56.
    [76] Upadhyaya Anish, German Randall M. Shape Distortion in Liquid-Phase-Sintered Tungsten Heavy Alloys[J]. Metallurgical and Materials Transactions A, 1998(29A): 2631-2638.
    [77] German R. M, Liu Yixiong, Griffo Anthony. Gravitational Effects on Grain Coarsening During Liquid-Phase Sintering[J]. Metallurgical and Materials Transactions A, 1997,(28A): 215-221.
    [78] Upadhyaya Anish, German Randall M.. Gravitational Effects during Liquid Phase Sintering[J]. Materials Chemistry and Physics, 2001(67): 25-31.
    [79] Yang S C, Mani S S, German R M. The effect of contiguity on growth kinetics in liquid-phase sintering[J]. JOM, 1990, Apri. 16-19.
    [80] 王兴庆,隋永江.高比重合金液相烧结时颗粒长大的动力学[J].上海工业大学学报,1993,14(1):88-92.
    [81] Fan Jinglian, Huang Baiyun, Qu Xuanhui. etal. Thermal stability, grain growth and structure changes of mechanically alloyed W-Ni-Fe composite during annealing[J]. International Journal of Refractory Metals & Hard Materials, 2001(19): 73-77.
    [82] Eroglu S, Baykara T. Effects of powder mixing technique and tungsten powder size on the properties of tungsten heavy alloys[J]. Journal of Materials Processing Technology, 2000,(103): 288-292.
    [83] 黄宁,黄建中.镍的添加方式对钨基高比重合金显微组织和性能的影响[J]. 粉末冶金工业,1997,7(3):17-20.
    [84] Rabin B H, Bose A, German R M. Characteristic of liquid phase sintered tungsten heavy alloys[J]. International journal of powder metallurgy, 1989, 25(1): 21-27.
    [85] Lea C, Muddle B C, Edmonds D V. Segregation to interphase boundaries in liquid-phase sintered tungsten alloys[J]. Metall Trans A, 1983, 14A: 667-677.
    [86] Park Jong-ku, Kang S J L, Eun K Y, etal. Microstructural change during liquid phase sintering of W-Ni-Fe alloy[J]. Metall Trans A, 1989, 20A(5): 839-845.
    [87] Liu Yixiong, Iacocca R G, Johnson J L, etal. Microstructural anomalies in a W-Ni alloy liquid phase sintered under microgravity conditions[J]. Metall Trans, 1995, 26A(9): 2484-2486.
    [88] German R M, Chum K S. Sintering atmosphere effects on the ductility of W-Ni-Fe heavy metals[J]. Metallurgy Trans. A, 1984, 15A: 747-751.
    [89] Farooq S., Kemp P. B., German R. M., et al. Effect of Initial Oxygen Content and Sintering Atmosphere Dew Point on the Properties of Tungsten Based Heavy Alloys[J]. Refractory Metals and Hard Materials, 1989(12): 236-243.
    [90] Bose A, German R M. Sintering atmosphere effects on tensile properties of heavy alloys[J]. Metall Trans A, 1988, 19A: 2467-2476.
    [91] German R M. Liquid phase sintering[M]. New York: Plenum press, 1985.
    [92] Bourgnignon L L, German R M. Sintering temperature effects on a tungsten heavy alloy[J]. The international journal of powder metallurgy, 1988, 24(2): 115-121.
    [93] German R M, Hanefee J E, Diglallonaro S L. Toughness variation with test temperature and cooling rate for liquid phase sintered 95W-3.5Ni-1.SFe[J]. Metallurgy Trans A, 1984, 15A: 121-128.
    [94] Kang Thae-khapp, Yoon D N. Coarsening of tungsten grains in liquid nickel iron matrix[J]. Metallurgical transaction, 1978, 9A(3): 433-438.
    [95] 范景莲,黄伯云,曲选辉,等.液相烧结高比重合金早期固相烧结阶段的致密化机理[J].中国有色金属学报,1998,8(增刊1):36-40.
