10kV中压电力线信道宽带特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力改革的不断深入,对10kV中压配电网络的运行管理提出了越来越高的要求。配电自动化,远方抄表,用户负荷管理和需求侧管理等配电网管理系统正在逐步应用和工程实用化。制约配电网管理系统发展的技术上的瓶颈之一,是缺乏一种具有较高性能价格比的数据信息交换平台。电力线通信是以电力线作为传输信道,实现数据通信和信息交换的一种通信方式。10kV中压线路从变电站出发可以直接延伸到线路上的任何一个用户节点,由10kV电力网络构成的电力通信系统在传输信道的经济性、网络的覆盖面等方面存在着巨大的优势,是一种极具竞争力的配电网管理系统的信息交换平台。然而,电力网络以工频能量的传输、分配为目的,是一种典型的总线型结构。对于高频通信信号的传输而言,这种结构上的特点以及工频负荷的存在,导致电力线信道表现为非常恶劣的传输环境,使得电力线通信的研究具有较大的挑战性。
     本文旨在研究10kV中压电力网络的信道特性。在基于两个具有一定代表性的10kV中压电力网络现场测量结果的基础上,结合实验室的有关实验,在40kHz-2MHz的频率范围内,对10kV中压电力网络信道的主要特性包括噪声、阻抗、传输等方面进行了初步探索,获得了一些具有一定普适意义的结论,建立了相应的信道模型。主要研究内容包括:⑴根据10kV电力线信道的拓扑结构和基本特征,提出了基于10kV电力线信道物理特征的基本信道模型,讨论了表征信道特性的主要参数和测量方法。其中利用电力环网线路直接测量信道传输函数H(f)的幅频响应和相频响应的新方法,解决了一直难以处理的长距离物理信道相频响应频域直接测量的问题。同时采用平移矢量网络分析仪的校准参考面的方法,这种方法可以有效地消除耦合器等辅助设备对实际信道测量参数的影响,提高测量效率和数据处理精度。
     ⑵对噪声特性进行了较为深入和全面的研究,初步认识了10kV电力网络信道的噪声水平,噪声的各种分布特性,以及电网运行状态与噪声特性的关系。研究表明,10kV电力网络的噪声水平与电网的结构、容量和负荷等有关,一般高于低压电力网络。噪声功率谱通常呈指数衰减分布,当与高一级电网间存在着较多的交叉跨越时,分布规律将受到高一级电网噪声特性的影响。在10 kV电力线上,供电端(首端)的噪声水平略高于受电端(末端),但基本上可以看作是沿线均匀分布的。相相间耦合的差模噪声一般不大于与其相关的两相单独对地耦合时的共模噪声,甚至可能远低于后者。
     ⑶建立了信道噪声中背景噪声统计模型,并通过Pearsonχ2检验验证了模型的适应性。在时域,10kV电力网络的背景噪声服从不同的统计规律。在低频较宽的频段内,与通常所推测的Gaussian分布不同,无论是有色噪声还是白噪声,都服从Nakagami-m分布。当频率达到数十兆赫兹数量级时,则服从Gaussian分布。在频域,不同的网络可能具有不同的噪声模型,但表征它们的变化参数仍然服从Nakagami-m分布。
     ⑷研究了10kV电力网络的阻抗特性,为通信耦合设备阻抗参数的优化设计和信道的阻抗匹配提供了理论上的支持。研究表明,10kV电力线信道的阻抗特性与系统的结构和配置有关。在1MHz频段以下,输入阻抗的动态范围为数十至数百欧姆。随着频率的增加,动态范围逐渐减小,最后趋于数十欧数量级,且基本呈纯电阻性。网络各个节点处的输入阻抗有所不同,但特性阻抗基本上是相同的。10kV电力线信道的输入阻抗基本不随着工频负荷而变化。变电站10kV母线上的电容器组的投切对输入阻抗没有影响。差模耦合的特性阻抗略大于共模耦合,但输入阻抗的动态范围也大于共模耦合。
     ⑸对10kV电力线信道的宽带传输特性作了初步研究,包括信道的幅频响应和相频响应特性,信道的频率色散和时间色散等主要涉及数字通信方式的信道参数。10kV电力线信道呈典型的多径传输特征,信道的频率响应是振荡衰减的。在发送端/接收端间无分支线路、配电变压器等设备的情况下,相地耦合时,每km的衰减功率为10-20dB。信道的相频响应基本上呈线性相位。信道的窄带衰落服从Nakagami-m分布,衰落深度为3-10dB。信道的时变性较弱。当通信速率达到kbps数量级及以上时,可以作为时不变信道处理。信道是时间色散的,信道的rms时延扩展和相干带宽均与具体的网络结构有关,大致是数十微秒和数十千赫兹数量级。
     ⑹深入研究了10kV电力网络信道的传输路径损失,提出了信道传输路径损失模型。研究表明,对信道路径损失影响最大的是TX/RX间接入的电气元件,例如配电变压器、分支线等所引起的分流衰耗。网络其他部分对信道间路径损失的影响较小。变电站母线上的并联补偿电容器组对信道路径损失几乎没有影响。通过分支线接入信道的元件的等值阻抗将被分支线本身所“平滑”。当元件阻抗值较低时,这一“平滑”效应有利于降低其对信道产生的分流衰耗。相相耦合方式的传输路径损失较相地耦合大致低5-15dB。
With the power innovation going further, a more strict operation management of the 10kV medium voltage distribution network is required. The distribution power network management system, including the distribution automation, remote metering, load management and the demand side management is being applicable and engineering practicable. On of the technical bottlenecks constraining the development of distribution power network management system is the absence of a data exchange platform with higher ratio of performance to cost. Power line communications use the power network as a transmission channel to realize the data transmission and information exchange. As a more competitive information exchange platform of the distribution power network management system, power line communications take many advantages on the economic transmission channel and network coverage. Nevertheless, the traditional power network serves for the energy transmission and distribution of the mains frequency and exhibits a typical bus structure. For high-frequency communicating signal transmission, such structure and the existence of load of mains frequency result in a hostile environment for signal transmission. Such a hostile channel makes the research of power line communication being more challenging.
     This paper mainly focuses on the channel characteristics of the 10kV medium voltage power network. On the basis of empirical data obtained from two representative 10kV medium voltage power networks, and with the support of laboratory experiments, the basic channel characteristics are examined, including noise, impedance and transmission properties of the 10kV medium voltage power networks over the frequency ranging from 40kHz-2MHz. Some meaningful conclusions are exposed, and the corresponding channel model is established. The main studies include:
