黑腐病侵染对大白菜幼苗叶片抗氧化酶系统和叶肉细胞结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
十字花科蔬菜的黑腐病(crucifers black rot)是由野油菜黄单胞杆菌野油菜致病变种〔Xanthomonas campestris pv. campestris (Pam.) Dowson〕引起的世界性的重要病害之一。本试验从生理学和细胞学基础的层次上,以不同抗性的大白菜品种为材料,系统研究了以下几点:
     1.抗氧化酶与抗病性的相关性:利用DPS数据处理系统所做的线性回归分析,对接种黑腐病处理后,每次取样的保护酶活性与病情指数之间的相关性分析结果表明,接菌后的12h和156h,SOD酶活与病情指数之间存在显著相关关系;接菌后36h,POD酶活与病情指数存在极显著相关关系;接种前后,CAT酶活于病情指数之间无显著相关。表明SOD和POD酶活可以作为大白菜与黑腐病互作中抗病性鉴定指标,而CAT酶活与大白菜黑腐病互作中抗病性不是很明显。
     2.抗氧化酶系统的反应:通过测定不同抗性的大白菜幼苗侵染强致病性黑腐病菌YL-17后叶片内O_2~-·和MDA含量以及SOD、POD、CAT活性,结果表明:
     a.当黑腐病菌侵染材料后,O_2~-·经过一个较低的水平后于36h后迅速上升,且抗感材料变化趋势相同,由此表明,无论抗性还是感性材料它们对病害的响应是相同的,只是在程度方面存在差异。在病原菌入侵过程中,由于植株本身的抗性反应,要消耗一定的O_2~-·而诱导其增加,即到开始出现症状时O_2~-·的产生速率直线增加,以诱导植保素的积累。总之,抗病品种秦白2号的O_2~-·总是高于感病品种06J31,进一步印证了O_2~-·在一定的范围内对于提高植物的抗性是有利的。
     b.当黑腐病菌侵染材料后,细胞膜脂过氧化作用增强,膜透性增加,加剧植物的氧化损伤,侵染黑腐病菌后感病品种MDA含量要明显高于抗病品种,表明MDA含量与抗性呈负相关。
     c. POD活性同时受组织衰老和病原物侵染的影响,而抗病品种受病原物侵染的影响较小,感病品种受病原物侵染的影响较大且呈明显升高的趋势,说明POD活性与抗病性成负相关。SOD活性在抗病品种上呈先升高后快速下降的趋势,而感病品种则呈下降—升高—下降特点,说明抗病品种对病原菌感染反应早,保持一定时间高水平的SOD活性可起到延迟发病的效果;而感病品种一开始防御系统薄弱,SOD活性下降,随后SOD活性应激升高短暂时间后,防御系统破坏,SOD活性下降。说明SOD活性与抗病性成正相关。CAT活性变化与寄主的发病表现存在着较大的差异,故CAT与抗病性的相关程度无法确定,有待进一步研究。
     3.细胞学结构变化:黑腐病原菌YL-17菌种侵染大白菜幼苗叶片后,大白菜幼苗叶肉细胞变大,细胞数目变少,细胞排列逐渐疏松,尤其是栅栏组织,叶绿体由原来的贴壁分布变为混乱分布,且数量逐渐变少;叶绿体基粒片层从膨胀到紊乱,叶绿体膜从模糊到破裂,直到类囊体和基质外渗,出现空泡化,线粒体膜破裂,最后细胞器解体;抗病品种秦白2号与感病品种06J31相比具有整齐、紧密的多层栅栏组织,受到破坏程度也就更轻。
Crucifers black rot was one of the most important diseases caused by Xanthomonas campestris pv. campestris (Pam.) Dowson in the world. This experiment, choosing Chinese cabbage with different disease resistance as matertials, systematically made a reaearch on the physiological and eytological changes. And the results were as follows:
     1. The correlation between antioxidant enzymes and disease resistance
     Using DPS data processing system to make linear regression analysis, after inoculated the objects with crucifers black rot, a research was made to find out the correlation between protective enzyme activity and disease index in each time. The results showed that, there existed a significant correlation between SOD activity and disease index after inoculated 12 hours and 156 hours; there existed a significant correlation between POD activity and disease index after inoculated 36 hours; there existed no significant correlation between CAT activity and disease index before and after inoculation. It demonstrated that SOD and POD activity could be the indexes of resistance identification in the interaction between Chinese cabbage and crucifers black rot, while CAT activity were not significantly correlated with the disease resistance.
