白光发光二极管(WLED)用几种典型稀土硅酸盐荧光粉的制备及其NUV发光性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅酸盐具有多种结构和稳定的物理、化学性能,很适合作为一类发光基质材料进行系统的研究。稀土掺杂的硅酸盐基质材料的发光性能,与近紫外区(NUV)的吸收带、电荷迁移带以及稀土元素的4f-5d跃迁和4f-4f跃迁密切相关。本论文以几种典型结构的硅酸盐作为基质材料并系统的考察稀土离子掺杂后其在NUV激发下的发光特性,特别是对荧光粉的晶体结构、掺杂、能量传递机制等理论研究,总结了稀土硅酸盐基荧光粉在NUV区域能被有效激发的关键条件和影响因素,对于NUV-LED用荧光粉的研究、推动LED荧光粉的商业化具有重要的理论意义及应用价值。
     本论文采用高温固相法合成了具有独特一维链状结构的Sr2Ce04:RE(RE=Sm3+; Ti4+,Eu3+;Eu3+,Sm3+)以及Ca2A12SiO7:RE(RE=Ce3+,Tb3+;Dy3+;Eu3+;Eu2+)、Sr2A12(Si, Mo)O7:Eu3+、CaSrAl2SiO7:Eu3+、CaAl2Si2O8:RE(RE=Eu;Eu2+,Mn2+;Ce3+,Tb3+)、BaMg2Si207:Eu2+,Mn2+、Mg2SiO4:RE(RE=Eu3+,Eu2+)和SrZrSi207:RE(RE=Ce3+,Tb3+,Eu3+,Dy3+)几类典型稀土硅酸盐荧光粉并考察了样品在NUV区域的发光特性。主要根据当前白光LED用荧光粉的发展需要,重点从新型高效红色荧光粉的开发和单一基质白光荧光粉的探索两个角度展开研究。结果表明:
     第一,对于稀土激活的一维链状结构的Sr2CeO4体系。
     1)合成了一种颜色可调谐的荧光粉Sr2CeO4:Sm3+,通过调节稀土离子Sm3+的掺杂浓度,可以调谐发光体的发光颜色。当Sm3+离子浓度较小(<3%)时,体系发出很强的白光;当Sm3+离子浓度较大(3%-15%)时,体系发出红光;其中,低浓度的荧光粉Sr2CeO4:1%Sm3+不仅有很强的发光强度,而且有优良的色纯度,色坐标为(0.334,0.320),与国际规定的标准白光值(0.33,0.33)很接近。
     2)Ti4+部分取代Ce4+后,荧光粉Sr2Ce1-xTixO4的激发光谱在300~380nm的吸收明显拓宽和增强,在334 nm激发下,掺杂Ti4+的荧光粉Sr2Ce0.99Ti0.01O4的发光强度是未掺杂Ti4+的荧光粉Sr2CeO4的85%;随后掺入Eu3+,得到的最佳红色荧光粉Sr1.95Ce0.99Ti0.01O4:0.05Eu3+的发光强度是未掺杂Ti4+的荧光粉Sr1.95CeO4:0.05Eu3+的1.5倍,积分强度是商用红粉Y2O2S:0.05Eu3+的3倍,其色纯度优良,色坐标为(0.665,0.33)。
     第二,单一基质白光荧光粉。本论文在BaMg2Si2O7:Eu2+,Mn2+:CaAl2Si2O8:Eu2+,Mn2+体系中,通过调节发光中心Eu2+,Mn2+的浓度并借助Eu2+→Mn2+能量传递,在这两类硅酸盐体系中得到了色度好,发光亮度高的单一基质白光荧光粉;并首次提出用除了Eu2+,Mn2+之外的双离子Ce3+,Tb3+掺杂来实现白光,证实在长波紫外光激发下Ca2Al2SiO7体系中存在Ce3+→Tb3+能量传递,通过Ce3+,Tb3+浓度的调节可以实现白光,是一种新型的双离子掺杂单一基质白光荧光粉;此外,在Ca2Al2SiO7基体中,通过掺杂单一离子Dy3+也实现了白光,在350nm激发下,发光强度最强的荧光粉是:Ca1.97Al2SiO7:0.07Dy3+,而色纯度最好的荧光粉是:Ca1.97Al2SiO7:0.01Dy3+,其色坐标为(0.340,0.338),相对色温为5164 K,可以作为一种很好的暖白光LED。
     第三,新型高效的红色荧光粉。本论文系统研究了Ca2Al2SiO7:Eu3+、Sr2Al2SiO7:Eu3+、CaSrAl2SiO7:Eu3+和Mg2SiO4:Eu3+荧光粉在NUV区域的发光性能,发现这几类荧光粉在393nm都有一个吸收峰,归属为Eu3+的特征吸收;在Ca2Al2SiO7和Sr2Al2SiO7体系中,393 nm处Eu3+的吸收峰相对于200~350 nm的O2-→Eu3+电荷转移跃迁吸收带较弱,通过Mo离子掺杂和电荷补偿离子Na+的引入不仅增强了荧光粉在~400 nm的吸收强度并提高了荧光粉的发光性能,最优的荧光粉Sr1.56Na0.22Eu0.22Al2Si0.98Mo0.02O7,其积分强度是商用红粉的1.5倍,色坐标为(0.659,0.331),比商用红粉更接近于NTSC的标准红光值(0.67,0.33),量子效率为50%,是一种很有潜力的NUV-LED用新型高效的红色荧光粉;在CaSrAl2SiO7体系中,Eu3+掺杂浓度x不同时,Eu3+占据的位置不同,当Eu3+的掺杂浓度x>0.14时,荧光粉在393nm的吸收峰较强,适合作为NUV-LED用红色荧光粉,其中最佳配比的红色荧光粉是Ca0.78SrAl2SiO7:0.22Eu3+,其色坐标为(0.650,0.350);对于新型荧光粉Mg2SiO4:Eu3+,当Eu3+的掺杂浓度为0.09 mol时,其在393 nm处的跃迁吸收最强,色纯度优良,而且量子效率也较高,约为38%。
     第四,其它硅酸盐荧光粉。对于Ca2Al2SiO7:Eu2+体系的研究发现,随着Eu2+掺杂浓度的增加发射波长出现红移,并从晶体场角度解释了红移的原因;在空气气氛下用高温固相法合成的CaAl2Si2O8:Eu体系中观察到了Eu3+→Eu2+的自动还原现象,并利用电荷补偿模型解释了这种自动还原现象;在CaAl2Si2O8体系中,通过Ce3+,Tb3+双掺得到了一种适合NUV-LED的绿色荧光粉,其发光强度是单掺杂Tb3+荧光粉的10倍:对于Mg2SiO4:Eu2+和SrZrSi2O7:RE(RE=Ce3+,Tb3+,Eu3+)荧光粉的研究表明:在NUV区的吸收均很弱,因此都不适合作为NUV-LED荧光粉。
Silicates are excellent hosts for photoluminescence (PL) materials for their various crystal structures and high physical-chemical stability. The luminescent properties of rare earth doped silicates are closely related to the NUV absorption band, charge transfer band, 4f-5d transition and 4f-4f transition, which are all of Rare-earth (RE) ions. In this thesis, the NUV PL properties of RE ions in several typical silicate hosts were systematically investigated. Our investigation is focused on the crystal structure, doping and the energy transfer mechanism of phosphor. We summed up the critical conditions and influencing factors about the rare-earth silicate-based phosphor, which have high-efficiently excited at NUV region. The results derived from the above research would contribute greatly to the developing of phosphors for NUV-LED and advance their application in LEDs.
     In this article, one-dimensional chains structure phsophor of Sr2Ce04:RE (RE= Sm3+, Ti4+/Eu3+, Eu3+/Sm3+) and several typical silicate phosphors of Ca2Al2Si07:RE (RE= Ce3+/Tb3+, Dy3+, Eu3+, Eu2+), Sr2Al2(Si, Mo)O7:Eu3+, CaSrAl2SiO7:Eu3+, CaAl2Si2O8:RE (RE= Eu, Eu2+/Mn2+, Ce3+/Tb3+), BaMg2Si207:Eu2+, Mn2+, Mg2Si04:RE (RE= Eu3+, Eu2+)、SrZrSi2O7::RE (RE= Ce3+, Tb3+, Eu3+, Dy3+) powder samples were synthesized by the solid-state reaction. Their luminescent properties under NUV excitation were investigated in detail. Based on the current demands about the development of white LED phosphors, our investigation is mainly focused on the exploitation of a new and efficient red phosphor and the exploration of a single matrix white phosphor. The results indicate that:
     1. A system of rare earth doped phsophor Sr2Ce04 with one-dimensional chains structure
     1) A tunable full color emitting phosphor Sr2Ce04:Sm3+ was synthesized. Its emission color could be changed by tuning concentration of rare-earth activator Sm3+. The doped compound emits strong white light when the concentration of the doped Sm3+ is low (<3%), When the Sm3+ concentration is increased (3%-15%), it emits red light. Among all the samples, Sr2CeO4:1%Sm3+ phosphor show not only strong emission intensity but also good color purity, its chromaticity coordinates is (0.334,0.320), which is more close to the the NTSC standard values (0.33,0.33).
     2) By doping small amount of Ti4+ into Ce4+ sites, the excitation intensity of charge transfer (CT) band of 300-380 nm was significantly broaden and enhanced. As a result, under 334nm excitation, compared with the undoped phosphor Sr2CeO4, the emission intensity of phosphor Sr2Ce1-xTixO4 has improved about 85% by doping 0.01mol Ti4+. When doping Eu3+ ion, the optimum phosphor Sri.95Ceo.99Ti0.01O4:0.05Eu3+ with the integrated intensity 3 times higher than that of the red commercial phosphor Y2O2S:0.05Eu3+, and owns excellent color purity with chromaticity coordinates of (0.665,0.33).
     2. A single matrix white phosphor. By adjusting the concentration of luminous center Eu2+, Mn2+, and with the energy transfer of Eu2→Mn2+, we obtained a single matrix white phosphor with good color purity and high brightness in two types of silicate system BaMg2Si207:Eu2+,Mn2+ and CaAl2Si20g:Eu2+,Mn2+. We first report a novel rare earth activated a single matrix white phosphor CaaAl2SiO7:Ce3+, Tb3+, and demonstrated that energy transfer from Ce3+ to Tb3+ in Ca2Al2SiO7 results in a white emission activated with long-UV radiation. Moreover, we prepared a single ion activated white phosphor Ca2Al2SiO7:Dy3+, under 350 nm excitation, the phosphor Ca1.97Al2SiO7:0.07Dy3+ exhibits the strongest emission intensity and the phosphor Ca1.97Al2SiO7:0.01Dy3+ owns excellent color purity with chromaticity coordinates of (0.340,0.338) and relative color temperature of 5164 K. These results show that the phosphor Ca2Al2SiOy:Dy3+ can be considered as a potential warm white light phosphor for application in LEDs.