     (1)Based on the topology and some fundamental properties of the 10kV power line channel, a basic model representing the physical properties of the 10kV power line channels is proposed. Furthermore, the parameters describing the channel properties and practical research methods are discussed. The methods for measuring the channel parameters are examined. And a new approach which uses the electrical loop wires to directly measure the channel transfer function H(f)and obtains the amplitude response and phase response, is provided to deal with the direct measurement of phase response for a line of long length. This problem has puzzled the researchers for a long time. Also, the method of moving the reference plane of the network analyzer is used for the first time. This method can efficiently eliminate the impacts on measuring the practical channel parameters introduced by the auxiliary equipments such as coupling devices, which will improve the measurement efficiency and accuracy of the data process.
     (2)A relatively deep research on the noise characteristics on the 10kV power network is carried out. The noise level of the 10kV power networks depends on the power network structure, configuration, and loads. It is often higher than that of the low voltage power networks. The noise power spectrum density usually follows the exponential distribution. However, if the power lines cross with the lines of higher voltage class power networks, the distribution is impacted by the noise from the higher voltage power network. On the 10kV power line, the noise at the power supply side (head side) is a little higher than that at the receiving end (tail side). Whereas, the noise distributes uniformly. The system impedance at the busbar absorbs some noise power. The noise level of phase to phase coupling is usually lower than or at least not greater than or even much lower than those of the related two single phase to ground coupling, respectively.
     (3) The background noise is statistically analyzed and corresponding statistical models are established in the time domain and the frequency domain respectively. And the Pearsonχ2 test is used to estimate the model’s application. In the time domain, the background noises on the 10kV power network follow different statistical distribution. At lower frequencies and a broad band, both the white noise and colored noise follow the Nakagami-m distribution which is different with the commonly assumed Gaussian noise. Only at frequencies on the order of tens of megahertz, the noise distribution obeys Gaussian. In the frequency domain, even there are distinct functions to fit the spectrum profiles of different power networks, their parameters, however, still follow the Nakagami-m distributions.
     (4) The impedance characteristics of the 10kV power network are studied. The impedance characteristic is in correlation with the power system structure and its configurations. Below 1MHz, the dynamic range of the input impedance is from several tenths of ohms to several hundreds of ohms. The dynamic range is becoming narrower with frequency and tends to the order on several tenths of ohms at last, where it exhibits pure resistance. The input impedances at each network node are different but their characteristic impedances are the same. The input impedance of the 10kV power network is greatly steady and scarcely varies with the loads working at mains frequency. The capacitor group connected to the bus has no influence on the input impedance. The input impedances in differential mode and common mode coupling are almost symmetric. The impedance value in differential mode coupling is higher than that in common mode coupling. However, the dynamic range of the former one is larger.
