混合金属基阴极的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阴极作为微波器件的发射源,直接决定着真空电子器件的性能和寿命。基于目前电真空器件对具有较低的工作温度,大的发射电流密度,均匀的发射电流和长的使用寿命的阴极的需求,混合金属基阴极日益成为研究的重点。本课题就是在这样的背景下确定的,围绕钨铱混合金属基阴极的制备工艺,性能测量,发射模型建立展开了广泛深入的实验和理论研究。
     论文采用溶胶凝胶法(sol-Gel)成功摸索出一套制备钨铱混合金属基阴极的工艺。该工艺稳定性和可重复性均达到了课题预期目标。利用粒度分析,x射线衍射,能谱分析等对阴极粉末的结构,形貌以及阴极的结构进行实验分析;测量了阴极的发射性能。特别是伏安特性,拐点电流密度等;探讨了激活温度,时间对阴极发射性能的影响。结果证实了利用溶胶凝胶法制备的W_IR混合金属基阴极的表面特征,内部形貌,发射性能均优于普通的固液掺杂法。在1100℃的工作温度下,其发射电流密度大于30A/cm2.
     为了能够定量的研究其特性的变化,建立能够描述这个过程的模型是至关重要。这个发射模型包括三方面:氧化钡的扩散消耗模型,低逸出功物质覆盖率模型,等离子体参数变化过程。
     氧化钡的扩散消耗模型,来源于bao-cao-al2o3三元体系的相关知识。建模时将Ba0的蒸发简化为一个由扩散系数来表示的简单反应。低逸出功物质覆盖模型主要包括沉积,低逸出功物质的热脱附和离子轰击脱附。这些过程均被分析和量化。其中得到最主要的导致脱附的机制是离子轰击。这也直接说明等离子参数是展示低逸出功物质的表面覆盖度的变化的关键参数。等离子体会被表面的发射所影响,因为低逸出功物质表面覆盖率的减小,将导致逸出功增加,随后导致热发射的减小,而这必然导致进入发射通道内的等离子体的电子数目减小。所以考虑到了这个影响,确定了可以计算等离子参数的半经验公式。
The cathode is very important in the field of vacuum electronic device. Becauseof the low working temperature, high current density and long life, the Mixed MetalMatrix cathodes have been researched widely. So my issue is devoted to investigatingsteady technology and modelling for Mixed Metal Matrix cathodes.
     Because the general mixed metal matrix cathode can’t reach the emission perfor-mance we need, the research is focused on the W-Ir mixed metal-based cathode madewith Sol-Gel method successfully.
     The composition, microgram and granularity of the power and the surface andinner of the mixed metal-based cathode are studied by XRD, SEM and EDAX. Theemission performance of the mixed metal-based cathode has been measured. And thein?uence of activation temperature and time on the emission performance has beenresearched. The results show that the surface , inner structure and the emission perfor-mance of the mixed metal-based cathode made with Sol-Gel method are all better thanthe general mixed metal matrix cathode made with Solid-Liquid doping. The emissioncurrent density reaches more than 30A/cm2, when the work temperature is 1100 .
     The model has three parts: a BaO depletion model , a coverage model and aplasma model. The BaO depletion model comes from the knowledge of the BaO-CaO-Al203 system. And reduce the BaO evaporation to a single reaction. The lowwork function model includes deposition, thermal desorption and ion sputtering. theseparameters have been calculated and quantitative. The plasma characteristics is themost important in the evolution. If we have the temperature, the discharge current andthe plasma parameters we can predict the BaO depletion in everywhere of the insert.Because of the conservative estimate, the result is not accurate, but in the industrialapplications, this conservative estimate can increase the safety factor.
引文
[1]廖复疆微型真空电子器件和太赫兹辐射源技术进展电子学报,2003,31(009):1361 1364
    [2] Barker R,schamlloglu E高功率微波源与技术第10章,清华大学出版社,2005 985—990
    [3]刘伟稀土难熔金属阴极材料微观结构与性能研究[博士学位论文]北京:北京工业大学,20054] Djubua B, Polivnikova O. Stratum-like structured metal alloy cathode. Applied Surface Science, 2003, 215(l-4):242-248.
    [5] Makarov A, Ogoleva N, Yudina Z. Reservoir-Type Dispenser Cathode with Tungsten-Rhenium Matrix. ISTOK IVESC-02. 72-73.
