粗晶WC-Co硬质合金的制备工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在Co含量相同的条件下,与传统的中、细晶粒硬质合金相比,粗晶粒硬质合金具有极高的热导率,较好的抗热疲劳与抗热冲击性能,主要用于极端工况条件下软岩连续挖掘用矿用工具、冲压模、冷镦模、轧辊等,具有非常广阔的市场前景。而目前WC晶粒度≥4.5μm的硬质合金属国内空白。本文的研究目的是探索晶粒度≥4.5μm的高性能粗晶WC-Co硬质合金的制备工艺。
     本研究分三部分,首先通过原料与制备工艺参数对合金中WC晶粒度的影响规律,探讨了传统湿磨工艺制备WC-Co硬质合金中WC晶粒度的最粗极限;随后通过干混合工艺研究,探讨了WC-Co硬质合金中WC晶粒度的提高途径;在上述研究基础上,开发了化学包裹粉工艺制备晶粒度≥4.5μm WC-Co硬质合金的新技术。采用扫描电镜观察粉末与合金中WC晶粒的形貌,采用x射线衍射仪分析粉末的物相组成,采用金相显微镜观察合金的组织结构。本研究得到以下结论:
     (1)传统湿磨工艺虽然保证了WC与Co两相的均匀混合,但因WC属脆性材料,湿磨过程中WC二次颗粒与一次颗粒容易破碎,采用费氏粒度(FSSS)高达28.3μm的WC原料,即使湿磨时间缩短至24h也难以制备出晶粒度≥4.5μm的粗晶WC-Co硬质合金。
     (2)与传统湿磨工艺相比,干混合工艺不会对WC粉末产生破碎作用。以FSSS为6.26μm的低团聚WC粉为原料,采用干混合工艺制备出了晶粒度≥5μm的粗晶WC-Co硬质合金;但干混合制备的混合料中WC颗粒粗大、形状不规则、存在大量硬团聚体,压坯中易产生大孔洞与未压好等缺陷,这类缺陷难以通过液相烧结得到有效消除,严重影响了合金的力学性能。
     (3)采用化学包裹粉工艺制备粗晶WC-Co硬质合金,不但克服了传统湿磨工艺制备混合料过程中WC粒度显著减小的问题,而且改善了WC、Co两相分布的均匀程度,改变了WC与Co的结合方式—Co呈现多孔泡沫状纳米组装结构形式包裹在WC粉末表面。以FSSS为6.26μm经过特殊预处理的WC粉为原料,采用化学包裹粉工艺成功地制备了WC-Co硬质合金。结果表明,合金组织结构均匀,WC晶粒结晶完整,晶粒呈现边角圆化特征;合金中WC平均晶粒度≥4.8μm。制备的WC-20%Co合金的横向断裂强度达2750MPa,洛氏硬度HRA达83.4,达到了Sandvik同类产品的质量水平。
Compared with medium/fine cemented carbides, coarse-grained cemented carbide has a higher thermal conductivity, better thermal fatigue resistance and thermal shock resistance under the condition of the same Co content, mainly applied in mining tools used in continuous excavation in extreme working conditions, punching dies, cold punching dies, rollers and so on. This kind of cemented carbides has very broad market prospects. At present, no production of cemented carbide has been reported with WC grain size above 4.5μm in China. The purpose of this paper is to explore the preparation technique of coarse-grained WC-Co cemented carbide with WC grain size above 4.5μm and high-performance.
     This study includes three parts. Firstly, the limit of size of WC grain in cemented carbide prepared by traditional wet mixing was studied, according to the effects of raw materials and process parameters on the WC grain size of cemented carbide; Secondly, method of increasing WC grain size in WC-Co cemented carbide was explored through the study of dry mixing; Finally, on the basis of the investigations mentioned above, a novel technology called "chemical-powder-wrapping" is developed, for the preparation of coarse-grained cemented with a WC grain size above 4.5μm. The morphology of the powders and the WC grain in alloys was observed by scanning electron microscopy (SEM); phase composition of the powders was analyzed by X-ray diffraction (XRD), and microstructure of alloys was observed by metallographic microscope. The results are as follows:
     (1) Although traditional wet mixing ensures Co distributes in WC uniformly, primary particles and secondary particles of WC are so easily crashed that WC grain size is reduced, as WC is brittle material. Thus, reducing wet mixing time to only 24 hours can not prepare coarse-grained cemented carbide with WC grain size above 4.5μm, even if WC powder which has a particle of FSSS 28.3μm is ued.