     2. The reaction of antioxidant enzyme system
     Leaf O_2~-·content, MDA content, SOD activity, POD activity, and CAT activity were tested when the Chinese cabbage with different resistant were inoculated with strong pathogenicity YL-17. The results were as follow:
     a. After inoculated with crucifers black rot, the O_2~-·content of resistant or susceptible cabbage had similar trend, rose in 36 hours, and before that, kept in a lower level. It demonstrated that both kinds of materials had the same response to the disease, but existed difference at reaction intensity. In the process of inoculation, the O_2~-·was consumed firstly, and then increased because of the resistant reaction by itself. That was, at the time of occuring symptoms, producing ratio of O_2~-·showed linear increase to induce phytoalexin accumulation. In short, O_2~-·content of resistant species Qinbai No.2 was higher than that of susceptible ones, which demonstrated that it was beneficial to accumulate O_2~-·to some extence to raise resistance.
     b. After inoculated with crucifers black rot, membrane lipid peroxidation aggravated with increasing membrane permeability and oxidative damage. The MDA content of susceptible species was more than that of resistant species, which demonstrated that the MDA content showed negative correlation with resistance.
     c. POD activity was affected by issue senescence and pathogen infection, however, resistant species had litlle effection, and susceptible ones were opposite with a rising trend, which demonstrated that POD activity negatively correlated to resistance. The changing trend of SOD activity in resistant species was up first, and then down sharply, while down-up-down trand occurred in susceptible species, which demonstrated that resistant species gave a quick reaction to pathogen infection, and kept high level of SOD activity to delay disease course, while for fragile defense system in susceptible species, SOD activity decreased at first, and then rose for a while, decreased sharply with destroyed defense system. In short, SOD activity showed positive correlation with resistance. The correlation of CAT activity and resistance could not be determined because great difference existed between CAT activity changes and disease severity, so it needed further research.
     3. Changes of cytological structure
     After inoculated Chinese cabbage seedlings with pathogen YL-17, its leaf showed larger mesophyll cells, less cell number, looser cell arrangement especially for palisade tissur. Chloroplasts distribution showed disorder spread from adherent cell, and the number decreased. Grana lamella of chloroplasts changed from expension to disorder, chloroplast membrane changed from fuzziness to rupture, and then thylakoid and matrix exosmosed, vacuolization appeared. Mitochondrial membrane broke, organelles disintegrated finally. The resistant species Qinbai No.2 was less damaged because of regular, tight and multi-layer palisade tissue compared with susceptible species 06J31.
引文
[1] Williams P H. Black rot: a continuing threat to world crucifers.[J]. Plant Disease, 1980, 64(8): 736~742.
    [2]李明远.十字花科蔬菜黑腐病的发生与防治[J].当代蔬菜, 2004, (11): 36.
    [3]巩振辉.白菜与白芥属间杂种培养及其对黑腐病和黑斑病抗性鉴定的研究.杨凌:西北农林科技大学, 1993.
    [4]王述彬,王元珪.花菜、甘蓝黑腐病菌的致病性、寄主范围及传播途径[J].江苏农业学报, 1992, (04):
    [5]肖崇刚.一种甘蓝黑腐病接种新方法[J].植物保护, 1994, (05): 35~36.
    [6]吴国顺.日本对几种蔬菜病害抗病性鉴定方法的研究[J].中国蔬菜, 1994, (01): 59~60.
    [7]李永镐,徐丽波.甘蓝黑腐病苗期抗病性鉴定方法的研究[J].东北农业大学学报, 1990, (02): 125~129.
    [8]何礼远,孙福在,华静月,等.油菜黑腐病病原细菌的鉴定[J].植物保护学报, 1983, (03): 7.
    [9]张吉昌,邓志勇,司华.油菜黑腐病危害损失测定研究初报[J].陕西农业科学, 1997, (02): 19~20.
    [10]张玉勋,曲士松,黄宝勇,等.萝卜种质资源抗黑腐病鉴定[J].山东农业科学, 2000, (06): 33~34.
    [11]曲士松,张炎光,张玉勋,等.萝卜优异种质资源的鉴定与评价[J].黑龙江农业科学, 2002, (02): 16~18.
    [12]程伯瑛,武永慧,王翠仙,等.惠丰甘蓝对黑腐病的抗性鉴定研究[J].北方园艺, 2002, (06): 48~49.
    [13]吴晓丽,李建民,段留生,等.花椰菜幼苗叶片抗氧化酶系统与抗黑腐病关系的研究[J].植物病理学报, 2005, (06): 509~513.