    [96] 范景莲,李益民,曲选辉,等.W-Ni-Fe高密度合金的烧结[J].矿冶工程,1998,18(4):40-43.
    [97] 范景莲,黄伯云,曲选辉,等.二步烧结法控制高比重合金的变形及其对组织与性能的影响[J].稀有金属,2000,24(1):43-46.
    [98] Song Soon H., Ryu Ho J.. Combination of Mechanical Alloying and Two-stage Sintering of a 93W-5.6Ni-1.4Fe Tungsten Heavy Alloy[J]. Materials Science and Engineering A, 2003(344): 253-260.
    [99] Ryu Ho J., Song Soon H., Baek Woon H.. Microstructure and Mechanical Properties of Mechanically Alloyed and Solid-state Sintered Tungsten Heavy Alloys[J]. Materials Science and Engineering A, 2000(291): 91-96.
    [100] 王志法.钨基片的超高压成形与低温烧结新工艺探讨[J].中国钨业,1999,14(5-6):163-165.
    [101] 黄继华,周国安,赖和怡,等.近十年高比重钨合金强韧化研究动态[J].兵器材料科学与工程,1991,(10):38-44.
    [102] Wendy L. Improving mechanical properties of tungsten heavy alloy composites through thermomechanical processing[J]. Proceedings of the international symposium on tungsten and tungsten alloys, 1992, 127-134.
    [103] 李尚劫,甘长炎,张宝生.稀土元素镧对高比重钨合金组织和机械性能的影响[J].1991年全国粉末冶金学术会议论文集.北京:“粉末冶金技术”编辑部出版,1993:257-259.
    [104] Fan Jinglian, Zhao Muyue, Xu Guofu. Breakage mechanism of tungsten based alloy block for electro-heat upsetting[J]. Trans of nonferrous metals society of China, 1993, 3(3): 56-60.
    [105] 杨扬,程信林.绝热剪切的研究现状及发展趋势[J].中国有色金属学报,2002,12(3):401-408.
    [106] Magness L S. Improving mechanical properties of tungsten heavy alloy composites through thermomechanical processing[A]. Proc First Int Conf on Tungsten and Tungsten Alloys[C]. Arlington: Metal Powder Industries Federation, 1992, 127-132.
    [107] 魏志刚,胡时胜,李永池,等.粉末烧结钨合金材料的绝热剪切变形局域化实验研究[J].金属学报,1999,35(8):829-833.
    [108] 魏志刚,李永池,李剑荣,等.冲击载荷作用下钨合金材料绝热剪切带形成机理[J].金属学报,2000,36(12):1263-1268.
    [109] 周吉峰,殷为宏.钨基高密度合金的研究进展[J].稀有金属材料与工程1998,27(增刊):106-113.
    [110] 孙剑飞,张法明,沈军.纳米WC-Co复合粉末的制备工艺及其烧结特性[J].稀有金属与硬质合金,2002,30(1):33-37.
    [111] 高勇.纳米WC-Co复合材料制备及烧结过程[J].硬质合金,2000,17(1):18.
    [112] Fu L, Cao L H, Fan Y S. Two-step Synthesis of Nanostuctured Tungsten Carbide-cobalt Powders[J]. Scripta Materialia, 2001, 44(7): 1061-1068.
    [113] 黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997,11:42-51.
    [114] Zhang Zongyin, Wahlberg Sverker, Wang Mingsheng, etal. Processing of Nanostructured WC-Co Powder from Precursor Obtained by Co-Precipitation[J]. Nanostructured Materials, 1999, 12(1-4): 163-166.
    [115] Tan G L, Wu X J. Mechanochemical synthesis of nanocrystalline tungsten carbide powders[J]. Powder metallurgy, 1998, 41(4): 300-302.