    [6] Liu W, Zhang K, Wang Y, et al. Operating model for scandia doped matrix scandate cathodes. Applied Surface Science, 2005, 251(1-4):80-88.
    [7] Ya Z, Konushkov G, Semenov S. Diffusion Kinetics of Intermetallides Dissolution and Oxide Film Formation under the Action of Alloyed Cathodes. IVESCS-02. 362-364.
    [8] Lefanu S. Feminism and science fiction. Indiana University Press, 1989.
    [9] Wang J, Wang Y, Tao S, et al. Scandia-doped tungsten bodies for Sc-type cathodes. Applied Surface Science, 2003, 215(l-4):38-48.
    [10] Groot G, Maes R, Lemmens H. Determination of lorazepam in plasma by electron capture GLC. Archives of Toxicology, 1976, 35(3):229-234.
    [11] Bishop B, Garry R, Roberts T, et al. Control of the external sphincter of the anus in the cat. The Journal of Physiology, 1956, 134(1):229.
    [12] Levi R. New Dispenser Type Thermionic Cathode. Journal of Applied Physics, 1953, 24:233.
    [13] Zalm P, Van Stratum A. Osmium dispenser cathodes. Philips Technical Review, 1966, 27(3/4): 69-75.
    [14] Green M. The M-type cathode—No longer magic? Proceedings of Electron Devices Meeting, 1980 International, volume 26, 1980.
    [15] Montgaillard J, Shroff A. Thermionic cathode having an embedded grid, process for its fabrication, and high frequency electron tubes using such a cathode, November 24, 1981. US Patent 4,302,702.
    [16] Margolis-Kazan H, Halpern-Sebold L, Schreibman M. Immunocy to chemical localization of serotonin in the brain and pituitary gland of the platyfish, Xiphophorus maculatus. Cell and tissue research, 1985, 240(2):311-314.
    [17] Hasker J, Van Esdonk J, Crombeen J. Properties and manufacture of top-layer scandate cathodes. Applied Surface Science, 1986, 26(2): 173-195.
    [18] Raasch D, Wiechert D. Supply and loss mechanisms of Ba dispenser cathodes. Applied Surface Science, 1999, 146(l-4):22-30.
    [19]张红卫,吴华夏,贺兆昌新型二元混合基钡钨阴极的发射性能研究电子器件,2006,29(002):308 310
    [20]张红卫,吴华夏,贺兆昌新型三元混合基钡钨阴极的发射性能研究电子器件,2007,30(001):57—59
    [21]张恩虬关于热电子发射理论的评述(III)动态表面发射中心物理学报,1976,25(1):23 23
    [22] Lipeles R, Kan H. Chemical stability of barium calcium aluminate dispenser cathode im-pregnants. Applications of Surface Science, 1983, 16(1-2): 189—206.
    [23] Jensen K, Lau Y, Levush B. Migration and escape of barium atoms in a thermionic cathode. IEEE Transactions on Plasma Science, 2000, 28(3):772-781.
    [24] Kovaleski S. Life model of hollow cathodes using a barium calcium aluminate impregnated tungsten emitter. IEPC Paper, 2001, 276.
    [25] Longo R. Physics of thermionic dispenser cathode aging. Journal of Applied Physics, 2003, 94:6966.
    [26] Coletti M, Gabriel S. A chemical model for barium oxide depletion from hollow cathode' s insert. 2007..
    [27] FalceL. Electron tube with dispenser cathode, August 21, 1979. US Patent 4,165,473.
    [28] Coppola P, Hughes R. A New Pressed Dispenser Cathode. Proceedings of the IRE, 1956, 44(3):351-359.
    [29]鲍际秀,王妙康,王静娟钐钴永磁材料在行波管中的应用真空电子技术,2003,(003):74-77
    [30] Stratum A, Os J, Blatter J, et al. Barium-aluminum-scandate dispenser cathode, February 8, 1977. US Patent 4,007,393.
    [31] Hewitt G, Hall-Taylor N. Annular two-phase flow. Pergamon, 1970.
    [32] Hao L, Tai Q, Fang-xia Z. Study on Dispenser Cathode Prepared with Nano Tungsten Matrix. Nonferrous Metals (Extractive Metallurgy), 2008..