     3. A new and efficient red phosphor. Photoluminescence properties of Ca2Al2SiO7:Eu3+, Sr2Al2SiO7:Eu3+, CaSrAl2SiO7:Eu3+ and Mg2Si04:Eu3+ were evaluated under NUV excitation. It is found that there existed an absorption peak in 393 nm, which was assigned to the absorption of Eu3+. In Ca2Al2SiO7:Eu3+ and Sr2Al2SiO7:Eu3+, compared with the CTB absorption of O2-→Eu3+ in the 200-350 nm, the intensity of 393 nm absorption peak is weaker. By introducing Mo ion and charge compensator ion Na, but also strengthen the absorption of the phosphors at-400 nm and strongly enhanced the emission intensity of Eu3+ under 393 nm excitations. The intense red-emitting phosphor is Sr1.56Euo.22Na0.22Al2Si0.9gMo0.02O7 with the integrated intensity 1.5 times higher than that of the red commercial phosphor. Its chromaticity coordinates of (0.659,0.331) is more close to the NTSC standard values (0.67,0.33) than that of the red commercial phosphor and the quantum efficiency of Sr1.56Eu0.22Na0.22Al2Si0.98Mo0.02O7 is 50%. These results indicate that this novel red phosphor could be considered as a promising red phosphor for application in LEDs. In CaSrAl2SiO7:Eu3+ system, optical properties were studied as a function of Eu3+ concentration x, when x>14%, the intensity of absorption of the f-f transitions of Eu3+ at 393 nm is stronger than that of the broad charge transfer transition band (CTB) around 250 nm, and which is matches well with the output lights of NUV-LED. As a result, the optimum red phosphor is Ca0.78SrAl2Si07:0.22Eu3+ with the chromaticity coordinates of (0.650,0.350). The possibility of Mg2Si04:Eu3+ as novel promising NUV red phosphors were exploited. The results indicate that the optimum concentration of Eu3+ is 0.09 mol while the intensity of absorption at 393 nm is the strongest and its quantum efficiency is around 38%.
     4. Other Silicate phosphors. The Eu2+ doped Ca2Al2SiO7 system exhibited a redshift in its emission wavelength, and explaied the reason of red shift from the crystal field. CaAl2Si2O8:Eu was prepared in air atmosphere by the solid state reaction. It was found that a reduction of Eu3+to Eu2+ in CaAl2Si2O8 in air condition. And the reduction mechanism from Eu3+ to Eu2+ in this compound has been discussed from the charge compensation model. In CaAl2Si2O8:Ce3+, Tb3+ system, CaAl2Si2O8:Ce3+, Tb3+phosphor with the emission intensity 10 times higher than that of the green phosphor CaAl2Si2O8:Tb3+ phosphor. The result indicated that CaAl2Si2O8:Ce3+, Tb3+would be a potential NUV-LED green phosphor. Moreover, the NUV photoluminescence properties of Mg2SiO4:Eu2+ and SrZrSi2O7:RE (RE = Ce3+, Tb3+, Eu3+) were investigated in detail. The result indicated that Mg2SiO4:Eu2+ and SrZrSi2O7:RE (RE= Ce3+, Tb3+, Eu3+) are not suitable for NUV-LED phosphor because the absorption of these phosphors in NUV region are very weak.
引文
[1]徐叙瑢,苏勉曾,发光学与发光材料,化学工业出版社,2004.
    [2]J. N. Holonyak, S. F. Bevacqua, Coherent (Visible) Light Emission From Ga(As1-xPx) J unctions, Appl. Phys. Lett.,1962,1:82-83.
    [3]J. Nishizawa, K. Itoh, Y. Okuno, et al., LPE-AlGaAs and red LED (candela class), J. Appl. Phys.,1985,57:2210-2214.
    [4]C. Kuo, R. Fletcher, T. Osentowaki, et al., Hight performance AlGaInP visible light-emitting diodes, Appl. Phys. Lett.,1990,57:2937-3939.
    [5]H. Sugawara, M. Ishikawa, and G.. Hatakoshi, High-efficiency InGaAlP/GaAs visible light-emitting diodes, Appl. Phys. Lett.,1991,58:1010-1013.
    [6]M. Deopura, C. K. Ullal, B. Temelkuran, et al., Dielectric omni-directional visible reflector, Optics Letters,2001,26:1197-1199.
    [7]S. Nakamura, T. Mukai, and M. Senoh, Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light emitting diodes, Appl. Phys. Lett.,1994, 64(13):1687-1689.
    [8]S. Nakamura, M. Senoh, N. Iwasa, et al., High-brightness InGaN blue, green and yellow light-emitting diodes, Jpn. J. Appl. Phys.,1995,34:L797-L799.
    [9]皇家菲利浦电子有限公司.包括发光二极管和荧光发光二极管的混合白光源.荷兰:CN1355936,2002-06-26.
    [10]Chen, Hsing. White light LED.TW:US2002093287,2002-07-18.
    [11]A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si,Ge)3O12 and its use in LED based lighting, Chem. Mater.,2006,18:3314-3322.
    [12]N. Hirosaki, R. J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, and M. Mitomo, Characterization and properties of green-emitting P-SiAlON:Eu2+ powder phosphors for white light-emitting diodes, Appl. Phys. Lett.,2005, 86:211905(1)-211905(3).
    [13]S. Neeraj, N. Kijima, A. K. Cheetham, Novel red phosphors for solid-state lighting:the system NaM(WO4)2-x(MoO4)x:Eu3+(M=Gd, Y, Bi), Chem. Phys. Lett.2004,387:2-6.
    [14]R. Mueller-Mach, G Mueller, M. R. Krames, et al., Highly efficient all-nitride phosphor-converted white light emitting diode, Phys. Stat. Sol. (a).,2005, 202(9):1727-1732.
    [15]W. J. Park, M. K. Jung, S. M. Kang, et al., Synthesis and photoluminescence characterization of Ca3Si2O7:Eu2+as a potential green-emitting white LED phosphor[J], Journal of Physics and Chemistry of Solid,2008,69:1505-1508.
    [16]K. M. Lee, K. W. Cheah, B. L. An, et al, Emission characteristics of inorganic/organic hybrid white-light phosphor [J], Appl.Phys.A,2005,80:337-339.
    [17]S. Nakamura et al., The blue laster diodes:GaN based light emitters and lasters, Springer, Berlin,1997.
    [18]N. Kimura, K. Sakuma, S. Hirafune, K. Asano, N. Hirosaki, R. J. Xie, Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode, Appl. Phys. Lett.,2007,90:051109(1)-051109(3).
    [19]Y. Narukawa, J. Narita, T. Sakamoto, et al., Recent progress of high efficiency white LEDs, Phys. Stat. Sol. (a),2007,204(6):2087-2093.
    [20]F. X. Qi, H. B. Wang, Spherical YAG:Ce3+ phosphor particles prepared by spray pyrolysis, J. Rare Earths,2005,23(4):397-400.
    [21]P. Schlotter, R. Schmidt, J. Schneider, Luminescence conversion of blue light emitting diodes, Appl. Phys. A.,1997,64:417-418.
    [22]T. Tamura, T. Setomoto, T. Taguchi, Illumination characteristics of lighting array using 10 canndela class witel LEDs under AC 100V operation, J Lumin,2000, 87-89:1180-1182.
    [23]Y. X. Pan, M. M. Wu, Q. Su, Tailored photoluminescence of YAG:Ce phosphor through various methods, J. Phys. Chem. Solids.,2004,65:845-850.
    [24]G D. Xia, S. M. Zhou, J. J. Zhang, et al., Structural and optical properties of YAG:Ce3+ phosphors by sol-gel combustion method, J Crystal Growth,2005,279(3-4):357-362.
    [25]姚光庆,冯艳娥,段洁菲等,氮化镓发光二极管蓝光转换材料的合成和发光性质,物理化学学报,2003,19(3):226-229.
    [26]J. G Li, T. Ikegami, J. H. Lee, et al., Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders:the effect of precipitant, J. Eur. Ceram. Soc.,2000, 20:2395-2405.
    [27]Y. C. Kang, S. B. Park, I. W. Lenggoro, et al., Preparation of non-aggregation YAG-Ce phosphor particles by spray pyrolysis, J Aerosol Sci,1998,29 (suppl.1):S.911-912.
    [28]H. S. Jang, W. B. Im, D. C. Lee, et al., Enhancement of red spectral emission intensity of Y3Al15O12:Ce3+ phosphor Via Pr co-doping and Tb substitution for the application to white LEDs, J Lumin,2007,126(2):371-377.
    [29]孔丽,甘树才,洪广言,张吉林.Pr3+或Sm3+掺杂YAG:Ce的发光特性及其荧光寿命,发光学报,2007,28(3):393-396.
    [30]Q. Li, L. Gao, D. S. Yan, The crystal structure and spctra of nano-scale YAG:Ce3+, Mater Chem Phys,2000,64:41-42.
    [31]C. H. Lu, R. Jagannathan, Cerium-ion-doped yttrium aluminum garnet nanophosphors prepared through sol-gel pyrolysis for luminescent lighting, Appl. Phys. Lett.,2002, 80(19):3608-3610.
    [32]J. K. Park, K. J. Choi, S. H. Park, et al., Application of Ba2+, Mg2+co-doped Sr2SiO4:Eu yellow phosphor for white-light-emitting diodes, J Eletcrochem Soc,2005, 152(8):H121-H123.
    [33]J. S. Yoo, S. H. Kim, W. T. Hoo, et al., Control of spectral properties of strontium-alkaline earth-silicate europium phosphors for LED applications, J Electrochem Soc,2005,152(5):G382-G385.
    [34]J. K. Park, C. H. Kim, S. H. Park, et al., Application of strontium silicate yellow phosphor for white light-emitting diodes, Appl. Phys. Lett.,2004,84:1647-1649.
    [35]J. K. Park, K. J. Choi, J. H. Yeon, et al., Embodiment of the warm white-light emitting diodes by using a Ba2+ codoped Sr3SiO5:Eu phosphor, Appl. Phys. Lett.,2006, 88:043511-043513.
    [36]M. Pardha Saradhi, U.V. Varadaraju, Photoluminescence studies on Eu2+-activated Li2SrSiO4 a potential orange-yellow phosphor for solid-state lighting, Chem. Mater, 2006, (18):5267-5272.