    [116] Lee G G, Ha G H, Kim B K. Synthesis of high density ultrafine W/Cu composite alloy by mechano-thermo chemical process[J]. Powder metallurgy, 2000, 43(1): 79-82.
    [117] Smith R W, Kim M, Kappor D. Structure and properties of spray formed tungsten based composites[J]. Advanced particulate materials and process, 1997, 219-225, Princeton, NJ: MPIF.
    [118] 黄忠耿.研制和生产粒度小于0.6μm碳化钨粉的工艺发展动态[J].稀有金属与硬质合金,1998,(4):51.
    [119] 殷声.燃烧合成[M].北京:冶金工业出版社,1999.
    [120] Aning A O, whangz, courttney TH. Tungsten solution Kinecics and Amorphization of Nickel in mechanically alloyed Ni-W alloys[J]. Acta metal moder, 1993, 42(1): 165-175.
    [121] Fan J L, Huang B Y. Qu X H. W-Ni-Fe nanostructure materials synthesized by high energy ball milling[J]. Trans. of NF. Soc., 2000, 10(1):57-59.
    [122] Lu L., Lai M. O., Zhang S. Diffusion in Mechanical Alloying[J]. Journal of Materials processing Technology, 1997(67): 100-104.
    [123] Rgu H J, Hong S H, Back W H. Mechanical Alloying Process of 93W-5.6Ni-1.4Fe Tungsten Heavy Alloy[J]. Journal of Materials Processing Technology, 1997,(63): 292-297.
    [124] 范景莲,黄伯云,曲选辉.W-Ni-Fe高比重合金纳米晶预合金粉的制备[J].粉末冶金技术,1999,17(2):89-93.
    [125] Edelman D G, Palatka B J. Sub Hash G. Mechanical Alloying of W-Hf-Ti Alloys[J]. Tungsten Refract. Met-1994, Proc. Int. Conf, 2nd, 1995, 227-233.
    [126] Kim J C, Rgu S S, Lee H., Moon I H. Metal injection molding of nanostructured W-Cu Composite powder[J]. The Inter. J. of powder metal., 1999, 35(4): 47-55.
    [127] 王成国,吴军,刘玉先,等.过程控制剂对Fe-C-Ti粉末机械合金化的影响[J].粉末冶金技术,1997,15(4):258-261.
    [128] Yang Manru, Yu Guiyu. The Principle and Process of Sol-Gel Method[J]. Silicate Bulletin, 1992,(2): 56-63.
    [129] Srikanth Raghunathan, David L. Bowrell. Synthesis and evaluation of advanced nanocrystalline Tungsten-Based Materials[J]. P/M Science & Technology Bridfs, 1999, 1(1): 9-14.
    [130] 姚敏琪,卫英慧,胡立青,等.溶胶-凝胶法制备纳米粉体[J].稀有金属材料与工程,2002,31(5):325-329.
    [131] White G D, Gurwell W E. Freeze Dried Tungsten Heavy Alloys[J]. Advanced in Powder Metallurgy, 1989,(1): 355-368.
    [132] Mulligan S, Dowding R J. Sinterability of tungsten powder CVD coated with nickel and iron. Report 1990, MTL-TR-90-56,Order No.AD-A231913: 26.
    [133] Magnusson M H, Deppert K. Single-crystalline of tungsten nanoparticles produce by thermal decomposition of tungsten exacarbonyl[J]. J.Mater.Res.,2000,15(7): 1564-1569.
    [134] 范景莲,黄伯云,张传福,等.纳米钨合金粉末的制备技术与烧结技术[J].硬质合金,2001,18(4):225-231.
    [135] 戴遐明.喷雾热解—一种重要的微粉制备技术[J].粉体技术,1995,1(2):28-33.
    [136] 高荣根.纳米结构WC-Co复合粉末的制备与应用[J].稀有金属与硬质合金,1999,(137):49-54.
    [137] 张丽英,吴成义,汪志勇,等.硬质合金用纳米级(W,Ni,Te,V)系复合氧化物粉末的制备[J].金属学报,1999,35(2):152-154.