     (5) A pilot study on the transmission characteristics of the 10kV power line channel is carried out. A 10kV power line channel has the characteristics of a typical multi-path propagation. The channel frequency response attenuates with oscillations. If there are no branches and distribution transformers between TX/RX, the power attenuation is about 10-20dB/km in phase to ground coupling.The corresponding phase response is linear. The narrowband fading follows Nakagami-m distribution. And the fading depth is 3-10dB. In general, the time variance of the channel is weak. If the communication data rate is up to kbps, it can be regarded as a time-invariant channel. The channel is time dispersed. Both the rms delay spread and coherence bandwidth of the channel are related to the practical power network structure. The corresponding values are about ten microseconds and several tens of kilohertz respectively.
     (6) Based on the transmission line theorem, the path loss over the 10kV power network channel is discussed. A simple path loss model is proposed for engineering analysis. The most severe impact on the path loss depends on electrical equipments connected between TX and RX. These equipments including distribution transformers and branches introduce some drain losses. Other parts of the network have little impact on the path loss. Also, the parallel compensation capacitor groups connected to the bus have no effect on the path loss. The equivalent impedance of any component wired into the network through a branch has been smoothed by that branch. If the impedance of the equipment is lower, thus smoothness favors the reduction of the drain loss caused by the corresponding equipment. The path loss is 5-15dB lower in phase to phase coupling than that in phase to ground coupling.
引文
[1]陈维千主编.电力线载波通道[M].北京:水利电力出版社,1983.
    [2]袁世仁.电力线载波通信[M].北京:水利电力出版社,1998.
    [3] [德] Klaus Doster著,粟宁,郑福生,杨洪译.电力线通信[M].北京:中国电力出版社,2003.
    [4] H C Ferreira, H M Grove, O Hooijen, et al.. Power Line Communications:An Overview[C]. IEEE 4th AFRI Conference,Sep.1996:558-563.
    [5] J B McClanahan.Integrated Services Utilities[J].IEEE Power Engineering Review. July 1999:166-171.
    [6] Johe Newbury.Power Line Carrier Systems For Industrial Control Applications[J].IEEE Trans. on Power Delivery,1998,14(4):1191-1197.
    [7] Van Der Grancht P K, Donaldson R W.Communication Using Pseudonoise Modulation on Electric Power Distribution Circuit[J].IEEE Trans on Communications, 1985, 33(9): 964-974.
    [8] Johe Newbury.Potential Metering Communication Services Using the Public Internet[J]. IEEE Trans.on Power Delivery,1999,14(4):1202-1207.
    [9] Johe Newbury.Communication Requirements and Standards for Low Voltage Mains Signaling[J].IEEE Trans.on Power Delivery,1998,13(1):46-52.
    [10] Johe Newbury.Development for the Electric Utilities Networks Towards the National Information Infrastructure[J].IEEE Trans.on Power Delivery, 1996,11(3):1209-1213.
    [11] Klaus M Dostert.Frequency-Hopping Spread-Spectrum Modulation for Digital Communications Over Electric Power Lines[J].IEEE Journal of Selected Areas in Communications, 1990,8(4):700-710.
    [12] Weilin Liu, Hans-peter Widmer, Jamas Aldis, et al..Nature of Power Line Medium and Design Aspects for Broadband PLC System[C].Proceedings of International Zurich Seminar on Broadband Communications,2000:185-189.
    [13] Torsten Waldeck, Michael Busser, Klaus Dostert.Telecommunication Applications over the Low Voltage Power Distribution Grid [C].IEEE 5th ISPLC on Spread Spectrum Techniques and Applications,2-4 SEP.1998:73-77.
    [14] John Borland.Powerline: The future of broadband?.CNET News.com,May 31,1999.
    [15] Johe Newbury, William Miller.Multiprotocol Routing for Automatic Remote Meter Reading Using Power Line Carrier System[J].IEEE Trans.on Power Delivery,2001,16(1):1-5.
    [16] D.Cooper, T.Jeans.Narrowband, Low Data Rates Communications on the Low-Voltage Mains in the CENELEC Frequencies-PartⅠ: Noise and Attenuation[J].IEEE Trans.on Power Delivery, 2002,17(3):718-723.
    [17] D.Cooper, T.Jeans.Narrowband, Low Data Rates Communications on the Low-Voltage Mains in the CENELEC Frequencies-PartⅡ:Multiplicative Signal Fading and Efficient Modulation Schemes[J].IEEE Trans.on Power Delivery,2002,17(3):724-728.