    [14]马永军,国学利,张亮, et al.绿菜花不同播种期抗黑腐病试验初报[J].中国植保导刊, 2006, (02): 21.
    [15]方博云,郑培土.花椰菜黑腐病的发病规律及防治[J].长江蔬菜, 2001, (12): 27.
    [16]王世伟.十字花科蔬菜黑腐病的防治[J].农村实用技术, 2003, (02): 31.
    [17]汪恩国,陈克松,李达林.青花菜黑腐病空间分布格局测定及其应用[J].中国植保导刊, 2004, (02): 30~31.
    [18]马红梅,朱飞,刘相东.绿菜花黑腐病的发生与防治[J].植物医生, 2003, (04): 17~18.
    [19]罗宽.十字花科黑腐病的研究[J].中国蔬菜, 1983, (03): 51~54.
    [20]唐玉梅,王家年,李安.旅26号大白菜栽培技术[J].农业科技通讯, 2007, (08): 62.
    [21]盛镜方,陈卫良,罗永良.十字花科蔬菜的黑腐病初探(简报)[J].浙江大学学报(农业与生命科学版), 1989, (03): 6.
    [22]曾宪铭,黄清珠.广东白肋烟新病害──黑腐病病原细菌的鉴定[J].华南农业大学学报, 1994, (01): 8.
    [23] Cho J J, Rohrbach K G, Apt W J. Induction and chemical control of rot caused by ceratocystis-paradoxa on pineapples[J]. Phytopathology, 1977, 67(5): 700~703.
    [24] Massomo S M, Mortensen C N, Mabagala R B, et al. Biological control of black rot (Xanthomonas campestris pv. campestris) of cabbage in Tanzania with Bacillus strains[J]. Journal of Phytopathology, 2004, 152(2): 98~105.
    [25] Mguni C M. Bacterial black rot (Xanthomonas campestris pv. campestris) of vegetable brassicas in Zimbabwe. Copenhagen: The Royal Veterinary & Agricultural University, .
    [26]樊护民.阳谷县大白菜黑腐病发生与防治情况[J].植物保护, 1989, (04): 45.
    [27]张恩慧,程永安,许忠民,等.甘蓝3种病害抗源筛选及抗病品种选育研究[J].西北农林科技大学学报(自然科学版), 2001, (06): 28~33.
    [28]汤钿,马俊义,杨华,等.新疆大白菜黑腐病研究初报[J].新疆农业科学, 1988, (04): 7.
    [29]北方大白菜病害综防技术研究与应用协作组.我国北方大白菜病害现状及发展的浅见[J].中国蔬菜, 1993, (04): 38~40.
    [30]李省印.西安地区大白菜主要病害发生原因调查[J].北方园艺, 1989, (09): 10.
    [31]张凤兰,吉川宏昭,富川裕. Brassica campestis对黑腐病抗性的遗传[J].农业新技术, 1992, (03): 1.
    [32]刘景林.北京地区大白菜黑腐病的发现与研究[J].天津农林科技, 1983, (04): 9.
    [33]邹翔.保护地十字花科蔬菜黑腐病的发生与综合防治[J].植保技术与推广, 2000, (06): 20~21.
    [34]徐荣钦,王利兵,周国珍. 2004年湖北省农作物病虫害发生趋势分析[J].湖北植保, 2004, (02): 10~12.
    [35]王述彬,王元珪.花菜、甘蓝黑腐病菌的致病性、寄主范围及传播途径[J].江苏农业学报, 1992, (04): 31.
    [36]王迪轩.十字花科蔬菜黑腐病无公害防治[J].当代蔬菜, 2004, (04): 35.
    [37]李华平,郭小宓,王就光,等.花椰菜黑腐病综合防治技术[J].长江蔬菜, 1991, (04): 15.
    [38]龙勇.大白菜黑腐病的无公害防治[J].植物医生, 2004, (02): 17~18.
    [39]胡全孝.大白菜三大病害的发生与防治[J].湖北农业科学, 1984, (10): 13.
    [40]刘志恒.十字花科蔬菜软腐病和黑腐病[J].新农业, 2002, (08): 38~39.
    [41]秦韶梅,冷德训,孙秀丽,等.十字花科蔬菜黑腐病软腐病的综合防治[J].西北园艺(蔬菜), 2006, (05): 34.
    [42]王宇,祖茂增,苏芳,等.十字花科蔬菜黑腐病的综合防治[J].蔬菜, 1989, (06): 1.
    [43]徐允元,华雄超.大白菜亩超5000kg高产措施[J].上海农业科技, 1992, (03): 25.