    [138] 张丽英,吴成义,李刚,等.纳米级W-Ni-Fe-Y系硬质合金复合氧化物粉末的制备[J].粉末冶金工业,1998,8(6):23-26.
    [139] 张丽英,吴成义,晏洪波,等.含钒超细晶粒WC-(Ni,Fe)系硬质合金复合粉的研制[J].金属学报,1999,35(2):155-158.
    [140] Seegopaul P, McCandlish L E, Shinneman F M. Production capability and powder processing methods for nanostructured WC-Co powder[J]. International Journal of Refractory Metals & Hard materials, 1997, 15: 133-138.
    [141] 邓世钧,金德辰,程旭东.料浆复合法制备复合粉末工艺的研究[J].粉末冶金技术,1985,(1):12-20.
    [142] 倪代秦.喷雾干燥法制备超细粉末的研究[J].兵器材料科学与工程,1992,(7):37-40.
    [143] Ziemer B, Kruger C, Lunk H J. A method for quantitative X-ray diffraction of mixtures containing α-W, β-W and WO_2[J]. International journal of refractory metals & hard materials, 1989, 8(1): 52-54.
    [144] Qvick Jan, Richardson Marcus W. Use of an in-situ oxygen probe to study the reduction of tungsten oxide by hydrogen[J]. International journal of refractory metals & hard materials, 1989, 8(1): 94-100.
    [145] 陈绍衣,钱崇梁.氧化钨氢还原过程中的物相转变[J].中南工业大学学报,1995,26(5):605-609.
    [146] Schubert W D, Lassner E. Production and chanracterization of hydrogen-reduced submicron tungsten powders(Part 2)[J]. International journal of refractory metals & hard materials, 1991, 10(4): 171-183.
    [147] Schubert W D, Lassner E. Production and chanracterization of hydrogen-reduced submicron tungsten powders(Part 1)[J]. International journal of refractory metals & hard materials, 1991, 10(3): 133-143.
    [148] 陈绍衣.紫色氧化钨制取钨粉[J].中南矿冶学院学报,1994,25(5):607-611.
    [149] Li shujie, Lai Hoyi. Control of phases of tungsten blue oxide and their effects on particle size of tungsten powder[J]. International journal of refractory metals & hard materials, 1987, 6(1): 35-39.
    [150] Li shujie, Li Yuping, Chen Zhengqiu. β-W in brown oxide and the relationship between β-W and doping effect[J]. International journal of refractory metals & hard materials, 1988, 7(2): 103-108.
    [151] Yuping N. The reduction mechanism of blue tungsten oxide by hydrogen[J]. Modern developments in powder metallurgy, 1985, 17:15-19.
    [152] Venables Dean S, Brown Michael E. Reduction of tungsten oxides with hydrogen and carbon[J]. Thermochimica acta, 1996, 285: 361-382.
    [153] 阳冬元.蓝钨在回转还原炉中的氢还原[J].硬质合金,2003,20(1):16-19.
    [154] 陈绍衣,用W_(18)O_(49)制造超细钨粉及超细碳化钨粉[J].中南工业大学学报,1997,28(5):456-460.
    [155] 邹志强,Schubert,Lux B.胺钨盐的性质及其在制取亚微米级钨粉方面的应用[J].中南矿冶学院学报,1990,21(6):622-631.
    [156] Haubner R, Schubert W. Mechanism of tungsten reduction(Part 1)[J]. International journal of refractory metals & hard materials, 1983, 2(3): 108-115.
    [157] Haubner R, Schubert W. Mechanism of tungsten reduction(Part 2)[J]. International journal of refractory metals & hard materials, 1983, 2(4): 156-163.
    [158] Chaiat D, Gee R, Nadiv. An oxidation-reduction process for reclamation of tungsten-based heavy metal alloys[J]. International journal of refractory metals & hard materials, 1989, 8(1): 40-42.