    [37]Z. P. Yang, S. L. Wang, G. W. Yang, et al. Luminescent properties of Ca2BO3Cl:Eu2+ yellow-emitting phosphor for white light emitting diodes, J. Materials Letters,2007, 61(30):5258-5260.
    [38]刘景旺.用Ce3+:YVO4晶体荧光粉与蓝光LED制造自然白光LED,北华航天工业学院学报,2007,17(1):25-27.
    [39]Y. S. Hu, W. D. Zhuang, H. Q. Ye, et al., Preparation and luminescent properties of (Ca1-xSrx)S:Eu2+ red emitting phosphor for white LED, J Lumin,2005,111:139-145.
    [40]C. F. Guo, D. X. Huang, Q. Su, Methods to improve the fluorescence intensity of CaS:Eu2+ red-emitting phosphor for white LED, Mater Sci Eng B,2006, 130(1-3):189-193.
    [41]Y. S. Hu, W. D. Zhuang, H. Q. Ye, et al., A novel red phosphor for white light emitting diodes, J Alloys Compd,2005,390:226-229.
    [42]张国有,赵晓霞,孟庆裕,等.Eu3+掺杂的α-Gd2(MoO4)3荧光粉合成与表征,发光学报,2006,27(5):724-728.
    [43]杨志平,韩勇,李旭.一种新型的白光LED用红色荧光粉SrMoO4:Eu3+,河北工业大学成人教育学院学报,2006,21(2):13-15.
    [44]井艳军,王海波,黄如喜,等.喷雾热解法制备红色发光粉LiEu(SiO2)1/6W2O8的研究,发光学报,2007,28(5):715-719.
    [45]A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si,Ge)3O12 and its use in LED based lighting, Chem. Mater.,2006,18:3314-3322.
    [46]J. Liu, H. Z. Lian, C. S. Shi, Improved optical photoluminescence by charge compensation in the phosphor system CaMoO4:Eu3+, Optical Materials,2007, 29:1591-1594.
    [47]X. Zhang, X. R. Liu, Luminescence Properties and Energy Transfer of Eu2+Doped Ca8Mg(Si04)4Cl2 Phosphors, J Electrochem Soc,1992,139(2):622-625.
    [48]X. R. Liu, W. L. Xu, Emission spectra and crystallographic sites of Eu2+ in CagZn (SiO4)4Cl2, J Rare Earths,1993, 11(2):102-105.
    [49]庄卫东,等.半导体照明用稀土荧光粉.2004年中国(上海)国际半导体照明论坛,上海,2004,99.
    [50]P. Yang, J. H. Lin, G. Q.Yao, Luminescence and Preparation of LED Phosphor Ca8Mg(Si04)4Cl2:Eu2+, J Rare Earths,2005,23(5):633-635.
    [51]徐剑,张剑辉,张新民,等.Ga2S3:Eu2+和SrGa2+xS4+y:Eu2+系列荧光粉的发光性能研究,中国稀土学报,2003,21(6):635-638.
    [52]Y. Uchida, T. Taguchi, Theoretical and experimental luminous characteristics of white LEDs composed of multiphosphors and near-UV LED for lighting, Proc. SPIE,2003, 4996:166-173.
    [53]W. J. Ding, J. Wang, M. Zhang, Q. H. Zhang, Q. Su, Luminescence properties of new Ca10(Si207)3Cl2:Eu2+ phosphor, Chem. Phys. Lett.,2007,435(4-6):301-305.
    [54]W. J. Ding, J. Wang, M. Zhang, Q. H. Zhang and Q. Su, A novel orange phosphor of Eu2+-activated calcium chlorosilicate for white light-emitting diodes, J. Solid State Chem.,179 (11) (2006) 3582-3585.
    [55]R. J. Yu, J. Wang, M. Zhang, J. H.Zhang, H. B. Yuan and Q. Su, A new blue-emitting phosphor of Ce3+-activated CaLaGa3S6O for white-light-emitting diodes, Chem. Phys. Lett.,2008,453:197-201.
    [56]P. Yang, G Q. Yao, J. H. Lin, Energy transfer and photolum inescence of BaMgAl10O17 co-doped with Eu2+ and Mn2+, Optical Materials,2004,26(3):327-331.
    [57]蒋大鹏,赵成久,等.用荧光粉转换方法制备纯绿色LED,发光学报,2002,23(3):3 11-313.
    [58]张中太,张俊英.无机光致发光材料及应用,化学工业出版社,2005:166.
    [59]Y. C. Kang, J. R. Sohn, H. S. Yoon, et al., Improved photoluminescence of Srs(PO4)3Cl:Eu2+ phosphor particles prepared by flame spray pyrolysis, J Electrochem Soc.,2003,150(2):H38-H42.
    [60]J. K. Park, K. J. Choi, C. H. Kim, et al. Luminescence characteristics of Sr3MgSi2O8:Eu blue phosphor for light-emitting diodes, Electrochem Solid-State Lett, 2004,7(10):H42-H43.
    [61]N. Lakshminarasimhan, U. V. Varadaraju, White-light generation in Sr2SiO4:Eu2+,Ce3+ under near-UV excitation, J Elecrochem Soc,2005,152(9):H152-H156.
    [62]J. Liu, J. Y. Sun, C. S. Shi, A new luminescent material:Li2CaSi04:Eu2+, Mater Lett, 2006,60(23):2830-2833.
    [63]S. Saha, P. S. Chowdhury, A. Patra, Luminescence of Ce3+ in Y2SiO5 nanocrystals:role of crystal structure and crystal size, J Phys Chem B,2005,109:2699-2702.
    [64]杨志平,王少丽,杨广伟,等.Ca2B5O9Cl:Eu2+蓝色荧光粉的发光特性,硅酸盐学报,2008,36(2):180-181.
    [65]杨云霞,陈仙玲,袁双龙,等.白光LED灯用蓝光荧光粉的发光性能和结构,硅酸盐学报,2006,34(6):671-674.
    [66]Q. H. Zeng, H. Tanno, K. Egoshi, et al., Ba5SiO4Cl6:Eu2+:an intense blue emission phosphor under vacuum ultraviolet and near-ultraviolet excitation, Appl Phys Lett,2006, 88:051906(1)-051906(3).
    [67]杨志平,刘玉峰,李雪清,用于白光LED的高亮度蓝白色荧光Ca2SiO3Cl2:Eu2+的发光性质,发光学报,2006,27(4):629-632.
    [68]Z. C. Wu, J. X. Shi, J. Wang, et al., A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs, J Solid State Chem,2006,179:2356-2360.
    [69]M. Zhang, J. Wang, Q. Y. Zhang, et al., Optical properties of Ba2Si04:Eu2+phosphor for green light emitting diode(LED), Mater Res Bulletin,2007,42:33-39.
    [70]H. L. Liu, D. W. He, F. Shen, Luminescence properties of green-emitting phosphor (Sr1-xBax)2Si04:Eu2+ for white LEDs, J Rare Earths,2006,24:121-124.
    [71]H. S. Kang, Y. C. Kang, K. Y. Jung, et al., Eu-doped barium strontium silicate phosphor particles prepared from spray solution containing NH4Cl by spray pyrolysis, Mater Sci Eng B,2005,121:81-85.
    [72]H. S. Kang, S. K. Hong, Y. C. Kang, et al., The enhancement of photoluminescence characteristics of Eu-doped barium strontium silicate phosphor particles by co-doping materials, J Alloys Compd,2005,402:246-250.
    [73]J. S. Kim, Y. H. Park, S. M. Kim, et al., Temperature-dependent emission spectra of M2SiO4:Eu2+(M=Ca, Sr, Ba) phosphors for green and greenish white LEDs, Solid State Communications,2005,133:445-448.
    [74]杨志平,王少丽,杨广伟,等.绿色荧光粉NaCaPO4:Tb3+的制备与发光特性,发光学报,2008,29(1):81-83.
    [75]P. Yang, J. H. Lin, G. Q. Yao, et al., Luminescence and preparation of LED phosphor Ca8Mg(Si04)4Cl2:Eu2+, J Rare Earth,2005,23(5):633-635.
    [76]W. J. Ding, J. Wang, M. Zhang, Q. H. Zhang, Q. Su, Luminescence properties of new Ca10(Si2O7)3Cl2:Eu2+ phosphor, Chem. Phys. Lett.,2007,435(4-6):301-305.
    [77]Z. C. Wu, J. X. Shi, J. Wang, et al., Synthesis and luminescent properties of SrAl2O4:Eu2+ green-emitting phosphor for white LEDs, Mater Lett,2006, 60:3499-3501.
    [78]K. Y. Jung, H. W. Lee, H. Jung, Luminescent properties of (Sr, Zn)Al2O4:Eu2+, B3+ particles as a potential green phosphor for UV LEDs, Chem Mater,2006,18: 2249-2255.
    [79]R. K. Datta, Luminescent Behavior of Bismuth in Rare-Earth Oxides, J Eletcrochem Soc,1967,114:1137-1142.
    [80]S. Z. Toma, D. T. Palumbo, Broad Emission and Excitation Bands in Y2O3 and YVO4, J Eletcrochem Soc,1970,117(2):236-241.
    [81]L. S. Chi, R. S. Liu, B. J. Lee, Synthesis of Y2O3:Eu3+, Bi3+ red phosphor by homogeneous coprecipitation and their photoluminescence behaviors, J Eletcrochem Soc,2005,150(8):J93-J98.
    [82]W. J. Park, S. G Yoon, D. H. Yoon, Photoluminescence properties of Y2O3 co-doped with Eu and Bi compounds as red-emitting phosphor for white LED, J Electroceram, 2006,17:41-44.
    [83]Y. S. Hu, W. D. Zhuang, H. Q. Ye, et al., A novel red phosphor for white light emitting diodes, J Alloys Compd,2005,390:226-229.
    [84]Z. L. Wang, H. B. Liang, M. L. Gong, et al., A potential red-emitting phosphor for LED solid-state lighring, Electrochem Solid-state Lett,2005,8(4):H33-H35.
    [85]Z. L. Wang, H. B. Liang, L. Y. Zhou, et al., Luminescence of (Li0.333Na0.334K0.333) Eu(MoO4)2 and its application in near UV InGaN-based light emitting diode, Chem Phys Lett,2005,412:313-316.
    [86]张国有,赵晓霞,孟庆裕,等.白光LED用红色荧光粉Gd2Mo3O9:Eu3+的制备及表征,发光学报,2007,28(1):57-61.
    [87]X. X. Zhao, X. J. Wang, B. J. Chen, et al., Luminescent properties of Eu3+ doped a-Gd2(MoO4)3:Eu3+ phosphor for white light emitting diodes, Opt Mater,2007, 29(12):1680-1684.