    [44]韦刚.十字花科蔬菜黑腐病的发生情况调查和防治[J].广西植保, 1994, (03): 1~2.
    [45]张石新.秋大白菜病害发生和主治兼防用药技术[J].农药市场信息, 2006, (17): 44.
    [46]陈巧明,陈仁,潘祖游.花椰莱黑腐病的发生与防治[J].福建农业科技, 1989, (06): 40~41.
    [47]简元才.甘蓝类蔬菜的黑腐病及其防治[J].北京农业科学, 1994, (06): 19~21.
    [48]阎纯博.大白菜病虫害的综合防治[J].新疆农垦科技, 1988, (04): 19.
    [49]杨崇实.大白菜主要病害综合防治研究[J].天津农林科技, 1993, (03): 17.
    [50] Bera S C. Control of black rot disease of cauliflower by some chemicals[J]. Pesticides (Bombay), 1986, 20(9): 51~52.
    [51] Honma S. Breeding for resistance to Xanthomonas campestris in cauliflower and broccoli.[J]. Cruciferae Newsletter, 1983, (8): 24.
    [52] Hunter J E, Dickson M H, Ludwig J W. Sourse of resistance to black rot of cabbage expressed in seedlings and adult plants[J]. Plant Disease, 1987, 71(3): 263~266.
    [53] Dickson M D, Hunter J E. Inheritance of resistance in cabbage seedings to black rot[J]. Hort. Science, 1987, 22(1): 108~109.
    [54]中国科学院微生物研究所细菌分类组.一般细菌常用鉴定方法[M].北京:科学出版社, 1978.
    [55] Hacker J, Kaper J B. Pathogenicity islands and the evolution of microbes[J]. Annual Review of Microbiology, 2000, 54: 641~679.
    [56] Qian W, Jia Y T, Ren S X, et al. Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris[J]. Genome Research, 2005, 15(6): 757~767.
    [57]李经略,赵晓明,李惠兰.甘蓝苗期黑腐病菌致病性分化研究[J].陕西农业科学, 1990, (03): 26~28.
    [58]张玉勋,徐月军,张炎光,等.萝卜黑腐病菌致病性测定及苗期抗性鉴定方法的初步研究[J].山东农业科学, 1999, (02): 34~36.
    [59]欧杰,李柏林,金淼,等.甘蓝黑腐病黄单胞菌胞膜离子通道透性对黄原胶生物合成的影响[J].食品科学, 2003, (01): 43~48.
    [60]唐纪良.甘蓝黑腐病黄单胞菌胞外蛋白酶的致病作用[J].广西农业生物科学, 1992, (01): 81~84.
    [61] Schaad N W. Use of direct and indirect immunofluorescence tests fou identification of Xanthomonas-campestris[J]. Phytopathology, 1978, 68(2): 249~252.
    [62] Richardson C D, Banville M, Lalumiere M, et al. Bacterial luciferase produced with papid-screening baculovirus vectors is a sensitive reporter for infection of insect cell and leaves[J]. Intervirology, 1992, 34(4): 213~227.
    [63]张凤兰.白菜对黑腐病抗性的室内鉴定方法及抗源筛选[J].北京农业科学, 1994, (04): 28~29.
    [64] Franken A A. Comparison of immunofluorescence microscopy and dilution-plating for the detection of Xanthomonas campestris pv. campestris in crucifer seeds[J]. Netherlands Journal of Plant Pathology, 1992, 98(3): 169~178.
    [65] Guo H, Dickson M H, Hunter J E. Brassica-napus sources of resistance to black rot in crucifers and inheritance of resistance[J]. Hort. Science, 1991, 26(12): 1545~1547.
    [66]王元珪,王述彬.花菜、甘蓝黑腐病的发生与防治研究[J].江苏农业科学, 1989, (11): 30~31.
    [67]李明远,武东繁.温度对白菜黑腐病侵染与发病影响的研究[J].华北农学报, 1995, (04): 92~94.
    [68]查冬兴,唐纪良,马庆生.不同接种方法对甘蓝黑腐病菌胞外多糖突变体症状产生的影响[J].植物病理学报, 1997, (04): 338.
    [69]王海华,曹赐生,高健.植物抗病性的遗传基础及其分子机制[J].湘潭师范学院学报(社会科学版), 2000, (06): 88~92.
    [70]李经略,李惠兰,干正荣,等.甘蓝对TuMV和黑腐病苗期兼抗性平行鉴定研究[J].陕西农业科学, 1994, (01): 19~21.