    [159] Lee J S, Kim T H. Microhomogeneity and sintering of W-Cu composite powders produced by hydrogen reduction[J]. Solid state phenomena, 1992, 25-26(1): 143-150.
    [160] Zeiler B, Schubert W D, Lux B. On the reduction of NS-doped tungsten blue oxide(Part 1)[J]. International journal of refractory metals & hard materials, 1991, 10(1):83-90.
    [161] 宋安国.蓝色氧化钨工业生产亚微钨粉和超微钨粉[J].硬质合金,1993,10(2):74-78.
    [162] 张玉华,邹志强,吴恩熙.钨氧化物形态及工艺条件对其氢还原过程的影响[J].稀有金属与硬质合金,1987,(3):1-6.
    [163] 陈绍衣.超细钨粉、碳化钨粉研制方法的述评[J].中国钨业,1999,14(5-6):146-149
    [164] Moriysohi Y. The preparation and characterization of ultrafine tungsten powder[J]. Journal of materials science letters, 1997, 16: 347-349.
    [165] 徐志昌,张萍.流态化技术与超细钨粉[J].中国钨业,1994,12:15-20.
    [166] 邹志强,汪晓,钱崇梁.高活性氧化钨氢还原相变过程的研究[J].稀有金属与硬质合金,1995,(1):1-5.
    [167] 廖寄乔,黄志锋,吕海波,等.不同氧化钨氢还原制取超细钨粉[J].中南工 业大学学报,2000,31(1):51-55.
    [168] 陶正己.近十年来钨粉和碳化钨粉的研究和开发[J].硬质合金,1992,9(2):66-75.
    [169] 陈绍衣.氧化钨原料对钨粉粒度的影响[J].稀有金属与硬质合金,1994,(3):10-13.
    [170] 黄忠耿.蓝钨氢还原制取钨粉[J].稀有金属与硬质合金,1997,(1):57-59.
    [171] 王志雄,舒代萱,唐新和.WO_(2.90)(四方晶型)纯组分蓝色氧化钨氢还原动力学及超细钨粉制取的新方法[J].化工冶金,1993,14(3):224-230.
    [172] 王祖南.钨现代还原理论综述[J].硬质合金,1991,8(1):14-21.
    [173] Fouad N B, Attiya K M E. Thermogravimetry of WO_3 reduction in hydrogen: kinetic characterization of autocatalytic effects[J]. Powder Technology, 1993, 74(1): 31-39.
    [174] Tao Zhengji. Investigation of hydrogen reduction process for blue tungstic oxide[J]. International Journal of Refractory Metals & Hard Materials, 1989, 8(3): 179-184.
    [175] Schubert W D. Kinetics of the hydrogen reduction of tungsten oxides[J]. International Journal of Refractory Metals & Hard Materials, 1990, 9(4): 178-191.
    [176] Andreas Lackner. On the reduction of tungsten blue oxide in a stream of hydrogen[J]. International Journal of Refractory Metals & Hard Materials, 1996, 14(5-6): 383-391.
    [177] Zou Zhiqiang, Qian Chongliang, Wu Enxi, etal. H_2-reduction dynamics of different forms of tungsten oxide[J]. International Journal of Refractory Metals & Hard Materials, 1988, 7(1): 57-60.
    [178] Kim T H, Yu J H, Lee J S. The mechanism of hydrogen reduction synthesis of nanocomposite W-Cu powders[J]. Nanostructured materials, 1997, 9(2): 213-216.
    [179] Fan Yousan, Fu Lei. Preparing ultrafine tungsten powder by H_2 plasma reduction[J]. Journal of materials science letter, 1996, 15: 2130-2140.
    [180] Liao Jiqiao, Chen Shaoyi, Zou Zhiqiang, etal. Influence of tungsten oxides' characteristies on fineness, homogeneity and looseness of reduced ultrafine tungsten powder[J]. International Journal of Refractory Metals & Hard Materials, 1999, 17(6): 423-429.
