复印机卤素灯用钨丝加工工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据虹鹭公司复印机卤素灯用钨丝出现的质量问题,系统研究了加工工艺对钨丝质量的影响,通过与国外产品对比,找出了质量的差距,并且通过加工工艺的改进和优化,使钨丝的质量达到国际同类产品水平。
     虹鹭公司生产的复印机卤素灯用钨丝的产品质量与国际先进水平相比,在表面、化学成分、裂纹探伤等方面相差不大,但在直径均匀性、显微硬度、电阻率、高温强度等方面有较大的差距。
     湿法掺杂比喷雾掺杂具有优势,这主要表现在掺杂TBO中掺杂剂的有效保留量高,标准偏差小;湿法掺杂工艺掺杂溶液中胶体的析出主要受溶液PH值控制,当溶液PH值约等于3.3时,胶体析出缓慢,掺杂过程容易操作。
     采用BD粉末进行搭配的钨粉,其粒度搭配范围更广,掺杂更均匀,能够更好的为高性能卤素灯用钨丝提供原料。
     掺杂钨粉垂熔烧结过程中应尽量减小径向温度梯度,小直径坯条相对于大直径坯条容易实现温度场分布相对均匀。
     通过对比分析,发现在钨丝形变加工过程中,控制再结晶退火的程度和速度对钨丝的性能有直接的影响。经客户对改变工艺后的钨丝成品丝性能检测分析表明,最后一道退火点到成品钨丝的总压缩率应该控制在70%左右,这样能够保证最后成品经再结晶退火后,横截面上的晶粒数达到4~6个,保证了钨丝的抗下垂性。
The systematic research work was dong in this paper on the processing of tungsten wires for halogen lamp based on the the quality problems of the wires made in HL company by comparisons of the properties differences between wires made in HL and foreign companies, The processing technology was optimized, so that the quality of the wires made in HL reaches the level of the products made in developed countries.
     The solid-liquid mixing way has an advantage over the spraying mixing, which can raise the dopant content in the TBO and make the dopant distribution uniformity. In the process of the solid-liquid mixed, PH of the dopant solution was the key factor which controls the precipitation of the colloid. The suitable level of the PH value is about 3.3, which makes operation easy and precipitation of the colloid slow.
     Using BD powder technique prepared the bars with different size particles tungsten powder which can improved the distribution of particle size of tungsten powder and dopant uniformality and the sintering ability of the powder to provide the high quality materials for following processing.
     The temperature gradient of the bars should keep in small range in sintering. It is easy to makes the temperature field uniform by use of small size bars.
     It is detected by the comparisons that annealing has an important effect on tungsten wire property so that the extent and rate of the re-crystallization should be controlled carefully. The sag value of the wires after final annealing is enough low when the total reduction ratio is at about 70% for 4-6 grains in cross section of the wires after finished products annealing.
引文
[1]印协世.钨丝生产原理、工艺及其性能[M].冶金工业出版社,北京,1998,5:77-88
    [2]中国钨业协会,中国钨工业“十一五”发展规划,北京,2005,4
    [3]周太明,光源原理与设计[M],复旦大学出版社,1993.159-160
    [4]王建民,卤钨灯的结构特性及应用(上)[J],家用电器,1991,7:2-3
    [5]杨宇峰,中国钨丝加工业的现状[J], 中国钨业,2001,Vol.16.(.5-6):60-64
    [6]GB/T 4181-1997,国检标准,1997,钨丝
    [7]B. Zeiler, W. D. Schubert and B. Lux, Dopant incorporation during technical reduction of K, Al, Si-doped tungsten blue oxide [J], Int. J. Refractory Metals and Hard Metals, 1993-1994,12:9-15
    [8]A. Pacz, US Pat.1.410.499,1977
    [9]Qi, xiaoding,Luo,Zundu. New laser host crystaks-lanthanum tungstate La2(WO4)3,(Chinese Acad of Sciences), [J] Physicas Status Solidi(A) Applied Reseach, 1989,v114(1):5-9.
    [10]Nagy G, Schiller R. Hydrogen in tungsten bronzes. Mechanism of hydrongen intercalation[J], International Journal of Hydrongen Energy.1989,14(8):567-572
    [11]Vannice M,Boudart M, Mobility of hydrogen in hydrogen tungsten bronze [J], J.Catal.1970,17(3):395-65
    [12]B.. Zeiler等,不下垂掺杂蓝色氧化钨的还原第一部分:文献评述,[J] Refractory Metals and Hard Metals,1991,10 (2):83-90
    [13]Bewlay BP, Briant CL. The formation and the role of potassium bubbles in NS-doped tungsten, [M] in:Bartha L, Lassner E, Schubert WD, Lux B, editors. The Chemistry of Non-Sag Tungsten. Great Britain:Elsevier Applied Science; 1995,137-59
    [14]Horacsek O, T-oth Cs,Gaal I, Horacseck K. Relation between pore size distribution in sintered tungsten ingots and creep strength of the wires, [C] 12th Plansee Seminar Proceedings RM 49,1989,1:513-521
    [15]Schade P. Bubble evolution and effects during tungsten processing[J], Int J Refr Metal & Hard Metal 2002;20:301-9
    [16]Horacsek O,T-oth CsL, Nagy A. Selective bubble deformation during thermomechanical processing in KSiAl-doped tungsten[J], Int J Refr Metal & Hard Mater 1998,16:51-7
    [17]李正文,钨垂熔时附加剂和微量元素的行为,[J]奥斯兰文集,钨钼材料,1980,15, 23-26
    [18]C. H hamilton, Bubbles in Tungsten Wire[J], Metallurgical Transactions A, 1992,23A:121-133
    [19]. C. L. Briant, Potassium Bubbles in Tungsten Wire[J], Metallurgical Transactions A,1993,24A:1073
    [20]. D. M. Moon and R. C. Koo, Mechanism and kinetics of bubble formation in doped tungsten[J] Metallurgical Transactions A,1971,2 A:2115
    [21]. H. P. Stuwe and 0. Kolednik, Shape Instability of Thin Cylinders[J], Acta Metall.,1988, 36:1705-1708
    [22]. C. L. Briant and E. L. Hall, On the Formation of Potassium Bubbles in Tungsten Rod[J], Metallurgical Transactions A,1989,20A:1669-1672
    [23]. L. Rayleigh, On the Instability of Jets[M], London Math Soc.,1981:10-14
    [24].李葵初,国外钨丝生产质量控制综述[J],,中国钨业,1993,2:101-105
    [25]. Bewlay BP, Briant CL. The Formation and the Role of Potassium Bubbles in NS-Doped Tungsten[J], Int J Refr Metals Hard Mater 1995,13:137-140
    [26]. Horacsek 0. in:Pink E, Bartha I, editors. The metallurgy of doped/non-sag tungsten[M], London:Elsevier,1989,175-188
    [27]. Rayleigh Lord J. W. [C], Proceedings of the London Mathematical Society, 1978,4-9
    [28]. Nichols F. A, Mullins W. W. Contributions to Morphological Changes Driven by Capillarity[J], Trans TMS AIME 1965,233:1840-1847
    [29]C. J. M. Denissen, J. Liebe, M. van Rijswick, Recrystallisation temperature of tungsten as a function of the heating ramp[J],International Journal of Refractory Metals & Hard Materials,2006,24:321-324
    [30]P. Schade, Potassium bubble growth in doped tungsten [J],International Journal of Refractory Metals & Hard Materials,1998.16:77-87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700