    [88]S. Neeraj, N. Kijima, A. K. Cheetham, Novel red phosphors for solid-state lighting:the system NaM(WO4)2-x(MoO4)x:Eu3+(M=Gd, Y, Bi), Chem Phys Lett,2004,387:2-6.
    [89]H. C. Chuang, F. W. Ming, S. L. Chi, et al., Structural, spectroscopic and photoluminescence studies of LiEu(WO4)2-x(MoO4)x as a near-UV convertible phosphor, Journal of Solid State Chemistry,2007,180(2):619-627.
    [90]Y. H. Wang, Y. K. Sun, J. C. Zhang, et al., New red Yo.85Bi0.1Eu0.05V1-yMyO4(M=Nb,P) phosphor for light-emitting, Physica B:Condensed Matter,2008,403(12):2071-2075.
    [91]G Gundiah, Y. Shimomura, N. Kijima, et al., Novel red phosphor based on vanadate garnets for solid state lighting application, Chemical Physica Letters,2008, 45(4-6):279-283.
    [92]Z. P. Yang, S. L. Wang, G W. Yang, et al., Luminescent Properties of Sr2Si04:Sm3+ Red Phosphor, Journal of The Chinese Ceramic Society,2007,35(12):1587-1589.
    [93]K. S. Sohn, D. H. Park, S. H. Cho, et al., Computational evolutionary optimization of red phosphor for use in tricolor white LEDs, Chem Mater,2006,18(7):1768-1772.
    [94]J. Matousek, Chemical reactions taking place during vaporization from silicate melts, Journal Ceramics Silikaty,1998,42(2):74-80.
    [95]J. S. Kim, P. E. Jeon, J. C. Choi,et al., Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+,Mn2+ phosphor, Appl. phys. Lett.,2004, 84(15):2931-2933.
    [96]J. S. Kim, K. T. Lim, Y. S. Jeong, et al., Full-color Ba3MgSi208:Eu2+, Mn2+ phosphors for white-light emitting diode, Solid State Communications.2005,135(1-2):21-24.
    [97]J. S. Kim, P. E. Jeon, Y. H. Park, et al., White-light generation through ultraviolet-emitting diode and white-emitting phosphor, Appl. phys. Lett.,2004, 85(17):3696-3698.
    [98]J. S. Kim, P. E. Jeon, Y. H. Park, et al., Color tunability and stability of silicate phosphor for UV-pumped white LEDs, J Eletcrochem Soc,2005,152(2):H29-H32.
    [99]J. L. Wang, D. J. Wang, L. Li, et al., Prepariation of single host silicate phosphors for white LEDs and its photoluminescent properties, Chin J Lumin,2006,27 (4):463-468.
    [100]W. J. Wang, L. Y. Yang, T. M. Chen, et al., Luminescence and energy transfer of Eu-and Mn-coactived CaAl2Si2O8 as a potential phosphor for white-light UV-LED, Chem Mater,2005,17:3883-3888.
    [101]杨志平,刘玉峰,王利伟,等.用于白光LED的单一基质白光荧光粉Ca2SiO3Cl2:Eu2+,Mn2+的发光性质,物理学报,2007,56(1):546-550.
    [102]W. J. Yang, T. M. Chen, White light generation and energy transfer in SrZn2(PO4)2:Eu, Mn phosphor for ultraviolet light-emitting diodes, Appl. Phys. Lett.,2006, 88:101903(1)-101903(3).
    [103]S. L. Yuan, X. L. Chen, C. F. Zhu, et al., Eu2+, Mn2+ codoped (Sr, Ba)6BP502o-a novel phosphor for white-LED, Optical Materials,2007,30:192-194.
    [104]孙晓园,张家骅,张霞,等.新一代白光LED照明用一种适用于近紫外光激发的单一白光荧光粉,发光学报,2005,26(3):404-406.
    [105]B. Liu, L. J. Kong, C. S. Shi, et al., White-light long-lasting phosphor Sr2MgSi2O7:Dy3+, Journal of Luminescence,2007,122-123:121-124.
    [106]李盼来,杨志平,王志军,等.Sr2SiO4:Dy3+材料制备及发光特性,高等学校化学学报,2008,29(3):457-460.
    [107]肖志国等,半导体照明发光材料及应用,化学工业出版社,2008.
    [108]湖南省建材工业学校编,硅酸盐晶体结构及相图,中国建筑工业出版社,1981.
    [109]F. Liebau, Structural chemistry of silicates structure, bonding, and classification, Springer-Verlag, Berlin,1985.
    [110]丁马太,材料化学导论,厦门大学出版社,1995.
    [111]L. Barry, Equilibria and Eu2+ luminescence of subsolidus phase bounded by Ba3MgSi208, Sr3MgSi2O8, Ca3MgSi2O8, J. Electrochem. Soc.,1968,115(7):733-738.
    [112]L. Barry, Luminescent properties of Eu2+ and Eu2++Mn2+ activated BaMg2Si207, J. Electrochem. Soc.,1968,117(3):381-385.
    [113]L. Barry, Fluorescence of Eu2+Activated Phase In Binary Alkaline Earth Orthosilicate Systems, J. Electrochem. Soc.,1968,115(11):1181-1183.
    [114]夏威,雷明凯,罗昔贤,等.宽激发带稀土激活碱土金属硅酸盐发光材料特性研究,光谱学与光谱分析,2008,28(1):41-46.
    [115]J. K. Park, K. J. Choi, C. H. Kim, et al., Optical Properties of Eu2+-Activated Sr2SiO4 Phosphor for Light-Emitting Diodes, Electrochem Solid-state Lett,2004, 7(5):H15-H17.
    [116]H. L. Liu, D.W. He, F. Shen, et al., Luminescence properties of green-emitting phosphor (Ba1-xSrx)2SiO4:Eu2+ for white LEDs, Journal of rare earths,2006, (24):121-124.
    [117]H. Menkara, C. Summers, et al. Light emitting device having silicate fluorescent phosphor, US,6982045 [P],2006-01-03.
    [118]S. S.Yao, D. H. Chen, Luminescent properties of Li2(Ca0.99,Eu0.01)Si04:B3+ particales as a potential bluish green phosphor for ultraviolet light-emitting diodes [J], Central European Journal of Physics,2007,5:558.
    [119]J. A. Gard, A. R. West, Preparation and crystal structure of Li2CaSiO4 and isostructural Li2CaGeO4, J. Solid State Chem.,1973,7:422-427.
    [120]X. L. Zhang, H. He, Z. S. Li, et al., Photoluminescence studies on Eu2+ and Ce3+-doped Li2SrSi04, J Luminescence,2008,128(12):1876-1879.
    [121]A. M. Srivastava, A. R. Duggal, Phosphors for light generation from light emitting semiconductors, US,6255670 [P],2001-07-03.
    [122]M. Zhang, J. Wang, W. J. Ding, et al., Luminescence properties of M2MgSi2O7:Eu2+ (M= Ca, Sr) phosphors and their effects on yellow and blue LEDs for solid-state lighting, Optical Material,2007,30:571-578.
    [123]Y. Hao, Y. H. Wang, Synthesis and photoluminescence of new phosphors M2(Mg, Zn)Si2O7:Mn2+(M= Ca, Sr, Ba), Mat Res Bull,2007,42:2219-2223.
    [124]Y. Yonesaki, T. Takei, N. Kumada, N. Kinomura, Crystal structure of BaCa2MgSi208 and the photoluminescent properties activated by Eu2+, J.Lumin.,2008,128, 1507-1514.
    [125]C. R. T. Leete, A. H. Mckeag, BP1087655,1967.
    [126]H. L. Burrus, K. P. Nicholson, H. P. Rooksby, Fluorescence of Eu2+-activated alkaline earth halosilicates, J Lumin,1971,3:467-476.
    [127]黄竹坡,荆西平,余红,Ce3+,Tb3+离子及Ce3+-Tb3+离子对在Sr4Si3O8Cl4基质中发光的研究,高等学校化学学报,1986,7(9):759-764.
    [128]J. G. Wang, G. B. Li, S. J. Tian, et al, The composition, luminescence, and structure of Sr8[Si4O12]Cl8:Eu2+, Mater Res Bull,2001,36:2051-2057.
    [129]Z. G Xia, Q. Li, J. Y. Sun, Luminescence properties of Ba5Si04(F,Cl)6:Eu2+ phosphor, Material Letters,2007,61:1885-1888.
    [130]J. Liu, H. Z. Lian, C. S. Shi, et al., Eu2+-doped high-temperature phase Ca3Si04Cl2-A yellowish orange phosphor for whitelight-emitting diodes, J. Electrochem. Soc.,2005, 152(11):G880-G884.
    [131]杨志平,刘玉峰,王利伟,等.用于白光LED的单一基质白光荧光粉Ca2Si03Cl2:Eu2+, Mn2+的发光性质,物理学报,2007,56(1):0546-0550.
    [132]C. Y. Shen, Y. Yang, S. Z. Jin, Synthesis and luminous characteristics of Ba2SiO3Cl2:Eu2+, Mn2+ phosphor for white LED, Light-emitting Diode Materials and Devices Ⅱ,2007,6828:682815.
    [133]K. Yamada, M. Ohta, and T. Taguchi, Ca(Eu1-xLax)4Si3O13 Red Phosphor and its Application to Tri-Chromatic White LEDs, J. Light & Vis. Env.,2004,28(2):73-78.
    [134]S. H. Lee, et al. White-light-emitting phosphor CaMgSi2O6:Eu2+, Mn2+ and it s-related properties with blending, Appl. Phys. Lett.,2006,89(22):221916(1)-221916(3).
    [135]杨志平,刘玉峰,熊志军,Sr2MgSiO5:Eu2+, Mn2+单一基质白光荧光粉的发光性质,硅酸盐学报,2006,34(10):1195-1198.
    [136]A. D. Ananias, B. L. D. Carlos, J. Rocha, Unusual full-colour phosphors:Na3LnSi3O9, Opt Mater,2006,28 (6):582-586.
    [137]T. G Kim, Y. S. Kim, S. J. Im, Energy Transfer and Brightness Saturation in (Sr,Ca)2P2O7:Eu2+,Mn2+ Phosphor for UV-LED Lighting, J. Electrochem. Soc.,2009, 156(7):J203-J207.
    [138]X. M. Zhang, B. W. Park, J. S. Kim, et al., Orange emission enhancement by energy transfer in Sr3Al2O5Cl2:Ce3+, Eu2+ phosphor for solid-state lighting, J Lumin,2010, 130(1):117-120.