    [18] Klaus M.Dostert.Power Line as High Speed Data Transmission Channels-Modeling the Physical Limits[C]. Proceedings of the ISPLC, Japan Tokyo,1998:234-238.
    [19]张保会,刘海涛,陈长德.电话、电脑、电视与电力网“四网合一”的概念与关键技术[J].中国电机工程学报,2001,21(2):60-65.
    [20]刘海涛.低压电网高速载波通信信道特性研究[D].博士学位论文,西安:西安交通大学,2003.
    [21]焦邵华,刘万顺,郑卫文等.配电网载波通信的衰耗分析.电力系统自动化[J],2000,24(8): 37–40.
    [22] Liu Haitao, Zhang Baohui, Tan Lunnong.Study of (500k-10M)Hz Noise in the Low Voltage Networks and Estimate of Channel Capacity [J]. IEEE Trans.on Consumer Electronics, 2003, 49(1):142-146.
    [23] Joseph Nguimbis, Shijie Cheng, et al..Coupling Unit Topology for Optimal Signaling Through the Low-Voltage Powerline Communication Network [J]. IEEE Trans.on Power Delivery, 2004, 19(3):1065-1071.
    [24] Guo Jingbo, Wang Zanji,et al.Transmission Characteristics of Low-Voltage Distribution Networks in China and Its Model [J].IEEE Trans.on Power Delivery, 2005, 20(2):1341-1348.
    [25] Haibo He, Shijie Cheng, et al.Home Network Powerline Communication Signal Processing Based on Wavelet Packet Analysis[J].IEEE Trans.on Power Delivery,2005.
    [26] Zheng Tao,Yang Xiaoxian, Zhang Baohui,et al..Broadband Transmission Characteristics for Power Line Channels.IEEE Trans.on Power Delivery, OCT 2006,21(4):1905-1911.
    [27]朱声石编著.高压电网继电保护原理与技术(第三版)[M].北京:中国电力出版社,2005.
    [28]葛耀中编.高压输电线路高频保护.北京:水利电力出版社,1987.
    [29] DS2公司.DSS9001技术手册[J].2005.
    [30] C Nunn, K Sullivar.From Theory to Practice: The Development and Implementation of Powernet?-An Advanced Power Line Carrier System for AMR, DSM, & NON-Utility Applications[C].IEE GRED97,2-5 June 1997,Conference Publication,No.438: 5.8.1-5.
    [31] M Ostertag.High Data Rate, Medium Voltage Power Line Communications for Hybrid DA/DSM[J].IEEE 1999:240-245.
    [32] Mak S.,Radford D..Communication System Requirements for Implementation of Large Scale Demand Side Management and Distribution Automation[J].IEEE Trans. on Power Delivery, 1996,11(2):683-689.
    [33] Siemens公司.DCS 3000技术手册[C].2005.
    [34]中国科技大学/上海纬能公司.PLC系统技术手册[C].2004.
    [35]北京四方公司.配电系统自动化技术手册[C].2003.
    [36]电力自动化研究院.中压电力线通信技术说明书[C].2004.
    [37] George Jee,Con Edison.Demonstration of the Technical Viability of PLC System on Medium-and Low-Voltage Lines in the United States[J].IEEE Communications Magazine,May 2003:108-112.
    [38] Sioe T. Mak.Power frequency communication on long feeders and high levels of harmonic distortion[J].IEEE Trans.on Power Delivery 1995,Vol(10):1731-1736.
    [39] Mak S.T.A TWACS system alarm function for distribution automation [J].IEEE Trans.on Power Delivery,1994,Vol(9),661-667.
    [40]周世炜,张绍卿.配电网络双向工频通信的原理与实现[J].电网技术,1999, 23(10):37-44.
    [41]赵学增et al.基于匹配滤波器的跨变压器台区工频电力通信[J].电力系统自动化,1999,26(6): 41-44.
    [42]吴斌et al.基于自适应陷波器的工频电力通信信号检测[J].电力系统自动化,2003,27(20): 35-39.
    [43]张恺,李祥珍,张晶等.自动抄表系统应用模式的探讨[J].电网技术,2001,25(5):41-45.
    [44]王明俊,于尔铿,刘广一.配电网自动化及其发展[M].北京:中国电力出版社,1998.
    [45]杨晓宪.配电网自动化功能实现方式及若干平台的选择.第四届中国电机学会论文年会,北京,2001.
    [46]施慎行,董新洲et al..配电线路无通道保护研究[J].电力系统自动化,2001,25(6): 31-34.
    [47]刘建凯.有分支配电线路无通道保护研究[J].电力系统自动化,2003,27(1): 37-41.