    [71] Shelton A M, Hunter J E. Evaluation of the potential of the flea beetle phyllotreta-cruciferae to transmit Xanthomonas campestris pv. campestris, causal agent of black rot of crucifers[J]. Canadian Journal of Plant Pathology-Revue Canadienne de Phytopathologie, 1985, 7(3): 308~310.
    [72] Aysan Y, Sahin S, Ulke G, et al. Bacterial rot of lettuce caused by Pseudomonas cichorii in Turkey[J]. Plant Pathology, 2003, 52(6): 782~782.
    [73]王清文,张吉昌,邓志勇,等.油菜黑腐病田间分布型及抽样技术[J].陕西农业科学, 1998, (04): 22~23.
    [74]芦燕,张鲁刚,惠麦侠,等.陕西省大白菜主产区黑腐病菌致病型的研究[J].西北农林科技大学学报(自然科学版), 2008, (10): 132~138.
    [75]沈萍,范秀容,李广武.微生物学实验[M].北京:高等教育出版社, 1999.
    [76]查冬兴,唐纪良,马庆生.不同接种方法对甘蓝黑腐病菌胞外多糖突变体症状产生的影响[J].植物病理学报, 1997, (04): 338.
    [77]马唯雷.十字花科蔬菜种子中黑腐病原的检测及鉴定[J].农业新技术, 1992, (03): 44.
    [78]龚静,朱玉英,吴晓光.甘蓝黑腐病抗性材料筛选及接种方法的研究[J].上海农业科技, 2001, (04): 87.
    [79] Tsuji J, Somerville S C, Hammerschmidt R. Identification of a gene in arabidopsis-thaliana that controls resistance to Xanthomonas campestris pv. campestris[J]. Physiological and Molecular Plant Pathology, 1991, 38(1): 57~65.
    [80]巩振辉,王鸣,何玉科.白芥抗黑腐病基因导入白菜的研究[J].西北农业学报, 1996, (03): 59~64.
    [81] Bain D C. Resistance of Brassica seedling to black rot[J]. Phytopathology, 1952, 42: 497~500.
    [82]梁力哲.白菜黑腐病种子带菌检验方法的研究[J].华北农学报, 1991, (04): 13.
    [83]简元才,钉贯靖久.甘蓝黑腐病抗病性材料的鉴定及筛选[J].北京农业科学, 1994, (03): 29~30.
    [84]王超,吴世昌,秦智伟,等.甘蓝苗期多抗性鉴定技术研究[J].东北农业大学学报, 2000, (02): 152~159.
    [85]大白菜黑腐病病原菌鉴定和抗病性.杨凌:西北农林科技大学, 2008.
    [86]张纯胄,陈永兵,胡丽秋,等. 24种大白菜新品种的田间抗病性表现[J].当代蔬菜, 2005, (05): 31.
    [87]芦燕,张鲁刚.陕西省大白菜黑腐病苗期人工接种抗性鉴定方法研究[J].西北农业学报, 2008, (04): 219~222.
    [88]朱启学.高山甘蓝黑腐病的发生与防治[J].长江蔬菜, 2000, (04): 15~16.
    [89]李树德.中国主要蔬菜抗病育种[M].北京:科学出版社, 1995.
    [90]张建国,王森,王杰明,等.葡萄属植物的抗病性[J].中外葡萄与葡萄酒, 2003, (01): 35~37.
    [91]刘延琳,张振文,贺普超.葡萄对霜霉病的抗病性机制[J].中外葡萄与葡萄酒, 1997, (02): 33~36.
    [92]蔡以滢,陈珈.植物防御反应中活性氧的产生和作用[J].植物学通报, 1999, (02): 107~112.
    [93] Higgins V J, Lu H G, Xing T, et al. The gene-for-gene concept and beyond: Interactions and signals[J]. Canadian Journal of plant Pathology-Revue Canadienne de Phytopathologie, 1998, 20(2): 150~157.
    [94] Doke N. Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components.[J]. Physiological Plant Pathology, 1983, 23(3): 345~357.
    [95] Alvarez M E, Pennell R I, Meijer P J, et al. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity[J]. Cell, 1998, 92(6): 773~784.
    [96] Prasad T K. Mechanisms of chilling-induced oxidative stress injury and tolerance in developingmaize seedlings: Changes in antioxidant system, oxidation of proteins and lipids, and protease activities[J]. Plant Journal, 1996, 10(6): 1017~1026.
    [97] Rao M V, Paliyath C, Ormrod D P. Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana[J]. Plant Physiology, 1996, 110(1): 125~136.