    [139]Y. C. Chiu, W. R. Liu, Y. T. Yeh, et al., Luminescent Properties and Energy Transfer of Green-Emitting Ca3Y2(Si309)2:Ce3+,Tb3+ Phosphor, J. Electrochem. Soc.,2009,156(8): J221-J225.
    [1]孙彦彬,邱关明,陈永杰,耿秀娟,代少俊,稀土发光材料的合成方法,稀土,2003,24(1):43-48.
    [2]J. Liu, J. Y. Sun, C. S. Shi, A new luminescent material:Li2CaSi04:Eu2+, Mater Lett, 2006,60(23):2830-2833.
    [3]P. E. Werner, L. Eriksson, M. Westdahl, A semi-exhausting trial and errorpowder indexing program for all symmetries, Journal of Applied Crystal,1985,18(5):367-370.
    [1]N. Toshio, B. Tomoyuki, K. Naoki, High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors, Appl. Phys. Lett.,2003,82(22):3817-3819.
    [2]F. J. Disalvo, Solid-State Chemistry:A Rediscovered Chemical Frontier, Science,1990, 247:649-655.
    [3]E. Danielson, M. Devenney, D. M. Giaquinta, et al., A Rare-Earth Phosphor Containing One-Dimensional Chains Identified Through Combinatorial Methods, Science,1998, 279(6):837-839.
    [4]E. Danielson, M. Devenney, D. M. Giaquintu, et al., X-ray powder structure of Sr2CeO4: a new luminescent material discovered by combinatorial chemistry, J. Mol. Struct.,1998, 470:229-235.
    [5]Y. D. Jiang, F. Zhang, J. Christopher, et al., Synthesis and properties of Sr2CeO4 blue emission powder phosphor for field emission displays, Appl. Phys. Lett.,1999,74(12): 1677-1679.
    [6]O. A. Serra, V. P. Severino, P. S. Galefi, et al., The blue phosphor Sr2Ce04 synthesized by Pechini's method, J. Alloys Compd.,2001,323-324:667-669.
    [7]Y. X. Tang, H. P. Guo, Q. Z. Qin, Photoluminescence of Sr2CeO4 phosphors prepared by microwave calcination and pulsed laster deposition, Solid State Commun,2002, 121:351-356.
    [8]翟永清,周雪玲,回学庄等.蓝色发光材料Sr2CeO4的燃烧法合成及表征,化工新型材料,2005,33(12):33-35.
    [9]R. Sankar, G. V. Subba Rao, Eu3+ luminescence, Ce4+→Eu3+ energy transfer, and white-red light generation in Sr2Ce04, J. Electrochem. Soc.,2000,147 (7):2773-2779.
    [10]高峰,陈震,稀土离子RE(RE=Pr,Nd,Eu)在Sr2CeO4基质中的发光性质,稀有金属快报,2005,24(12):23-26.
    [11]T. Hirai, Y. Kawamura, Preparation of Sr2CeO4 blue phosphor particles and rare earth (Eu, Ho, Tm, or Er)-doped Sr2CeO4 phosphor particles, using an emulsion liquid membrane system, J. Phys. Chem. B,2004,108:12763-12769.
    [12]Z. L. Wang, H. B. Liang, M. L. Gong, et al., Novel red phosphor of Bi3+, Sm3+ co-activated NaEu(MoO4)2, Opt Mater.,2007,29(7):896-890.
    [13]S. Neeraj, N. Kijima and A.K. Cheetham, Novel red phosphors for solid state lighting; the system BixLn1-xVO4; Eu3+/Sm3+(Ln=Y, Gd), Solid State Commun.,2004,131: 65-69.
    [14]储刚,翟秀静,毕诗文,符岩,La0.7Sr0.3MnO3晶格热膨胀系数的测定,化学通报,2004,67:1-4.
    [15]L. Pieterson, S. Soverna, A. Meijerink, On the nature of the luminescence of SrCeO4, J. Electrochem. Soc.,2000,147:4688-4691.
    [16]G.Blasse,稀土离子激活荧光体的化学与物理,石春山译,苏锵校,稀土,1984,1:65;稀土,1984,2:59.
    [17]G Blasse, B. C. Grabmaier, Luminescence Materials, Spinger Verlag, Berlin,1994.
    [18]洪广言,李有谟,铈激活磷光体的发光特性,发光与显示,1984,5(2):82-92.
    [19]A. Katelnikovas, H. Bettentrup, D. Uhlich, et al., Synthesis and optical properties of Ce3+-doped Y3Mg2AlSi2O12 phosphors, J Lumin,2009,129:1356-1361.
    [20]T. Suehiro, N. Hirosaki, R. J. Xie, et al., Blue-emitting LaSi3N5:Ce3+ fine powder phosphor for UV-converting white light-emitting diodes, Appl. Phys. Lett.,2009, 95:051903(1)-051903(3).
    [21]张雷,洪广言,一维结构中的发光特性,人工晶体学报,1999,28(2):204-209.
    [22]L. Zhang, G Y. Hong, X. L Sun., The Luminescence of the phosphor Sr2ZrO4 with one-dimensional chains structure, Chinese Chemical Letters,1999,10(9):799-802.
    [23]A. Nag, T. R. Narayanan Kutty, Photoluminescence of Sr2-xLnxCe04+x/2(Ln= Eu, Sm or Yb) prepared by a wet chemical method, J. Mater.Chem.,2003,13:370-376.
    [24]T. Yamashita, K. Ueda, Blue photoluminescence in Ti-doped alkaline-earth stannates, J. Solid State Chem.,2007,180:1410-1413.
    [25]Y. C. Chen, Y. H. Chang, B. S. Tsai, Influence of processing conditions on synthesis and photoluminescence of Eu3+-activated strontium stannate phosphors, J. Alloys Compd.,2005,398:256-260.
    [26]H. M. Yang, J. X. Shi, M. L. Gong, A new luminescent material, Sr2SnO4:Eu3+, J. Alloys Compd.,2006,415:213-215.
    [27]Y. M. Chiang, D. P. Birnie, W. D. Kingery, Physical Ceramics:Principles for Ceramics Science and Engineering, Wiley, USA,1997, p15.
    [28]A. R. Denton, N. W. Ashcroft, Vegard's law, Phys Rev A,1991,3(6):3161-3164.
    [29]Anthony R.West,固体化学及其应用,苏勉曾,谢高阳,申泮文等译,复旦大学出版社,1989,272.
    [30]李中和,结晶化学,浙江大学出版社,1989,91.
    [31]T. Masui, T. Chiga, N. Imanaka, G. Adachi, Synthesis and Luminescence of Sr2CeO4 Fine Particles, Mater. Res. Bull.,2003,38(1):17-24.
    [32]S. Shioonoya, W. M. Yen, Phosphor handbook, New York,1998.
    [33]G. L. Miessler, D. A. Tarr, Inorganic Chemistry,3rd edition, Pearson Prentice Hall, 2004.
    [34]G. Blasse, B. C. Grabmaier, Luminescent Materials, Springer-Verlag, Berlin,1994,27.
    [35]S. Shionoga, W. M. Yen, Phosphor Handbook, CRC Press, Boston,1999,183.
    [36]R. Sahoo, S. K. Bhattacharya, R. Debnath, A new type of charge compensating mechanism in Ca5(PO4)3F:Eu3+ phosphor, J. Solid State Chem.,2003,175:218-225.
    [37]Y. H. Li, G Y. Hong, Synthesis and luminescence properties of nanocrystalline YVO4:Eu3+, J. Solid State Chem.2005,178:645-649.
    [38]Z. L. Wang, H. B. Liang, M. L. Gong, et al., A Potential Red-Emitting Phosphor for LED Solid-State Lighting, Electrochem. Solid-State Lett.,2005,8(4):H33-H35.
    [39]X. X. Wang, J. Wang, J. X. Shi, et al., Intense red-emitting phosphors for LED solid-state lighting, Mater.Res.Bull.,2007,42(9):1669-1673.
    [40]Z. L. Wang, H. B. Liang, L. Y. Zhou, et al., NaEu0.96Smo.o4(Mo04)2 as a promising red-emitting phosphor for LED solid-state lighting prepared by the Pechini process, J Lumin,2008,128:147-154.
    [41]揣晓红,张红杰,等,Sr2CeO4:Eu3+柠檬酸-凝胶法的合成及发光性质研究,无机化学学报,2003,1 9(5):462-466.
    [1]S. J. Louinathan, Refinement of the crystal structure of a natural gehlenite, Ca2Al(Al,Si)2O7, Can. Mineral.,1971,10:822-837.
    [2]A. A. Kaminskii, E. L. Belokoneja, B. V. Mill, et al., crystal structure, absorption, luminescence properties, and stimulated emission of Ga gehlenite (Ca2-xNdxGa2+xSi1-xO7), Phys. Status Solidi (a),1986,97:279-290.
    [3]R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A,1976,32:751-767.
    [4]A. Malecki, R. Gajerski, S. Labus, et al., Kinetic and mechanism of crystallization of gehlenite glass pure and doped with Co2+, Eu2+, Cr3+ and Th4+, J. Non. Crys.Sol.,1997, 212(1):55-58.
    [5]A. M. Lejus, A. Kahn-Harari, J. M. Benitez, et al. Crystal growth, characterization and structure refinement of neodymium3+ doped gehlenite, a new laser material Ca2Al2Si07, Mater Res Bull.,1994,29(7):725-734.
    [6]A. M. Lejus, N. Pelletier-Allard, R. Pelletier, D. Vivien, Site selective spectroscopy of Nd ions in gehlenite Ca2Al2Si07, a new laser material, Opt. Mater.,1996,6(3):129-137.
    [7]P. L. Boulanger, J. L. Doualan, S. Girard, et al., Excited-state absorption of Er3+ in the Ca2Al2Si07 laser crystal, J. Lumin.,2000,86(1):15-21.
    [8]D. Vivien, P. Georges, Crystal growth, optical spectroscopy and laser experiments on new Yb3+-doped borates and silicates, Optical Materials,2003,22 (2):81-83.
    [9]N. Kodama, N. Sasaki, M. Yamaga, Y. Masui, Long-lasting phosphorescence of Eu2+ in melilite, J. Lumin.2001,94-95:19-22.
    [10]N. Kodama, Y. Tanii, M. Yamaga, Optical properties of long-lasting phosphorescent crystals Ce3+-doped Ca2Al2Si07 and CaYAl3O7, J. Lumin.2000,87-89:1076-1078.
    [11]X. J. Wang, D. D. Jia, W. M.Yen, Mn2+activated green, yellow, and red long persistent phosphors, J. Lumin.2003,102-103:34-37.
    [12]X. H. Chuai, H. J. Zhang, F. S. Li, K. C. Chou, The luminescence of Eu3+ ion in Ca2Al2Si07, Opt. Mater.,2004,25:301-305.