     (2) Compared with the traditional wet mixing, dry mixing has no fragmentation effect on grain size of WC in slurry, thus ensures the grain size of WC in alloys. Coarse-grained cemented carbide with WC grain size above 5μm is prepared by dry mixing using WC powder which has a particle size of 6.26μm (FSSS) as starting material; nevertheless, because of bigness, roughness, irregular shape and hard aggregate of WC powder in the slurry prepared by dry mixing, defects in the green compact, e.g. big voids and uncompacted will be present and remain in the alloy, decreasing the mechanical properties of cemented carbide.
     (3) The "chemical-powder-wrapping" technology does not only overcome the defect of wet mixing reducing WC grain size remarkably, but also improves the distribution of Co in WC and changes the manner of combination of WC and Co, Co is wrapping WC by means of nano-phased self-assembly form structure. WC-Co cemented carbide is prepared by "chemical-powder-wrapping" technology using WC powder which has a particle size of 6.26μm (FSSS) as starting material successfully. Before that, the WC powder has a special pretreatment. The results show that the alloy has a homogeneous microstructure with crystalline perfection of WC whose rims are rounded. The cemented carbide has a average grain size of WC above 4.8μm. WC-20%Co cemented carbide was prepared with this method with transverse rupture strength 2750 MPa and Rockwell hardness 83.4, reaching the level of similar products produced by Sandvik Corporation.
引文
[1]Yao Zhengui, Stiglich Jacob J, Sudarshan T S. WC-Co enjoys proud history and bright future [J]. Metal Powder Report,1998,53(2):32-36.
    [2]Schubert W D, Bock A, Lux B. General aspects and limits of conventional ultrafine WC powder manufacture and hard metal production [J]. International Journal of Refractory Metals and Hard Materials,1995,13(5):281-296.
    [3]Prakash I J. Application of fine grained tungsten carbide based cemented carbides [J]. International Journal of Refractory Metals and Hard Materials, 1995,13(5):257-264.
    [4]王国栋.硬质合金生产原理[M].北京:冶金工业出版社,1988:4-5,5,1,38,210,155-156.
    [5]湘子.硬质合金晶粒度分级标准[J].硬质合金,2006,23(2):68.
    [6]蔡和平,朱维斗,姜喜春,等.硬煤截齿刀头硬质合金的热疲劳失效分析[J].西安交通大学学报,1997,31(3):12-17.
    [7]Ulrik Beste, Staffan Jacobson. A new view of the deterioration and wear of WC/Co cemented carbide rock drill buttons[J]. Wear,2008,264(11-12): 1129-1141.
    [8]刘宗平.冲击凿岩工具及理论基础[M].北京:地质出版社,1985:97.
    [9]张春友,熊惟皓.我国硬质合金模具应用技术与市场分析[J].湖南冶金,1999,6:40-44.
    [10]朱梦周,张德泉.金属切削机床实验[M].北京:机械工业出版社,1993:12.
    [11]陈万林,姜彤,陈集等.实用模具技术[M].北京:机械工业出版社,2001:105.
    [12]王军.硬质合金冷镦螺钉模具的性能研究[J].机床与液压,2005,3:98-100.
    [13]郭志群,刘均海,刘航等.轧辊(辊环)材料的发展与应用[J].上海金属,2004,26(5):38
    [14]周建武,张智,邓钢等.硬质合金轧辊在轧钢生产中的应用[J].轧钢,2004,21(3):32-34.
    [15]方晴,王忆民.硬质合金轧辊的使用失效及其原因分析[J].硬质合金,2007,24(4):219-225.
    [16]周新华,王力民.球磨时间对粗晶硬质合金性能的影响[J].硬质合金,2008,25(1):23-27.
    [17]莫盛秋,乘继贵,王华林.真空烧结低钴粗晶硬质合金及其性能的研究[J]. 合肥工业大学学报(自然科学版),2000,23(2):294.
    [18]贾佐诚,孙俊川.热等静压工艺对硬质合金性能的影响[J].粉末冶金工业,2005,15(4):17-20.
    [19]谢宏,肖逸锋,贺跃辉.低压烧结对硬质合金组织和性能的影响[J].中国钨业,2006,21(6):27-31.
    [20]周悫昱,陈妍.粗晶粒硬质合金的制备方法[P].中国专利:110121983,2008-02-13.
    [21]黄新.优质粗晶WC粉末及合金的研制[D].重庆:重庆大学,2004.