    [181] Haerdtle S T, Thomas Hug, Theodor Staneff. Taylor-made tungsten heavy alloys by solid state sintering of Pre-alloyed powders and subsequent cold working. Tungsten Refract. Met-1994, Proc.Int. Conf, 2nd, 1995: 169-178.
    [182] Tao Zhengji. Production of submicron tungsten powder by hydrogen reduction of tungsten trioxide[J]. International Journal of Refractory Metals & Hard Materials, 1986, 5(2): 108-112.
    [183] 黄慧民,陈新民.β-W的生成与还原氢流速的关系[J].稀有金属与硬质合金,1988,2:1-4.
    [184] 稀有金属手册编辑委员会.稀有金属手册(上册)[M].北京:冶金工业出版社, 1992.12:531-333.
    [185] 李在元,瞿玉春,田彦文,等.钨铜化合物氢还原制备钨铜复合粉研究[J].材料导报,2004,18(1):95-96.
    [186] 杨扬,周美玲,李汉广.稀土镧、钇对蓝色氧化钨氢还原的影响[J].稀有金属材料与工程,1994,23(5):52-55.
    [187] 廖寄乔,唐美英.氧化钨相成分对超细钨粉均匀性的影响[J].稀有金属材料与工程,2001,30(6):453-456.
    [188] 李汉广.杂质在钨冶金过程中的行为和作用[J].钨钼文集,1983,(1):43-46.
    [189] 莫似浩.钨冶炼的原理和工艺[M].北京:轻工业出版社,1984,323-325.
    [190] 张久兴,刘心宇,左铁镛,等.稀土元素La对掺杂钨粉形貌及其坯条性能的影响[J].稀有金属材料与工程,1991,20(6):28-32.
    [191] 徐晓娟,张丽英,郭志猛,等.纳米级WO_3粉的还原动力学特征[J].粉末冶金技术,2002,20(3):147-150.
    [192] 黄建民,吕海波.微细晶粒WC-Co硬质合金低压热等静压[J].硬质合金,1996,(3):142-145.
    [193] 张利波,彭金辉,张世敏,等.等离子活化烧结新技术及应用[J].昆明理工大学学报,2002,27(4):22-24.
    [194] 彭金辉,马骏骑,杨显万,等.等离子体活化烧结纳米材料[J].稀有金属,1997,21(6):444-446.
    [195] 解迎芳,王兴庆,陈立东,等.放电等离子烧结微晶硬质合金的研究[J].硬质合金,2003,20(3):138.
    [196] 周健,程吉平,袁润章,等.微波烧结WC-Co细晶硬质合金的工艺与性能[J].中国有色金属学报,1999,9(3):465-468.
    [197] 吴恩熙,雷贻文.超细硬质合金中晶粒生长抑制剂的作用[J].硬质合金,2002,19(3):136-140.
    [198] 吴国才,王德文,尤清照.稀土元素对GW157高比重合金力学性能的影响[J].钢铁研究学报,1996,8(supl):56-59.
    [199] Berhhard Wittmann. WC Grain Growth and Grain Growth Inhibition in Nickd Zron Binder Hardmetals[J]. Int. J. of refractory Metals & Hard Materials, 2002, 20:51-60.
    [200] Sadangi R K, McCandish L E, Kear B H, etal. Grains Growth Inhibition in Liquid Phase Sintered Nanophase WC-Co Alloys[J]. Advances In Powder Metallurgy & Particulate Materials, 1998,(1): 51-59.
    [201] Sadangi R. K., McCandlish L. E., Kear B. H., etal. Grain Growth Inhibition in Liquid Phase Sintered Nanophase WC/Co Alloys[J]. The Inter. J. of Powder Metallurgy, 1999, 35(1): 27-32.