    [13]Q. Zhang, J. Wang, M. Zhang, et al., Enhanced photoluminescence of Ca2Al2SiO7:Eu3+ by charge compensation method, Appl. Phys. A.,2007,88:805-809.
    [14]H. Matsukiyo, H. Yamada, the 3rd International Conference on the Science and Technology of Disp. Phos., Extended Abstracts,1997,315.
    [15]J. Holsa,M. Leskela, L. Niinisto, Sensitization of Tb3+ luminescence with Ce3+ in LaOBr:Tb3+, Ce3+, J. Solid State Chem.,1981,37:267-270.
    [16]D. Jia, W. Jia, X. J. Wang, W. M. Ren, Quenching of Thermo-Stimulated Photo-Ionization by Energy Transfer in CaAl4O7:Tb3+, Ce3+, Solid State Commun., 2004,129,1-4.
    [17]M. T. Jose, A. R. Lakshmanan, Ce3+ to Tb3+energy transfer in alkaline earth (Ba, Sr or Ca) sulphate phosphors, Opt. Mater.,2004,24:651-659.
    [18]C. K. Lin, H. Wang, D. Y. Kong, et al., Silica supported submicron SiO2/Y2SiO5:Eu3+ and SiO2/Y2SiO5:Ce3+/Tb3+ spherical particles with a core-shell structure:sol-gel synthesis and characterization, Euro. J. Inorg. Chem.,2006,18:3667-3675.
    [19]J. Lin, Q. Su, H. J. Zhang, S. B. Wang, Crystal structure dependence of the luminescence of rare earth ions (Ce3+, Tb3+, Sm3+) in Y2Si05, Mater Res Bull.,1996, 31:189-196.
    [20]M. Yu, H. Wang, C. K. Lin, et al., Sol-gel synthesis and photoluminescence properties of spherical SiO2@LaPO4:Ce3+/Tb3+ particles with a core-shell structure, Nanotechnology,2006,17:3245-3252.
    [21]M. Yu, J. Lin, J. Fu, et al., Sol-gel synthesis and photoluminescent properties of LaPO4:A (A= Eu3+, Ce3+, Tb3+) nanocrystalline thin films, J.Mater.Chem.,2003, 13:1413-1419.
    [22]Z. L.Wang, Z. W. Quan, P. Y. Jia, et al., A facile synthesis and photoluminescent properties of redispersible CeF3, CeF3:Tb3+and CeF3:Tb3+/LaF3 (core/shell) nanoparticles, Chem. Mater.,2006,18:2030-2037.
    [23]F. A. Kroger, H. J. Vink, Phisico-chemical properties of diatomic crystals in relation to the incorporation of foreign atoms with deviating valency, Physica,1954,20:950-964.
    [24]W. T. Carnell, P. R. Fields, K. Rajnak, Electronic Energy Levels of the Trivalent Lanthanide Aquo Ions. III. Tb3+, J. Chem. Phys.,1968,49:4447-4449.
    [25]L. J. Nugent, R. D. Baybarz, J. L. Burnett, et al., Electron-transfer and f-d absorption bands of some lanthanide and actinide complexes and the standard (Ⅱ-Ⅲ) oxidation potential for each member of the lanthanide and actinide series, J. Phys. Chem.,1973, 77:1528-1539.
    [26]G.. Blasse, B. C. Grabmaier, Luminescent Materials, Springler, Berlin,1994.
    [27]J. C. Bourcet, F. K. Fong, Quantum efficiency of diffusion limited energy transfer in La1-x-yCexTbyPO4, J. Chem. Phys.1974,60:34-39.
    [28]A. S. Marfunin, Spectroscopy, Luminescence and Radiation Centers in Minerals, Springer-Verlag, Berlin,1979.
    [29]V. P. Dotsenkoa, I. V. Berezovskaya, N. P. Efryushina, et al., Luminescence of Ce3+ ions in strontium haloborates, J. Lumin.,2001,93:137-145.
    [30]Q. Su, H. B. Liang, C. Y. Li, et al., Luminescent materials and spectroscopic properties of Dy3+ ion, J. Lumin.,2007,122-123:927-930.
    [31]Q. Su, Z. Pei, Q. Zeng, et al., Phosphors Doped with Dy3+ and Gd3+ for Lighting, Mater. Sci. Forum,1999,315-317:228-235.
    [32]Q. Su, Z. Pei, J. Lin, F. Xue, Luminescence of Dy3+ enhanced by sensitization, J. Alloys Compd.,1995,225:103-106.
    [33]G. Seeta Rama Raju, S. Buddhudu, Emission analysis of Sm3+and Dy3+:MgLaLiSi2O7 powder phosphors, Spectrochimica Acta Part A,2008,70:601-605.
    [34]G. Blasse, A. Bril, Characteristic Luminescence, Philips Technical Review,1970, 31(10):303-332.
    [35]L. Ozawa, H. Forest, P. M. Jaffe, et al., The Effect of Exciting Wavelength on Optimum Activator Concentration, J. Electrochem. Soc.,1971,118:482-486.
    [36]M. Leskela, M. Saakes, G. Blasse, Energy transfer phenomena in GdMgB5O10, Mater. Res. Bull.,1984,19(2):151-159.
    [37]C. S. McCamy, Correlated Color Temperature as an Explicit Function of Chromaticity Coordinates, Color. Res. Appl.,1992,17:142-144.
    [38]X. H. Chuai, H. J. Zhang, F. S. Li, K. C. Chou, The luminescence of Eu3+ ion in Ca2Al2Si07, Opt. Mater.,2004,25:301-305.
    [39]Q. Zhang, J. Wang, M. Zhang, et al., Enhanced photoluminescence of Ca2Al2Si07:Eu3+ by charge compensation method, Appl. Phys. A,,2007,88:805-809.
    [40]Z. L. Wang, H. B. Liang, J. Wang, et al., Red-light-emitting diodes fabricated by near-ultraviolet InGaN chips with molybdate phosphors, Appl. Phys. Lett.,2006, 89:071921(1)-071921(3).
    [41]C. F. Guo, F. Gao, Y. Xu, et al., Efficient red phosphors Na5Ln(MoO4)4:Eu3+(Ln= La, Gd and Y) for white LEDs, J. Phys. D:Appl. Phys.,2009,42:095407(1)-095407(7).
    [42]X. X. Zhao, X. J. Wang, B. J. Chen, et al., Novel Eu3+-doped red-emitting phosphor Gd2Mo3O9 for white-light-emitting-diodes (WLEDs) application, J. Alloys Compd., 2007,433:352-355.
    [43]Z. L. Wang, H. B. Liang, L. Y. Zhou, et al., Luminescence of (Li0.333Na0.334K0.333)Eu (MoO4)2 and its application in near UV InGaN-based light-emitting diode, Chem. Phys. Lett.,2005,412:313-316.
    [44]Z. L. Wang, H. B. Liang, M. L. Gong, et al., A Potential Red-Emitting Phosphor for LED Solid-State Lighting, Electrochem. Solid State Lett.,2005,8(4):H33-H35.
    [45]Z. L. Wang, H. B. Liang, M. L. Gong, et al., Novel red phosphor of Bi3+, Sm3+ co-activated NaEu(MoO4)2, Opt. Mater.,2007,29:896-900.
    [46]Y. X. Pan, M. M. Wu, Q. Su, Synthesis of Eu3+-doped calcium and strontium carbonate phosphors at room temperature, Mater. Res. Bull.,2003,38:1537-1544.
    [47]T. Kunimoto, R. Yoshimatsu, and K. Ohmi, et al., Feasibility Study of Silicate Phosphor CaMgSi2O6:Eu2+ as Blue PDP Phosphor, IEICE Trans. Electron.,2002, E85-C(11):1888-1894.
    [48]Y. C. Kang, I. W. Lenggoro, S. B. Park, K. Okuyama, Y2SiO5:Ce Phosphor Particles 0.5-1.4 μm in Size with Spherical Morphology, J. Solid State Chem.,1999,146: 168-175.
    [49]H. Furusho, J. Holsa T. Laamanen, et al., Probing lattice defects in Sr2MgSi207:Eu2+,Dy3+, J. Lumin.,2008,128:881-884.
    [50]G. Blasse, Luminescence of inorganic solids:From isolated centres to concentrated systems, Prog. Solid St. Chem.,1988,18:79-171.
    [51]P. Dorenbos, Energy of the first 4f7-4f65d transition of Eu2+ in inorganic compounds, J. Lumin.,2003,104:239-260.
    [52]K. Rajamohan Reddy, K. Annapurna, S. Buddhudu, Photoluminescence spectra of BaFCl:Eu2+ phosphors, Mater Lett.,1996,27:273-274.
    [53]Y. H. Lin, Z. T. Zhang, Z. L. Tang, et al., The characterization and mechanism of long afterglow in alkaline earth aluminates phosphors co-doped by Eu2O3 and Dy2O3, Mater. Chem. Phys.,2001,70(2):156-159.
    [54]N. Yamashita, Photoluminescence spectra of the Eu2+ center in SrO:Eu, J.Lumin.,1994, 59:195-199.
    [55]J. K. Park, M. A. Lim, C. H. Kim, et al., White light-emitting diodes of GaN-based Sr2SiO4:Eu and the luminescent properties, Appl. Phys. Lett.,2003,82:683-685.
    [56]H. S. Jang, Y. H. Won, S. Vaidyanathan, et al., Emission Band Change of (Sr1-xMx)3SiO5:Eu2+(M= Ca, Ba) Phosphor for White Light Sources Using Blue/Near-Ultraviolet LEDs, J. Electrochem. Soc.,2009,156(6):J138-J142.
    [57]G. Blasse, Philips Res. Rep.,1969,24:131-136.
    [58]J. Qiu, K. Miura, N. Sugimoto, K. Hirao, Preparation and fluorescence properties of fluoroaluminate glasses containing Eu2+ ions, J. Non-Cryst. Solids,1997,213-214:266-270.
    [59]D. L. Dexter, A Theory of Sensitized Luminescence in Solids, J. Chem. Phys.,1953,21: 836-850.
    [1]S. H. M. Poort, W. P. Blolcpoel, and G Blasse, Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate, Chem Mater,1995,7:1547-1551.
    [2]X. H. Chuai, H. J. Zhang, F. S. Li, K. C. Chou, The luminescence of Eu3+ ion in Ca2Al2Si07, Opt. Mater.,2004,25:301-305.
