间歇式煮糖过程的建模与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蔗糖的生产过程主要由甘蔗压榨、蔗汁清净、蒸发、煮炼等工序组成,其中煮糖工序的作用是使糖分从糖浆中结晶析出,目的其一是获得粒度均一的蔗糖晶体,其二是使糖浆中的糖分尽可能地充分析出。因此,煮糖工序成为蔗糖生产过程中的决定性工序,这一工序工作结果的好坏直接决定着蔗糖的产量和质量,从而也决定着糖厂的经济效益。目前,蔗糖生产过程中除煮糖工序外的其它工序,如甘蔗压榨、蔗汁清净等都已经基本实现了自动化。出现这种情况的原因,一是由于蔗糖结晶机理的复杂性,煮糖过程的关键工艺参数无法直接测量;二是实际生产过程中受干扰因素较多,如糖浆的锤度、糖浆杂质、真空度以及温度的变化都会影响蔗糖结晶过程;三是虽然人们对煮糖过程建模作了很多研究,但是大部分工作都因为自己的工作目的而对模型作了简化,真正面向工业实际生产过程的建模研究不多。
     本研究工作以实现煮糖工序的自动化生产为目标,面向实际的工业生产过程建立间歇式煮糖过程模型,使该模型成为应用各种先进控制算法、实现自动化生产的基础。
     在本文中,作者系统地总结了蔗糖结晶理论,针对最新提出的蔗糖晶体生长速度分散(GRD)理论,引入晶体粒度与晶体生长速度的联合密度分布的概念,从而对蔗糖晶体的结晶生长过程作更准确的描述并在此基础上,采用模块化方法建立煮糖过程模型。通过仿真表明,该模型基本可以正确地描述实际煮糖过程,具有良好的适用性和灵活
    
     广西大学硕士学位论文
    性,可以作为各种算法的应用基础。
     在研究过程中,作者发现煮糖的初始条件对模型有着明显的影响,
    由于时间限制和作者能力的原因,没能对此进行更深入的研究。同时,
    模型对有些可能出现的不正常现象没有给出约束条件,这些都是目前
    模型存在的问题。这些问题的解决必然会提高模型的适用性和准确
    l性,也是今后努力的方向。
The process of sugar production consists mainly of canesugar crushing, purification, evaporation, crystallization (sugar boiling). The purpose of sugar boiling is to recover as much sugar from the syrup as possible, in the mean time, the size of the crystal should be as unin as possible. Therefore, the result of sugar boiling draw a decisive influence on the quality and quantity of the production. At present, all the process of sugar production except sugar boing have realize the automation. There are three main reasons. Firstly, there is no way to directly measure OS and CC online so far. Secondly, too many disturbances exists in the sugar production process. Thirdly, no good model is available that is suitable for industry production.
    The aim of this research is to set up a model for batch sugar boiling which is based on practical industry production process.
    The author make a systemic review on the development of sugar crystallization theory, and introduce the concept of joint distribution of crystal size and crystal gworth rate to discribe the boiling process according to the theory of GRD. The results of simulation show that the model has a wide applicability and flexibility.
    During the research, the author find that the initial conditios have a remarkable effect on the result of the model. Due to the time and the author ability limit, no further inverstigation about this is done. Furthermore, no boundary conditions are given to some unnormal
    
    
    