    [98] Baker C J, Orlandi E W. Active oxygen in plant pathogensis[J]. Annual Review of Phytopathology, 1995, 33: 299~321.
    [99] Peng M, Kuc J. Peroxidase-generated hydrogen-peroxide as a source of antifungal activity invitro and on tobacco leaf-disks[J]. Phytopathology, 1992, 82(6): 696~699.
    [100]董金皋,闫淑娟.玉米大斑病菌HT-毒素对玉米细胞CAT酶活性的影响[J].植物病理学报, 1999, (04): 372~373.
    [101]余潮,朱友林,葛刚.植物抗病过程中的活性氧代谢(二)——植物抗病过程中活性氧的作用与引起活性氧产生的信号传导[J].江西植保, 2000, (03): 94~97.
    [102]郭泽建,李德葆.活性氧与植物抗病性[J].植物学报, 2000, (09): 881~891.
    [103] Devlin W S, Gustine D L. Involvement of the oxidative burst in phytoalexin accumulation and the hypersensitive reaction[J]. Plant Physiology, 1992, 100(3): 1189~1195.
    [104]邱金龙,金巧玲,王钧.活性氧与植物抗病反应[J].植物生理学通讯, 1998, (01): 56~61.
    [105] Bradley D J, Kjellbom P, Lamb C J. Elicitor-induced and wound-induced oxidative cross-linking of a proling-rich plant-cell wall protein-a novel, rapid defense response[J]. Cell, 1992, 70(1): 21~30.
    [106]王利国,李玲.活性氧中间体和NO在植物抗病中的作用[J].植物学通报, 2003, (03): 354~362.
    [107]张骁,董发才,宋纯鹏,等.植物细胞的氧化猝发和H2O2的信号转导[J].植物生理学通讯, 2000, (04): 376~381.
    [108]杜秀敏,殷文璇,赵彦修,等.植物中活性氧的产生及清除机制[J].生物工程学报, 2001, (02): 121~125.
    [109]吴顺,萧浪涛.植物体内活性氧代谢及其信号传导[J].湖南农业大学学报(自然科学版), 2003, (05): 450~456.
    [110] Mehdy M C. Active oxygen species in plant defense against pathogens[J]. Plant Physiology, 1994, 105(2): 467~472.
    [111] Apostol I, Heinstein P F, Low P S. Rapid stimulation of an oxidative burst during elicitation of cultured plant-cells-role in defense and signal transduction[J]. Plant Physiology, 1989, 90(1): 109~116.
    [112] Chamnongpol S, Willekens H, Moeder W, et al. Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95: 5818~5823.
    [113] Jiang M Y, Zhang J H. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves[J]. Journal of Experimental Botany, 2002, 53(379): 2401~2410.
    [114] Mustilli A C, Merlot S, Vavasseur A, et al. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production[J]. Plant Cell, 2002, 14(12): 3089~3099.
    [115] Dangl J L, Dietrich R A, Richberg M H. Death don't have no mercy: Cell death programs in plant-microbe interactions[J]. Plant Cell, 1996, 8(10): 1793~1807.
    [116]戈家英,阮芸玮.植物的抗病机理探讨[J].湖北植保, 2000, (05): 32~34.
    [117] Fridovich I. Biology of oxygen radicals[J]. Scince, 1978, 201(4359): 875~880.
    [118]阚光锋.烟草品种对野火病的抗性鉴定与生化抗病机制研究.泰安:山东农业大学, 2002.
    [119] Hwang B K, Sunwoo J Y, Kim Y J, et al. Accumulation of beta-1,3-glucanase and chitinase isoforms, and salicylic acid in the DL-beta-amino-n-butyric acid-induced resistance response of pepper stems to Phytophthora capsici[J]. Physiological and Molecular Plant Pathology, 1997, 51(5): 305~322.
    [120] Green N E, Hadwiger L A, Graham S O. Phenylalanine ammonia-lyase, tyrosine ammonia-lyase, and lignin in wheat inoculated with erysiphe-graminis f-sp. tritici[J]. Phytopathology, 1975, 65(10): 1071~1074.
    [121] Yubedee A G. Role of polyphenol oxidase, peroxidase and total phenol content in differential resistance of Dioscorea species to Fusarium moniliforme[J]. Indian Journal of Agricultural Sciences, 1998, 68(10): 644~646.
    [122] Asada K. The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 601~639.
    [123] Overeen J C, Threlfall D R. Biochemical aspect of plant parasite relationships[M]. New York: Academic Press, 1976.