    [3]S. N. Salama, H. Darwish, and H. A. Abo-Mosallam, HA forming ability of some glass-ceramics of the CaMgSi2O6-Ca5(PO4)3F-CaAl2SiO6 system, Silicon India,2006, 71:67-74
    [4]M. Merlini, M. Gemmi, G. Arlioli, Thermal expansion and phase transitions in & kermanite and gehlenite, Phys. Chem. Miner.,2005,32:189-196.
    [5]V. K. Jha, Y. Kameshima, K. Okada, K. J. D. MacKenzie, Ni2+ uptake by amorphous and crystalline Ca2Al2SiO7 synthesized by solid-state reaction of kaolinite, Sep. Purif. Technol.,2004,40:209-215.
    [6]T. Kida, K. Motoori, H. Abe, Preparation of Eu-Doped SrAl2O4 Phosphor Films from Self-Assembled Polycation/Hydroxide Multilayer Films, J. Electrochem. Soc.,2008, 155:J274-J277.
    [7]G Blasse, B. C. Grabmaier, Luminescent Materials, Springer, Berlin,1994.
    [8]S. Shionoga, W. M. Yen, Phosphor Handbook, CRC Press, Boston,1999.
    [9]R. Sahoo, S. K. Bhattacharya, R. Debnath, A new type of charge compensating mechanism in Ca5(PO4)3F:Eu3+ phosphor, J. Solid State Chem.,2003,175:218-225.
    [10]Y. H. Li, G Y. Hong, Synthesis and luminescence properties of nanocrystalline YVO4:Eu3+, J. Solid State Chem.,2005,178:645-649.
    [11]Y. Ito, A. Komeno, K. Uematsu, et al., Luminescence properties of long-persistence silicate phosphors, J. Alloys Compd.,2006,408-412:907-910.
    [12]W. Pan, G. L. Ning, Y. Lin, et al., Sol-gel processed Ce3+, Tb3+ codoped white emitting phosphors in Sr2Al2Si07, J. Rare Earths,2008,26:207-210.
    [13]Y. L. Ding, Y. X. Zhang, Z. Y. Wang, et al., Photoluminescence of Eu single doped and Eu/Dy codoped Sr2Al2Si07 phosphors with long persistence, J. Lumin.,2009, 129:294-299.
    [14]Q. Zhang, J. Wang, M. Zhang, Q. Su, Tunable bluish green to yellowish green Ca2(1-x)Sr2xAl2SiO7:Eu2+ phosphors for potential LED, Appl. Phys. B,2008,92:195-198.
    [15]Q. Zhang, J. Wang, M. Zhang, et al., Enhanced photoluminescence of Ca2Al2SiO7:Eu3+ by charge compensation method, Appl. Phys. A,2007,88:805-809.
    [16]Z. L. Wang, H. B. Liang, L. Y. Zhou, et al., Luminescence of (Li0.333Nao.334Ko.333)Eu (MoO4)2 and its application in near UV InGaN-based light-emitting diode, Chem. Phys. Lett.,2005,412:313-316.
    [17]X. X. Zhao, X. J. Wang, B. J. Chen, et al., Novel Eu3+-doped red-emitting phosphor Gd2Mo3O9 for white-light-emitting-diodes (WLEDs) application, J. Alloys Compd., 2007,433:352-355.
    [18]C. F. Guo, F. Gao, Y. Xu, et al., Efficient red phosphors Na5Ln(MoO4)4:Eu3+ (Ln= La, Gd and Y) for white LEDs, J. Phys. D:Appl. Phys.,2009,42:095407(1)-095407(7).
    [19]M. Buijs, G. Blasse, Nonresonant energy transfer in a system with two different rare-earth sites:β'-Gd2(MoO4)3:Eu3+ and β'Eu2(MoO4)3, Phys. Rev. B,1986, 34:8815-8821.
    [20]Z. L. Wang, H. B. Liang, M. L. Gong, Q. Su, Novel red phosphor of Bi3+, Sm3+ co-activated NaEu(MoO4)2, Opt. Mater.,2007,29:896-900.
    [21]N. Kodama, N. Sasaki, M. Yamaga, Y. Masui, Long-lasting phosphorescence of Eu2+ in melilite, J. Lumin.,2001,94-95:19-22.
    [22]J. J. Wu, B.Yan, Sol-gel synthesis of green-luminescence microcrystalline phosphors SrxCa2-xAl2SiO7:yTb3+, zCe3+ by hybrid precursors, Colloids and Surfaces A: Physicochem. Eng. Aspects,2007,297:253-257.
    [23]G. Kortum and G. Schreyer, Validity of the Kubelka-Munk function for reflection spectra with powders, Z. Naturforsch.,1957,11 A:1018.
    [24]N. Yamashita, Luminescence Centers of Ca(S:Se) Phosphors Activated with Impurity Ions Having s2 Configuration. I. Ca(S:Se):Sb3+ Phosphors, Japan. J. Phys, Soc.,1973, 35:1089-1097.
    [1]S. Kubota, M. Shimada, Sr3Al10SiO20:Eu2+ as a blue luminescent material for plasma displays, Appl. Phys. Lett.,2002,81(15):2749-2751.
    [2]A. Kremenovic, Ph. Colomban, B. Piriou, et al., Structural and spectroscopic characterization of the quenched hexacelsian, J. Phys. Chem. Solids.,2003, 64(11):2253-2268.
    [3]雷芳,徐崇福,杨敏丽,等,溶胶-凝胶法合成蓝色荧光粉SrAl2Si2O8:Eu2+,发光学报,2006,27(4):479-483.
    [4]W. Pan, G. L. Ning, Y. Lin, et al., Synthesis of micrometer SrAl2Si2O8:Eu, Dy blue phosphor powders via sol-gel process, Journal of functional Materials and Devices,2008, 14(1):197-200.
    [5]F. Clabau, A. Garcia, P. Bonville, et al., Fluorescence and phosphorescence properties of the low temperature forms of the MAl2Si2O8:Eu2+(M= Ca, Sr, Ba) compounds, J. Solid State Chem.,2008,181:1456-1461.
    [6]M. M. Krzmanc, B. Jancar, D. Suvorov, The influence of tetrahedral ordering on the microwave dielectric properties of Sr005Ba0.95Al2Si2O8 and BaM2M'2O8 (M= Al, Ga, M'= Si, Ge) ceramics, J. Eur. Ceram. Soc.,2008,28:3141-3148.
    [7]K. R. Laud, E. F. Gibbons, T. Y. Tien, and H. L. Stadler, Cathodoluminescence of Ce3+-and Eu2+-Activated Alkaline Earth Feldspars, J Electrochem Soc,1971,118:918-923.
    [8]T. J. Isaacs, Fluorescence of Alkaline-Earth Silicates Activated with Divalent Europium, J Electrochem Soc,1971,118:1009-1011.
    [9]S. Ye, Z. S. Liu, X. T. Wang, et al., Emission properties of Eu2+, Mn2+ in MAl2Si2O8 (M = Sr, Ba), J Lumin,2009,129,50-54.
    [10]W. B. Im, Y.-I. Kim, J. H. Kang, and D. Y. Jeon, Luminescent and aging characteristics of blue emitting (Ca1-x,Mgx)Al2Si2O8:Eu2+ phosphor for PDPs application, Solid State Commun.,2005,134:717-720.
    [11]Y. H. Wang, Z. Y. Wang, P. Y. Zhang, et al., Preparation of Eu and Dy co-activated CaAl2Si2O8-based phosphor and its optical properties, Material Letter, Materials Lett., 2004,58:3308-3311.
    [12]Y. H. Wang, Z. Y. Wang, P. Y. Zhang, et al., Synthesis of long afterglow phosphor CaAl2Si2O8:Eu2+,Dy3+ via sol-gel technique and its optical properties, Journal of Rare Earths,2005,23(5):625-628.
    [13]A. E. R. Malins, N. R. J. Poolton, F. M. Quinn, et al., Luminescence excitation characteristics of Ca, Na and K-aluminosilicates (feldspars) in the stimulation range 5-40 eV:determination of the band-gap energies, J. Phys. D Appl. Phys.,2004, 37:1439-1450.
    [14]H. D. Grundy, J. Ito, The refinement of the crystal structure of a synthetic non-stoichiometric Sr feldspar, Am. Mineral,1974,59:1319-1326.
    [15]G. Blasse, W. L. Wanmaker, J. W. Vrugt, A. Bril, Philips Res. Rep.,1968,23: 189-200.
    [16]S. H. M. Poort, W. Janssen, G. Blasse, Optical Properties of Eu2+-activated Orthosilicates and Orthophosphates, J. Alloys Compd.,1997,260:93-97.
    [17]Z. W. Pei, Q. Su, J. Y. Zhang, The valence change from RE3+ to RE2+(RE=Eu, Sm, Yb) in SrB4O7:RE prepared in air and the spectral properties of RE2+, J. Alloys Compd.,1993,198:51-53
    [18]R. Stefani, A. D. Maia, E. E. S. Teotonio, et al., Photoluminescent behavior of SrB4O7:RE2+(RE= Sm and Eu) prepared by Pechini, combustion and ceramic methods, J. Solid State Chem.,2006,179:1086-1092.
    [19]X. Piao, T. Horikawa, H. Hanzawa, K. Machida, Characterization and luminescence properties of Sr2Si5Ng:Eu2+ phosphor for white light-emitting-diode illumination, Appl. Phys. Lett.,2006,88:161908-161913.
    [20]W. B. Im, Y. K. Kim, D. Y. Jeon, Thermal Stability Study of BaAl2Si2Og:Eu2+ Phosphor Using Its Polymorphism for Plasma Display Panel Application, Chem. Mater., 2006,18:1190-1195.
    [21]G. Blasse, Luminescence of inorganic solids:From isolated centres to concentrated systems, Prog. Solid St. Chem.,1988,18:79-171.
    [22]P. Dorenbos, Energy of the first 4f7-4f65d transition of Eu2+ in inorganic compounds, J. Lumin.,2003,104:239-260.
    [23]贾志宏,李竑,叶泽人,石春山,BaLiF3:Eu,Gd中Gd3+→Eu2+的能量传递,高等学校化学学报,2002,23:349-352.
    [24]S. H. M. Poort, J. W. H. van Krevel, R. Stomphorst, et al., Luminescence of Eu2+ in host lattices with three alkaline Earth ions in a row, J. Solid State Chem.,1996, 122:432-435.
    [25]L. G. Deshazer, G. H. Dieke, Spectra and Energy Levels of Eu3+ in LaCl3, J. Chem. Phys.,1963,38:2190-2199.
    [26]I. Tale, P. Kulis, V. Kronghauz, Recombination luminescence mechanisms in Ba3(PO4)2, J Lumin,1979,20:343-347.