    circumstances which may happen in the sugar boiling process. It is for sure that the overcome of the above question will upgrade the applicability and flexibility of the model, therefore is the direction of following research.
引文
[1] 顾钟文,杨双华,工业系统建模,浙江,浙江大学出版社,1995
    [2] 王寅,化工过程混合建模问题研究,浙江大学博士学位论文,2000
    [3] 王骥程,祝和运,化工过程控制工程,北京,化学工业出版社,1991
    [4] 王之才,关于仿真理论的探讨,系统仿真学报,2001,12(6):604-608
    [5] 陆经纬,延迟焦化过程计算机稳态建模研究,浙江大学硕士学位论文,2000。
    [6] 方崇智,萧德云,系统辨识,北京,清华大学出版社,1988
    [7] 无锡轻工业学院,华南工业学院,甘蔗制糖工艺学,北京,轻工业出版社,1982
    [8] 陈树功,现代制糖工艺理论,北京,轻工业出版社,1988
    [9] 广东省糖纸食品工业公司,糖膏煮炼与助晶,北京,轻工业出版社,1977
    [10] 广东化工学院制糖教研组,甘蔗制糖技术(上、下)
    [11] 丁绪淮,谈道,工业结晶,北京,化学工业出版社,1985
    [12] 许斯欣,陈维钧,林福兰,甘蔗制糖原理与技术第四分册—蔗糖结晶与成糖,北京,中国轻工业出版社,2001
    [13] 黄福五,钟耀南,李扬训,甘蔗制糖机械设备,北京,中国轻工业出版社,1992
    [14] 李利军,孔红星,何云等,蔗汁中蔗糖含量的分光光度法测定,分析测试学报,2003.7
    [15] 黄桂忠,蔗糖连续结晶的应用及其强化,甘蔗糖业,2001.1
    [16] 秦贯丰,陈树功,欧阳小容,用红外光度法测量糖液过饱和度的研究,华南理工大学学报(自然科学版),1994.6
    [17] 张喜梅,丘泰球,声场对蔗糖晶体生长的影响,中国甜菜糖业,1995.4
    [18] 史英,胡立杰,蔗糖晶体生长机理的探讨,中国甜菜糖业,2002.3
    [19] Joseph.B.Kuntz,蔗糖混浊度与色值的测定,中国甜菜糖业,1994.1
    [20] 李琳,陈树功,物理场在蔗糖结晶过程中的影响,华南理工大学学报(自
    
    然科学版),1994.6
    [21] 李冰,李琳,蔡妙颜等,微波场中蔗糖晶体生长动力学的研究,中国甜菜糖业,1998.6
    [22] 高平,朱玉龙,全晶种投种养晶法在煮糖中的应用,中国甜菜糖业,1995.5
    [23] 郭继强,强制循环结晶罐糖膏煮制的研究,大连轻工业学院学报,1994.6
    [24] F.雷格,H.威萨罗维,强制循环结晶罐的选择与计算,中国甜菜糖业,1996.2
    [25] 林丹,罗建军,王胜春等,间歇结晶过程的分析,天津化工,2001.9
    [26] 文绍纯,罗飞,莫鸿强,基于神经网络的甘蔗制糖结晶过程预测,甘蔗糖业,2000.6
    [27] 闵亚光,陈树功,高大维,蔗糖溶液成核起晶点临界尺寸的研究,华南理工大学学报(自然科学版),1995.5
    [28] 高大维,陈树功,李国基等,煮糖起晶制种新方法,华南理工大学轻化工所
    [29] 李尔炫,煮糖起晶技术的发展和进步,甘蔗糖业,1999.6
    [30] 张继峰,王茹菊,蔗糖晶体生长机理探讨,中国甜菜糖业,2001.3
    [31] 郭渭鸿,蔗糖工业结晶过程糖膏电导值的关联分析,福建糖业,1997.3
    [32] 唐忠义,高浩业,王智海,微机在制糖工业上的应用,工农业新技术,1993.1
    [33] 李琳,陈树功,蔗糖晶体在一定的流体力学条件下生长的研究,华南理工大学轻化工研究所
    [34] David Ian Wilson BE, Advanced control of a batch raw sugar crystalliser, Department of Chemical Engineering University of Queesland, 1990
    [35] Terry V Tahal, New models for sugar vacuum pans, The University of Queensland, 2000
    [36] E.T.White, D.L.Mackintosh, B.K.Butl, Modeling growth rate dispersion(GRD) in sugar crystallision, Proc.Aust.Soc.Sugar Cane Technol
    [37] E. T. White, A simple procedure to analyse size distributions from An MSMPR with growth rate dispersion, World Congress on Particle Technology Conference(2002)
    [38] N. Semlali Aouragh Hassani, K. Saidi, T. Bounahmidi, Steady state modeling
    