    [202] 刘寿荣.WC-Co硬质合会中TaC、Cr_3C_2添加剂作用机理[J].稀有金属材料与 工程,1997,26(6):31-35.
    [203] 王相田,胡黎明,顾达,等.超细颗粒分散过程分析[J].化学通报,1995,(5):13-17.
    [204] Heslot F. Cazabat A M.Experiments on Spreding Droplets and Thin Films[J]. Advances in Colloid and Interface Science, 1992, 39:139.
    [205] James R O.Characterization of Colloids in Aqueous Systems[J]. Advances in Ceramics, 1987, 21: 349.
    [206] 王瑞刚,吴厚政,陈玉如,等.陶瓷料浆稳定分散进展[J].陶瓷学报,1999,(1):35-36.
    [207] 马文有,田秋,曹茂盛,等.纳米颗粒分散技术研究进展——分散方法与机理(1)[J].中国粉体技术,2002,8(3):28-31.
    [208] 沈钟,王果庭.胶体与表面化学[M].北京:化学工业出版社,1997,9:78-80.
    [209] 邱冠周,胡岳华,王淀佐.颗粒间相互作用与细粒浮选[M].长沙:中南工业大学出版社,1993.
    [210] 王正东,胡黎明.超分散剂的作用机理及应用效果[J].精细石油化工,1996,(6):59-62.
    [211] 汪剑炜,王正东,胡黎明.超分散剂的分子结构设计[J].化工进展,1994,(4):32-36.
    [212] 刘新锦,罗朝军,黄铁钢.纳米三氧化钨的合成研究[J].厦门大学学报(自然科学版),1996,35(5):750-754.
    [213] 陈寿椿,唐春元,于擎德.重要无机化学反应(第三版)[M].上海:上海科学技术出版社,1994:555-556.
    [214] 尹承烈译.简明化学手册[M].北京:化学工业出版社,1990:548-552.
    [215] 梁焕珍,毛铭华.超细粉末的制备技术[J].材料导报,1992,2:13-17.
    [216] Fang Zhigang, Eason Jimmy W.. Study of Nanostructured WC-Co Composites[J]. Int.J.of Refractory Metals & Hard Materials, 1995, 13: 297-303.
    [217] 曾颖峰,蒋晓明,陈月珠.表面活性剂对制备纳米MoS_2颗粒的影响[J].石油学报,2001,17(4):55-58.
    [218] 许珂敬,杨新春,许煜汾,等.表面活性剂在胶体制备过程中的作用[J].中国有色金属学报,1998,8(增2):560-563.
    [219] 奚红霞,黄仲涛.凝胶的干燥[J].膜科学与技术,1997,17(1):1-8.
    [220] 姚允斌,解涛,高英敏.物理化学手册[M].上海:上海科学技术出版社,1985,12.491-518.
    [221] 刘程.表面活性剂应用大全[M].北京:北京工业大学出版社,1994,4,52.
    [222] 刘广文.喷雾干燥实用技术大全[M].北京:中国轻工业出版社,2001,10,86-89.
    [223] 王志魁.化工原理[M].北京:化学工业出版社,1994,345-347.
    [224] 廖为鑫,解子章.粉末冶金过程热力学分析[M].北京:冶金工业出版社,1984,11:132-136.
    [225] Yang Mujen, Atre Sundar V., German Randall M. Wax-based and PEG-based binder systems development for metal and ceramic powders[J]. Advances in powder metallurgy & particulate materials, 1996, 5(19): 225-232.
    [226] James T. Richardson, Robert Scates, Martyn V. Twigg. X-ray diffraction study of nickel oxide reduction by hydrogen[J]. Applied Catalysis A:General, 2003,(246): 137-150.
    [227] Lin Hsinyu, Chen Yuwen, Li Chiuping. The mechanism of reduction of iron oxide by hydrogen[J]. Thermochimica Acta, 2003,(400): 61-67.