    [124]杨家书,吴畏,吴友三,等.植物苯丙酸类代谢与小麦对白粉病抗性的关系[J].植物病理学报, 1986, (03): 169~173.
    [125] Fischer I. The role of exocarp thickness in the production, consumption and selection of eating capsicum.[J]. Zoldsegtermesztesi Kutato Intezet Bulletinje, 1993, 25: 37~42.
    [126] Koller W, Parker D M, Becker C M. Role of cutinase in the penetration of apple leaves by venturia-inaequalis[J]. Phytopathology, 1991, 81(11): 1375~1379.
    [127] Koller W, Allan C R, Kolattukudy P E. Role of cutinase and cell-wall degrading enzymes in infection of pisum-sativum by fusarium-solani f-sp. pisi[J]. Physiological Plant Pathology, 1982, 20(1): 47.
    [128] Espelie K E, Sadek N Z, Kolattukudy P E. Composition of Suberin-associated waxes from the subterranean storage organs of 7 plants-parsnip, carrot, rutabaga, turnip, red beet, sweet-potato and potato[J]. Planta, 1980, 148(5): 468~476.
    [129]李海英,刘亚光,杨庆凯.大豆叶片结构与灰斑病抗性的研究Ⅱ.大豆叶片组织结构与灰斑病抗性的关系[J].中国油料作物学报, 2002, (02): 58~60.
    [130] Siwecki R, Werner A, Resistance mechanisms in interactions between poplars and rust. In Resistance to diseases and pests in forest trees, ; Center Agricultural Pub & Document: 1982; p 130~142.
    [131]赵振玲,钱建宁.蚕豆叶片气孔及其抗锈病性研究[J].云南农业大学学报, 2000, (01): 88~90.
    [132]韩正敏,尹佟明.杨树过氧化物酶活性、气孔密度和大小与黑斑病抗性的关系[J].南京林业大学学报, 1998, (04): 91~93.
    [133] Steinkamp M P, Martin S S, Hoefert L L, et al. Ultrastructure of lesions produced bychrcospora-beticola in leaves of beta-valgaris[J]. Physiological Plant Pathology, 1979, 15(1): 13.
    [134] Jensen R D, Driscoll M P. Pathological anatoing of dactylis glomerata infected by stagonospora renaria[J]. Phytopathology, 1982, 72: 146~151.
    [135]陈志谊,王玉环,殷尚智.水稻纹枯病抗性机制的研究[J].中国农业科学, 1992, (04): 41~46.
    [136]梁炫强,周桂元,潘瑞炽.花生种皮蜡质和角质层与黄曲霉侵染和产毒的关系[J].热带亚热带植物学报, 2003, (01): 11~14.
    [137]吴晓丽.花椰菜幼苗抗黑腐病的生理学机制及其抗性的化学诱导研究.北京:中国农业大学, 2006.
    [138]冯东昕,朱国仁,李宝栋.菜豆锈病菌侵染对寄主超微结构的作用及菜豆抗锈病的细胞学表现[J].植物病理学报, 2001, (03):
    [139]董金皋,黄梧芳.植物的形态结构与抗病性[J].植物病理学报, 1995, (01): 1~3.
    [140]芦燕.大白菜黑腐病病原菌鉴定和抗病性鉴定方法研究.杨凌:西北农林科技大学, 2008.
    [141]程丽娟,薛泉宏.微生物学实验技术[M].西安:兴国图书出版社, 2000.
    [142] Onsando J M. Plant Diseases of International Importance[M]. Prentice Hall Inc, 1992.
    [143] Mguni C M. Bacterial black rot ( Xanthomonas campestris pv. campestris) of vegetable brassicas in Zimbabwe.The Royal Veterinary & Agricultural University, 1996.
    [144] Massomo S M S, B M R, IS S. Evaluation of varietal resestance in cabbage against the black rot pathogen, Xanthomonas campestris pv. campestris in Tanzania[J]. Crop Protection, 2004, 23: 315~325.
    [145]郭新梅,陈耀锋,李春莲,等.禾谷镰刀菌粗毒素对不同小麦品种幼苗MDA含量和SOD、PAL活性的影响[J].西北植物学报, 2007, (01): 68~73.
    [146]周博如,刘太国,杨微,等.不同抗性的大豆品种感染细菌性疫病后POD、PPOD的研究[J].植物病理学报, 2002, (02): 188.
    [147]徐建华,利容千,王建波.黄瓜不同抗病品种感染镰刀菌枯萎病菌后几种酶活性的变化[J].植物病理学报, 1995, (03): 239~242.