    [27]Z. H. Lian, J. Wang, Y. H. Lv, et al., The reduction of Eu3+ to Eu2+ in air and luminescence properties of Eu2+ activated ZnO-B2O3-P2O5 glasses, J. Alloys Compd., 2007,430:257-261.
    [28]M. Y. Peng, Z. W. Pei, G. Y. Hong, Q. Su, Study on the reduction of Eu3+->Eu2+ in Sr4Al14O25:Eu prepared in air atmosphere, Chem. Phys. Lett.,2003,371:1-6.
    [29]M. Y. Peng, Z. W. Pei, G. Y. Hong, Q. Su, The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4:Eu2+ phosphor, J. Mater. Chem.,2003,13:1202-1205.
    [30]X. M. Zhang, J. H. Zhang, L. F. Liang, Q. Su, Luminescence of SrGdGa3O7:RE3+(RE = Eu, Tb) phosphors and energy transfer from Gd3+ to RE3+, Mater.Res.Bull.,2005, 40:281-288.
    [31]J. S. Kim, P. E. Jeon, Y. H. Park, et al., White-light generation through ultraviolet-emitting diode and white-emitting phosphor, Appl. phys. Lett.,2004, 85(17):3696-3698.
    [32]R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr.,1976, A32:751-767.
    [33]J. C. Bourcet, F. K. Fong, Quantum efficiency of diffusion limited energy transfer in Lai-x-yCexTbyPO4, J. Chem. Phys.1974,60:34-39.
    [34]P. I. Paulose, G. Jose, V. Thomas, et al., Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass, J. Phys. Chem. Solids,2003,64(5):841-846.
    [35]B. L. Wang, L. Z. Sun, H. D. Ju, et al., Single-phased white-light emitting CaAl2Si2O8:Eu2+, Mn2+ phosphors prepared by a sol-gel method, J Sol-Gel Sci Technol, 2009,50:368-371.
    [36]C. S. McCamy, Correlated Color Temperature as an Explicit Function of Chromaticity Coordinates, Color Res Appl,1992,17:142-144.
    [37]洪广言,李有谟,铈激活磷光体的发光特性,发光与显示,1984,5(2):82-92.
    [38]G Blasse, New luminescent materials, Chem. Mater.,1989,1:294-301.
    [39]B. M. J. Smets, Phosphors based on rare-earths, a new era in fluores-cent lighting, Mater. Chem. Phys.,1987,16:283-299.
    [40]D. L. Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys.,1953, 21:836-850.
    [41]K. S. Sohn, Y. Y. Choi, H. D. Park, and Y. G. Choi, Analysis of Tb3+Luminescence by Direct Transfer and Migration in YPO4, J. Electrochem. Soc.,2000,147(6):2375-2379.
    [42]D. D. Jia, J. Zhu, B. Q. Wu, S. E, Luminescence and energy transfer in CaAl4O7:Tb3+ Ce3+, J Lumin,2001,93:107-114.
    [43]A. Nag, T. R. N. Kutty, Photoluminescence due to efficient energy transfer from Ce3+ to Tb3+ and Mn2+ in Sr3Al1oSiO20, Mater. Chem. Phys.,2005,91:524-531.
    [44]G. Blasse, B. C. Grabmaier, Luminescent Materials, Springer-Verlag, Berlin,1994.
    [45]A. M. Srivastava, M. T. Sobieraj, A. Valossis, et al., Luminescence and Energy Transfer Phenomena in Ce3+, Tb3+ Doped K3La(PO4)2, J. Electrochem. Soc.,1990, 137:2959-2962.
    [46]Th. Foryster, Zwischenmolekulare Energiewanderung und Fluoreszenz, Ann. Phys., 1948,2:55-75.
    [47]J. L. Sommerdijk, J. A. W. Van Der Does De Bye, P. H. J. M. Verberne, Decay of the Ce3+ luminescence of LaMgAl11O19:Ce3+ and of CeMgAl1O19 activated with Tb3+ or Eu3+, J. Lumin.,1976,14:91-99.
    [48]E. Nakazawa, Phosphor Handbook, in:Shionoya S, Yen W M (Eds.), CRC Press, Boca Raton, Boston, London, New York, Washington, DC,1999,102.
    [1]C. H. Kuo, J. K. Sheu, S. J. Chang, et al., n-UV+blue/green/red white light emitting diode lamps, Jpn. J. Appl. phys., Partl,2003,42(4B):2284-2287.
    [2]J. K. Park, K. J. Choi, C. H. Kim, et al., Luminescence characteristics of Sr3MgSi2O8:Eu blue phosphor for light-emitting diodes, Electrochem. Solid-State Lett.,2004, 7(10):H42-H43.
    [3]J. S. Kim, J. Y. Kang, P. E. Jeon, et al., GaN-based white-light-emitting diodes fabricated with a mixture of Ba3MgSi2O8:Eu2+ and Sr2SiO4:Eu2+ phosphors, Jpn. J. Appl. phys., Part1,2004,43(3):989-992.
    [4]J. S. Kim, P. E. Jeon, Y. H. Park, et al., White-light generation through ultraviolet-emitting diode and white-emitting phosphor, Appl. phys. Lett.,2004,85(17):3696-3698.
    [5]J. S. Kim, P. E. Jeon, J. C. Choi, et al., Warm-white-light emitting diode utilizing a single-phase full-color Ba3Mg2Si2O8:Eu2+,Mn2+ phosphor, Appl. phys. Lett.,2004, 84(15):2931-2933.
    [6]J. S. Kim, P. E. Jeon, Y. H. Park, et al., Color tunability and stability of silicate phosphor for UV-pumped white LEDs, J. Electrochem. Soc.,2005,152(2):H29-H32.
    [7]J. S. Kim, K. T. Lim, Y. S. Jeong, et al., Full-color Ba3MgSi2O8:Eu2+, Mn2+phosphors for white-light-emitting diodes, Solid State Commun.,2005,135(1-2):21-24.
    [8]J. S. Kim, S. W. Mho, Y. H. Park, et al., White-light-emitting Eu2+ and Mn2+-codoped silicate phosphors synthesized through combustion process, Solid State Commun.,2005, 136:504-507.
    [9]J. S. Kim, A. K. Kwon, Y. H. Park, et al., Luminescent and thermal properties of full-color emitting X3MgSi208:Eu2+, Mn2+(X= Ba, Sr, Ca) phosphors for white LED, J Lumin,2007,122-123:583-586.
    [10]刘洪楷,群论在发光光谱学中的应用,物理学进展,1985,5(2):206-209.
    [11]K. H. Butler, Fluorescent Lamp Phosphors, Pennsylvania State University Press, London,1980.
    [12]G. Q. Yao, J. H. Lin, L. Zhang, et al., Luminescent Properties of BaMg2Si2O7:Eu2+, Mn2+, J Mater Chem.,1998,8(3):585-588.
    [13]T. L. Barry, Luminescent Properties of Eu2+ and Eu2++ Mn2+ Activated BaMg2Si207, J. Electrochem. Soc.,1970,117:381-385.
    [14]T. Aitasalo, A. Hietikko, D. Hreniak, et al., Luminescence properties of BaMg2Si2O7: Eu2+,Mn2+, J. Alloys Compd.,2008,451:229-231.
    [15]G. Blasse, A. Bril, Characteristic luminescence I. Absorption and emission spectra of some important activators, Phillips Tech. Rev.1970,31:304-314.
    [16]M. Tamatani, S. Shionoya and W. M. Yen (Eds.), Phosphor Handbook, CRC Press, Boca Raton, FL, USA,1999,153.
    [17]D. L. Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys.,1953, 21:836-850.
    [18]C. S. McCamy, Correlated Color Temperature as an Explicit Function of Chromaticity Coordinates, Color. Res. Appl.,1992,17:142-144.
    [19]J. K. Park, M. A. Lim, C. H. Kim, H. D. Park, White light-emitting diodes of GaN-based Sr2SiO4:Eu and the luminescent properties, Appl. Phys. Lett.,2003, 82:683-685.
    [20]J. K. Park, K. J. Choi, K. N. Kim, and C. H. Kim, Investigation of strontium silicate yellow phosphors for white light emitting diodes from a combinatorial chemistry, Appl. Phys. Lett.,2005,87:031108(1)-031108(3).
    [21]M. Zhang, J. Wang, Q. H. Zhang, et al., Optical properties of Ba2SiO4:Eu2+ phosphor for green light-emitting diode (LED), Mater. Res. Bull.,2007,42:33-39.
    [22]J. S. Kim, Y. H. Park, S. M. Kim, et al., Temperature-dependent emission spectra of M2SiO4:Eu2+(M= Ca, Sr, Ba) phosphors for green and greenish white LEDs, Solid State Commun.,2005,133:445-448.
    [23]J. K. Park, K. J. Choi, S. H. Park, et al., Application of Ba2+, Mg2+ Co-doped Sr2Si04: Eu Yellow Phosphor for White-Light-Emitting Diodes, J. Electrochem. Soc.,2005, 152(8):H121-H123.
    [24]H. S. Kang, Y. C. Kang, K. Y. Jung, S. B. Park, Eu-doped barium strontium silicate phosphor particles prepared from spray solution containing NH4Cl flux by spray pyrolysis, Mater. Sci. Eng. B,2005,121:81-85.
    [25]H. L. Liu, D. W. He, F. Shen, Luminescence Properties of Green-Emitting Phosphor (Ba1-X, Srx)2Si04:Eu2+ for White LEDS, Journal of Rare Earths,2006,24:121-124.
    [26]林林,尹民,施朝淑,等,红色长余辉材料Mg2SiO4:Dy3+,Mn2+的制备及发光特性,发光学报,2006,27(3):33 1-336.
    [27]L. Lin, M. Yin, C. H. Shi, W. P. Zhang, Luminescence properties of a new red long-lasting phosphor:Mg2Si04:Dy3+, Mn2+, J. Alloys Compd.,2008,455:327-330.
    [28]S. H. M. Poort, W. Janssen, G Blasse, Optical properties of Eu2+-activated orthosilicates and orthophosphates, J. Alloys Compd.,1997,260:93-97.
    [29]M. E. Huntelaar, E. H. P. Cordfunke, P. van Vlaanderen and D. J. W. Ijdo, SrZrSi2O7, Acta Crystallogr.,1994, C50:988-991.
    [30]G. Blasse, W. J. Schipper, M. E. Huntelaar and D. J. W. Ijdo, Luminescence of SrZrSi2O7, J. Phys. Chem. Solids,1993,54(9):1001-1003.
    [31]M. Kaneyoshi, Luminescence of some zirconium-containing compounds under vacuum ultraviolet excitation, J. Lumin.,2006,121:102-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700