    [22]Sandvik. Sandvik Technical Data Sheets [EB/OL]. http://www.matweb.com, 2009-5-15.
    [23]李勇,谢淑华.粗晶硬质合金的研究现状及其发展前景[J].江西冶金,2008,28(6):42-46.
    [24]Okamoto S, Nakazono Y, Otsuka K, et al. Mechanica lproperties of WC/Co cemented carbide with larger WC grain size [J]. Materials Characterization, 2005,55(4-5):281-287.
    [25]张立.粗颗粒碳化钨粉制取过程中的质量控制[J].硬质合金,2000,17(1):26-29.
    [26]张立,陈泳华,刘汝模.以蓝色氧化钨为原料制取粗颗粒W粉和WC粉的特性研究[J].硬质合金,1992,11(4):26-29.
    [27]J.布雷陶尔,B.格里斯,B.赛斯尼.超粗粒单晶碳化钨和其制备方法以及由此制备的硬质金属[P].中国专利:1452593,2003-10-29.
    [28]张湘,刘铁梅.APT中掺杂Na、Li元素对粗晶碳化钨及合金性能的影响[J].硬质合金,2007,24(2):74-79.
    [29]黄新,孙亚利,颜杰等.两步碳化法生产优质粗颗粒粉末WC粉末[J].中国钨业,2007,22(6):39-42.
    [30]马自省,付练英.微量Fe、Co元素对WC形貌和粒度的影响[J].硬质合金,1999,18(1):24-26.
    [31]刘沙,刘刚,杨贵彬,等.碳化钨粉制备新技术[J].稀有金属与硬质合金,2005,33(1):29-32.
    [32]查理斯詹姆斯塔里,扎克D弗朗科.粗晶-碳化物粉末及其生产方法[P],中国专利:87107470,1988-09-07.
    [33]Bhatia Swarn J, Kear Bernard H, McCandlish Larry E. Spray conversion process for the production of nanophase composite powders[P].美国专利: 5352269,1994-10-04.
    [34]Zhu Yuntian T, Manthiram Arumugam. Anew route for the synthesis of tungsten carbide-cobalt nanocomposite [J]. Journal of American Ceramic Society,1994, 77(10):2777-2778.
    [35]Zhu Yuntian T, Manthiram Arumugam. Influence of processing parameters on the formation of WC-Co nanocomposite powder using a polymer as carbon source [J]. Composite Part B,1996,27B(5):407-413.
    [36]Fan Yousan, Fu Lei, Xiao Jidong, et al. Preparation of nanosize WC-Co composite powders by plasma [J]. Journal of Materials Science Letters,1996, 15(24):2184-2187.
    [37]Cao Lihong, Shi Dongxia, Ouyang Shixi, et al. Study on preparation of ceramic matrix composite of WC-Co ultrafine powders [J]. Journal of Wuhan University of Technology,1995,10(2):40-46.
    [38]Zhang F L, Wang C Y, Zhu M. Nanostructured WC/Co composite powder prepared by high energy ball milling [J]. Scripta Materialia,2003,49(11): 1123-1128.
    [39]Liu Sha, Huang ZeLan, Liu Gang, et al. Preparing nano-crystalline rare earth doped WC/Co powder by high energy ball milling [J]. International Journal of Refractory Metals and Hard Materials,2006,24(6):461-464.
    [40]高海燕,曹顺华.机械活化-反应热处理制备纳米晶WC-Co复合粉末[J].粉末冶金材料科学与工程,2004,9(1):60-64.
    [41]高海燕.反应热处理法制备纳米晶WC-Co硬质合金粉[D].长沙:中南大学,2004.
    [42]Kim Byoung-Kee, Lee Dong-Won, Lee Gil-Geun, et al. Mechanochemical process for producing fine WC/Co composite powder[P]. 美国专利:5882376, 1999-03-16.
    [43]Ha G H, Kim B K. Synthesis of ultrafine WC/Co powder by mechanochemical process [J]. Powder Metallurgy,2002,45(1):29-32.
    [44]Maxime Bonneau. Method of making metal composite[P]. 美国专利:5529804, 1996-05-25.
    [45]李雅文,丁华东,浩宏奇,等.化学镀提高铜石墨材料的抗弯强度[J].稀有金属材料与工程,1998,27(3):182-185.
    [46]何芬,胡勇海.钴包WC复合粉研制初探[J].稀有金属,1995,19(5):398-400.