    [33] Wang J, Lu H, Liu W, et al. A Study of Scandia Doped Tungsten Nano-Powders. Journal of Rare Earths, 2007, 25(2): 194-198.
    [34]杨扬,周美玲,李汉广稀土镧,钇对蓝色氧化钨氢还原的影响稀有金属材料与工程,1994,23(5):52 55
    [35]承欢,江剑平阴极电子学西北电讯工程学院出版社,1986
    [36] Mills W, Mead P, Maloney C. A computer-controlled measurement system for testing thermionic cathodes? International Journal of Electronics, 1971, 31(2):145-147.
    [37] Bernabei M, Chiavarini S, Cremisini C, et al. Anticholinesterase activity measurement by a choline biosensor: application in water analysis. Biosensors and Bioelectronics, 1993, 8(5):265-271.
    [38] Cattelino M, Miram G, Ayers W. A diagnostic technique for evaluation of cathode emission performance and defects in vehicle assembly. Proceedings of Electron Devices Meeting, 1982 International, volume 28, 1982.
    [39]马运柱纳米级钨基复合粉末的制备及其合金特性研究[Doctor Thesis]中南大学,2004
    [40] Appendino P. Ricerche sul Sistema Ternario Calce-Ossido di Bario-Allumina, 1972.
    [41] Kolesnikov N, Kulakov M, Fadeev A. Changing of the ZnSe composition during zone melting. Izvestiya Akademii Nauk SSSR-Neorgan. mater, 22.
    [42] Polk J. The Effect of Oxygen on Hollow Cathode Operation. Proceedings of 42nd Joint Propulsion Conference, Sacramento, 2006.
    [43] Hughes R, Coppola P, Evans H. Chemical Reactions in Barium Oxide on Tungsten Emitters. Journal of Applied Physics, 1952, 23:635.
    [44] Palluel P, Shroff A. Experimental study of impregnated-cathode behavior, emission, and life. Journal of Applied Physics, 1980, 51:2894.
    [45] BondarenkoB, OstapchenkoE, TsarevB. Thermionic Properties of Alkali Metal Tungstates. Radio-tekh. Elektron., 1960, 5.
    [46] Sarver-Verhey T. Scenario for Hollow Cathode End-of-Life. NASA Contractor Report. 2000-209420.
    [47] KREIDLERE. Phase Equilibria in the System CaO-BaO-WO3. Journal of the American Ceramic Society, 2006, 55(10):514-519.
    [48] CHANG L, SCROGER M, Phillips B. Alkaline-Earth Tungstates: Equilibrium and Stability in the MWO Systems. Journal of the American Ceramic Society, 2006, 49(7):385-390.
    [49] Kingdon K, Langmuir I. The removal of thorium from the surface of a thoriated tungsten filament by positive ion bombardment. Physical review, 1923, 22(2):148-160.
    [50] Mazza D. Fondamenti di chimica. Societa Editrice Esculapio, 2009.
    [51] Siegfried D, Wilbur P. A model for mercury orificed hollow cathodes- Theory and experiment. AIAA Journal(ISSN 0001-1452), 1984, 22:1405-1412.
    [52] Mikellides I, Katz I, Goebel D. Numerical simulation of the hollow cathode dischargeplasma dynamics. Proceedings of IEPC Paper__, 29th International Electric PropulsionConference, Princeton, NJ, 2005.
    [53] Mikellides I, Katz I, Goebel D, et al. Hollow cathode theory and experiment. II. A two-dimensional theoretical model of the emitter region. Journal of Applied Physics, 2005, 98:113303.
    [54] Katz I, Polk J, Mikellides I, et al. Combined plasma and thermal hollow cathode insert model. Proceedings of The 29th International Electric Propulsion Conference (IPEC), Princeton, NJ, October 31-November 4, 2005. Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2005., 2005.
    [55] Mikellides I, Katz I, Goebel D, et al. Theoretical model of a hollow cathode plasma for the assessment of insert and keeper lifetimes. AIAA paper, 2005, 4234:10-13.
    [56] Salhi A, Turchi P. Theoretical Modeling of Orificed, Hollow Cathode Discharges. Proceedings of Proceedings of the 23rd International Electric Propulsion Conference, volume 1, 1993. 253-260.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700