    [228] Lee J.S., Kim T.H., Yu J.H.,etal. In-situ alloying on synthesis of nanosized Ni-Fe powder[J]. Nanostructure Materials, 1997, 9(2): 153-156.
    [229] 范爱国,师一华.国外弹用高性能钨基重合金研究进展[J].兵器材料科学与工程,1999,22(1):45-48.
    [230] 黄劲松,周继承,刘文胜,等.钨基重合金的烧结[J].粉末冶金工业,2003,13(1):26-29.
    [231] 马国刚.烧结时间对W-Ni-Fe重合金的组织结构及性能影响的研究[J].兵器材料科学与工程,2001,24(5):31-34.
    [232] Antonsson To, Ekbom L.. Initial stage of liquid phase sintering: liquid reaction and particle growth in W-Ni-Fe-(Co)[J]. Powder metallurgy, 2001, 44(3): 325-331.
    [233] Liu Jianxin, German Randall M.. Microstructure effect on dihedral angle in liquid-phase sintering[J]. Metallurgical and materials transactions A, 2001, 32A: 165-168.
    [234] James R Spencer, James A Mullendore. Tungsten nickel iron alloys[P]. US5145512, 1992.
    [235] Kim Dong-kuk, Lee Sunghak, Song Heung-sub. Effect of size and shape of tungsten particles on dynamic torsional properties in tungsten heavy alloys[J]. Metallurgical and materials transations A, 1999, 30(5): 1261-1273.
    [236] Richard F Cheney,韩凤麟译.金属手册[M].北京:机械工业出版社,1994:532.
    [237] 张立德.纳米材料学[M].沈阳:辽宁科技出版社,1994:160.
    [238] 陈献峰,张晖,丁秉钧.纳米晶W粉的制备及烧结性能[J].稀有金属材料与工程,1998,27(5):294-297.
    [239] Joanna R Groza. Nanosintering[J]. Nanostrucured materials, 1999, 12: 284-286.
    [240] 张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2002,2,60-62.
    [241] 卢柯,生红卫,金朝晖.晶体的熔化和过热[J].材料研究学报,1997,11(6):658-665.
    [242] Arato P, Bartha L, Porat R, etal. Solid or liquid phase sintering of nanocrystalline WC/Co hardmetals[J]. Nanostructure materials, 1998, 10(2): 245-255.
    [243] Harmat P, Kotsis I, Laczko L. etal. Melting and phase transformation of hardmetal powders[J]. Solid state ionics, 2001,(141-142): 157-161.
    [244] Allen G.I.,Gile W.W.,Jesser W.A. Acta metal., 1980, 28:1695-1701.
    [245] Tanaka T., Hara S. Thermodynamic evaluation of nano-partical binary alloy phase diagrams[J]. Z.metallkd., 2001, 92(11): 1236-1241.
    [246] 郑茂盛,赵更申,周根树.颗粒尺寸对纳米材料相变的影响[J].稀有金属材料与工程,1996,25(1):10-12.
    [247] 齐卫宏,汪明朴.纳米金属微粒表征量基本关系[J].材料导报,2002,16(9):76-78.
    [248] Qi W.H., Wang M.P., Xu G.Y.. The particle size dependence of cohesive energy of metallic nanoparticles[J]. Chem.phys.Lett,2003,372: 632-634.
    [249] 杨扬,周美铃,李汉广.稀土元素La、Y对钨材显微组织和性能的影响[J].中南工业大学学报,1993,24(1):69-72。
    [250] Sun Jun. Strength for decohesion of spheroidal carbide particle-matrix interface[J]. International journal of fracture, 1990, 44: R51-R56.
    [251] Sun Jun, Deng Zengjie, Li Zhonghua, etal. Fracture of spheroidal carbide particle[J]. International journal of fracture, 1990, 42: R39-R42.
    [252] 唐长国,朱金华,周惠久.应变率对钨合金抗拉强度及断口形貌的影响[J].稀有金属,1996,20(6):421-424.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700