    [47]Zhu Liu, Li Jian, Wu Tao. Preparation of WC-Co composite powder by electroless plating and its application in laser cladding [J]. Materials Letters, 2006,60(16):1956-1959.
    [48]梁焕珍,黎少华,张洁等.水热还原制备镍包人造金刚石[J].粉末冶金技术,2005,23(6):418-422.
    [49]梁焕珍,黄勤福,镍包钛包复粉末制备[J].化工冶金,1988,9(3):52-55.
    [50]梁焕珍,毛铭华,张荣源.水热加压氢还原制取镍包石墨[J].化工冶金,1996,17(2):112-115.
    [51]李锐星,梁焕珍,喻克宁等.制备细镍包石墨粉末的动力学[J].有色金属(冶炼部分),2002,5:37-42.
    [52]黄新春,李墩钫 冀晓娟.水热压氢还原制备钴包球形WC[J].有色金属(冶炼部分),2007年增刊:16-18.
    [53]陈克楠,饶暇浩,伍纯芳.钴包WC粉的研制[J].湖南冶金,1987,2:18-20.
    [54]陈丙瑜.钴包WC粉末的研制阶段报告[J].化工冶金,1976,2:29-35.
    [55]黄天佑.材料加工工艺[M].北京:清华大学出版社,2004:253.
    [56]Brookes Ken. Measuring up to the task of quantifying grain size [J]. Metal Powder Report,2004,59 (8):26-29.
    [57]Roebuck Bryan. Measuring WC grain size distribution [J]. Metal Powder Report,1999,54(4):20-24.
    [58]Engqvist H, Uhrenius B. Determination of the average grain size of cemented carbides [J]. International Journal of Refractory Metals and Hard Materials, 2003,21(1-2):31-35.
    [59]Liang Dah-Ben. Thermal fatigue and shock-resistant material for earth-boring bits [P]美国专利:6197084,2001-03-06.
    [60]Zhang Li, Chen Shu, Wang Yuan-jie, Yu Xian-wang, Xiong Xiang-jun. Tungsten carbide platelet-containing cemented carbide with yttrium containing dispersed phase [J]. Transactions of Nonferrous Metals Society of China,2008,18(1): 104-108.
    [61]Christensen M, Wahnstrom G, Lay S, Allibert C H. Morphology of WC grains in WC-Co alloys:Theoretical determination of grain shape [J]. Acta Materialia, 2007,55(5):1515-1521.
    [62]张立,陈述,熊湘君,等.双相结构功能梯度WC-Co合金的微观组织结构与小负荷维氏硬度[J].中国有色金属学报,2005,15(8):1194-1199.
    [63]Uygur M E. Modeling tungsten carbide/cobalt composites [J]. Advanced Materials and Processes,1997,151(1):35-36.
    [64]Milman Y V, Chugunova S, Goncharuck V. Low and high temperature hardness of WC-6% Co alloy [J]. International Journal of Refractory Metals and Hard Materials,1997,15(1-3):97-101.
    [65]Kinoshita S, Saito T, Kobayashi M, et al. Mechanisms for the formation of highly oriented plate-like triangular prismatic WC grains in WC-Co base cemented carbides prepared from W and C instead of WC [J]. Journal of the Japan Society of Powder Metallurgy,2001,48(1):51-60.
    [66]李启厚,吴希桃,黄亚军,等.超细粉体材料表面包覆技术的研究现状[J],粉末冶金材料科学与工程,2009,14(1):3.
    [67]Zhao X Q, Veintemillas-Verdaguer S, Bomati-Miguel 0, et al. Thermal history dependence of the crystal structure of Co fine particles [J]. Physical Review B, 2005,71(2):024106.
    [68]Kitakami Osamu, Sato Hisateru, Shimada Yutaka. Size effect on the crystal phase of cobalt fine particles [J]. Physical Review B,1997,56(21): 13849-13854.
    [69]成本诚.有机化学[M].长沙:中南工业大学出版社,1996:256.
    [70]Wan Jun T, Donhua C. Mechanism of thermal decomposition of cobalt acetate tetrahydrate [J]. Chemical Papers,2007,61(4):329-332.
    [71]张克立,贾漫珂,汤昊.乙酸钴热分解机理研究[J].武汉大学学报(理学版),2002,48(4):409-412.
    [72]孙宝琦.关于WC-Co硬质合金的强度和结构问题(Ⅳ)[J].稀有金属与硬质合金,2004,32(4):33-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700