    and simulation of an industrial sugar continuous crystallizer, Computers and Chemical Engineering 25(2001)1351-1370
    [39] Alan. D. Randolph, Maurice. A. Larson, Theory of particulate processes,
    [40] Richard D.Braatz, Advance control of crystallization of processes, Annual Reviews in Control 26(2002) 87-99
    [41] Hiroshi Takiyama, Masakuni Matsuoka, Design of seed crystal specifications for start-up operation of a continuous MSMPR crystallizer, Powder Technology 121(2001)99-105
    [42] P.Lauret, H.Boyer, J.C. Gatina, Hybrid modelling of a sugar boiling process, Control Engineering Practice 8(2000)299-310
    [43] A. Vega, F. Diez, J. M. Alvarez, Programmed cooling control of a batch crystallizer, Computers and Chemical Engineering(1995)
    [44] F. Puel, G. Fevotte, J. P. Klein, Simulation and analysis of industrial crystallization processes through multidimensional population balance equations, Chemical Engineering Science 58(2003) 3715-3727
    [45] Gu Shan, Koichi Igarashi, Hideo Noda, Hiroshi Olshima, Production of large crystals with a narrow crystal size distribution by a novel WWDJ batch crystallizer, Chemical Engineering Journal 85(2002) 161-167
    [46] Serena H. Chung, David L. Ma, Richard D. Braatz, Optimal model-based experimental design in batch crstallization, Chemometrics and Intelligent Laboratory Systems 50(2000) 83-90
    [47] A.Gerstlauer, S.Motz, S.Mitrovic, Development, analysis and validation of population models for continuous and batch cyrstallizers, ELSEVIER Chemical Engineering Science, 57(2002)
    [48] D.I.Wilson, P.L.Lee, E.T.White and R.B.Newell, Advanced control of a sugar crystallizer, Process Control Group, Department of Chemical Engineering, The University of Queensland(1991)
    [49] Helge Didriksen, Model based predictive control of a rotary dryer, Chemical Engineering Journal 86(2002) 53-60
    
    
    [50] M. Wulkow, A. Gerstlauer, U. niekenModeling and simulation of crystallization processes using parsivalChemical Engineering Science 50(2001) 2575-2588
    [51] M. Loffelmann, A. Mersmann, How to measure supersaturation?, Chemical Engineering Science 57(2002) 4301-4310
    [52] Doraiswami Ramkrishna, Alan W. Mahoney,. Population balance modeling. Promise for the future, Chemical Engineering Science 57(2002) 595-606
    [53] Klaus Borho, The miportance of population dynamics from the perspective of the chemical process industry, Chemical Engineering Science 57(2002) 4257-4266
    [54] Kwang-Joo Kim, Alfons Mersmann, Estimation of metastable zone width in different nucleation processes, Chemical Engineering Science 56(2001) 2315-2324
    [55] Rajeev Mohan, Allan S. Myerson, Growth kinetics: a thermodynamic approach, Chemical Engineering Science 57(2002)4277-4285
    [56] S. N. Lisson, M. J. Robertson, B. A. Keating, R. C. Muchow, Modelling sugarcane production system Ⅱ: Analysis of system performance and methodology issues, Field Crops Research 68(2000)31-48
    [57] Sergio M. Savaresi, Robert R. Bitmead, Robert Peirce, On modelling and control of a rotary sugar dryer, Control Engineering Practice 9(2001) 249-266
    [58] Michael Metzger, Optimal control of crystal growth processes, Journal of Crystal Growth 230(2001) 210-216
    [59] E. Ben-Yoseph, R. W. Hartel, Computer modeling of sugar crystallization during drying of thin sugar films, Journal of Crystal Growth 198/199(1999)1294-1298
    [60] N. semlali Aouragh Hassani, K. Saidi, T. Bounahmidi, Steady state modeling and simulation of an industrial sugar continuous crystallizer, Computers and Chemical Engineering 25(2001)1351-1370
    [61] K. Sangwal, Growth kinetics and surface morphology of crystals grown from solutions: recent observations and their interpretations, Crystal Growth and Charact 36(1998) 163-248
    
    
    [62] M. M. Mitrovic, A.A. Zekic, Z.Z. Iiic, Connection between the growth rate distribution and the size dependent crystal growth, Chemical Physics Letters 361(2002)312-316
    [63] K. Sangwal, Kinetic effects of impurities on the growth of single crystals from solutions, Journal of Crystal Growth 203(1999)197-212
    [64] Ingo H. Leubner, Particle nucleation and growth models, Current Opinion in Colloid & Interface Science 5(2000)151-159
    [66] G. M. Westhoff, B. K. Butler, H. J. M. Kramer, Growth behaviour of crystals formed by primary nucleation on different crystalliser scales, Journal of Crystal Growth 237-239(2002)2136-2141
    [67] A. Vega, F. Diez and J. M. Alvarez, Programmed cooling control of a batch crystallizer, Computers and Chemical Engineering 19(1995)471-476

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700