    [148]房保海,张广民,迟长凤,等.烟草低头黑病菌毒素对烟草丙二醛含量和某些防御酶的动态影响[J].植物病理学报, 2004, (01): 27~31.
    [149]宋瑞芳,丁永乐,宫长荣,等.烟草抗病性与防御酶活性间的关系研究进展[J].中国农学通报, 2007, (05): 309~314.
    [150]国家"九五"攻关白菜专题组.国家"九五"科技攻关计划项目专题验收报告[R].北京:北京市农林科学院, 2000.
    [151]曹赐生,肖用森.白叶枯病菌对杂交稻幼苗几种酶活性的影响[J].植物病理学报, 2002, (02): 187.
    [152]孙群,胡景江.植物生理学研究技术[M].杨陵:西北农林科技大学出版社, 2006.
    [153]计汪栋,施国新,徐勤松,等. Ni2+对槐叶苹叶片生理特征及亚显微结构的影响[J].环境科学, 2008, (08): 2308~2313.
    [154] GP B, VS B, DR D. The origin of the oxidative burst in plants[J]. Free Radical Research, 1995, 23(6): 517~532.
    [155] M P, J K. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks[J]. Phytopathology, 1992, 82(6): 696~699.
    [156] LD K, CJ B. O2—·-initiated lipid peroxidation in a bacteria-induced hypersensitive reaction in tobaccocell suspensions[J]. Phytopathology, 1989, 79(5): 555~562.
    [157] PA G, S T. Temporal and spatial assessment of defense responses in resistant and susceptible cabbage varieties during infection with Xanthomonas campestris pv. Campestris[J]. Physiological and Molecular Plant Pathology, 2000, 57(5): 201~210.
    [158] A C, S M, MH G. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.)[J]. Plant Science, 1997, 127(2): 139~147.
    [159]王雅平,吴兆苏,刘伊强.小麦抗赤霉病性的生化研究及其机制的探讨[J].作物学报, 1994, (03): 327~333.
    [160]曾富华,吴岳轩,罗泽民,等.水稻对白叶枯病的诱导抗性与远离诱导部位活性氧代谢的关系[J].植物病理学报, 1999, (03): 127~131.
    [161]曹清河,陈劲枫,李英,等.黄瓜-酸黄瓜渐渗系霜霉病抗性及感病前后几种酶活性的变化[J].植物病理学报, 2007, (04): 433~437.
    [162]云兴福.黄瓜组织中氨基酸、糖和叶绿素含量与其对霜霉病抗性的关系[J].华北农学报, 1993, (04): 53~58.
    [163] Neill SJ, Desikan R, Clarke A. Hydrogen peroxide and nitric oxide as signalling molecules in plants[J]. Journal of Experimental Botany, 2002, 53: 1237~1247.
    [164] K A. The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 601~639.
    [165] Hernandez JA, Rubio M O E. Oxidative stress induced by long-term plum pox virus infection in peach (Prunus persica)[J]. Physiologia Plantarum, 2004, 122(4): 486~495.
    [166] De Gara L, de Pinto MC T F. The antioxidant systems vis-a-vis reactive oxygen species during plant-pathogen interaction[J]. Plant Physiology Biochemisity, 2003, 41: 863~870.
    [167] Hernandez JA, Talavera JM M P. Response of antioxidative enzymes to plum pox virus in two apricot cultivars[J]. Physiologia Plantarum, 2001, 111(3): 313~321.
    [168]王丽芳.向日葵锈病生理机制及超微结构的研究.呼和浩特:内蒙古农业大学, .
    [169]苗琛,尚富德,江静,等.西瓜枯萎病抗性的细胞学研究[J].四川大学学报(自然科学版), 2004, (04): 877~880.
    [170]冯东昕,朱国仁,李宝栋.菜豆锈病菌侵染对寄主超微结构的作用及菜豆抗锈病的细胞学表现[J].植物病理学报, 2001, (03): 246~270.
    [171]康振生,黄丽丽, H B U,等.禾谷镰刀菌在小麦穗部侵染过程的细胞学研究[J].植物病理学报, 2004, (04): 329~335.
    [172]白志英,王冬梅,侯春燕,等.小麦叶锈菌侵染过程的显微和超微结构[J].细胞生物学杂志, 2003, (06): 393~397.
    [173]李从顺,金兆辉,朱海山.不同抗性番茄品系接种晚疫病菌后超微结构的变化[J].园艺学报, 2007, (04): 1015~1018.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700