    [48]海涛.以电压式馈线自动化为基础的配网自动化方案[J].供用电,1999,16(2):8-10.
    [49]国家电网公司.十一、五科技发展规划.北京,2005.
    [50]曹志刚,钱亚生.现代通信原理[M].北京:清华大学出版社,2003.
    [51]樊昌信,张甫,徐炳祥等.通信原理(第五版)[M].北京:国防工业出版社,2002.
    [52] [美]Rodger E.Ziemer,William H.Tranter著,袁东风,江铭炎译.通信原理-系统、调制与噪声(第五版)[M].北京:高等教育出版社,2004.
    [53] Leon W.CouchⅡ.Digital and Analog Communication Systems (Sixth Edition).Pearson Education,Inc.,2001.
    [54]王赞基,郭静波.电力线扩频载波通信技术及其应用[J].电力系统自动化,2000,24(21):64-68.
    [55] [美]Sklar著,徐平平,宋铁成,叶芝慧等译.数字通信-基础与应用(第二版)[M].北京:电子工业出版社,2002
    [56] Olaf G, Hooijen.A Channel Model for the Residential Power Circuit Used as a Digital Communications Medium[J].IEEE Trans. on EMC, 1998,40(4):331-336.
    [57] W N Sado,J S Kunicki.Personal Communication on Residential Power Lines Assessment of Channel Parameters[J].IEEE,1995.
    [58] D.Liu,E.Flint.Wide Band AC Power Line Characterization[J].IEEE Trans.on Consumer Electronics, November 1999,45(4):1087-1097.
    [59] H.Meng,Y.L.Guan,S.Chen.Modeling and analysis of noise effects on broadband power-line communications[J].IEEE Trans.on Power Delivery, April 2005, 20(2):630-637.
    [60]王楚,余道衡编著.电路分析[M].北京:北京大学出版社,2001.
    [61]郑涛,杨晓宪,张保会.低压电网在1-30MHz频段的阻抗测量与特性分析[J].电网技术,2005,29(19):50-54.
    [62]廖承恩编著.微波技术基础[M].西安:西安电子科技大学出版社,2002.
    [63] [美] Jin Au Kong著,吴季林译.电磁波理论[M].北京:电子出版社,2003.
    [64]黄根祥.继电保护高频通道[M].北京:水利电力出版社,1989.
    [65] R.C.Hemminger et al. Signal Propagation On Single Phase Power Distribution Line at Power Line Carrier Frequencies[J]. IEEE Trans. on Power Delivery, January 1987:28-35.
    [66] J.D.Suh et al. Measurements of Communication Signal Propagation on Three Phase Power Distribution Lines[J]. IEEE Transactions On Power Delivery, 1991 6(3) 945-951.
    [67] J.B.O’Neal.Substation Noise at Distribution-Line Communication Frequencies[J]. IEEE Trans. on Electromagnetic Compatibility, 1988 30(1): 71-77.
    [68] R.C.Hemminger et al.. The Effect of Distribution Transformers on Distribution Line Carrier Signals[J]. IEEE Trans. on Power Delivery, January 1987 36-40.
    [69] Daniel C. Boronski et al.. Effect of artificially loading Distribution Line Carrier network[J]. IEEE Trans. on Power Delivery,1988,3(1):83-87.
    [70]汪晓岩,孙荣久.基于复数基的RS译码器的FPGA优化实现[J].通信学报,2003,26(4):35-39.
    [71]樊昊,易浩勇,汪晓岩等.基于OFDM技术的电力线通信系统计算机模拟[J].电网技术,2001,12(25):107-111.
    [72]蔡世龙,汪晓岩,刘胤龙等.中压配线传输特性测量与研究[C].第二十八届中国电网调度运行会议论文选集,北京,2003:844-851.
    [73]易浩勇,汪晓岩,孙荣久等.中压配电网载波通信的多径反射模型研究[C].第二十八届中国电网调度运行会议收录论文全集,北京,2003:584-589.
    [74] Hui-Myoung Oh,Jae-Jo Lee,Kwan-Ho Kim.Wideband Channel Impulse Response Measurement Method Using PN Sequences For The Medium Voltage Power Distribution Line Channel[C]. Proceedings of the 2004 International Symposium on Power Line Communication and Its Applications,Zaragoza,Spain,2004:74-78.
    [75] Jae-Jo Lee, Seung-Ji Choi, Hui-Myoung Oh.Measurements of the Communication Environment in Medium voltage Power Distribution Lines for Wide-Band Power Line Communications [C]. Proceedings of the 2004 International Symposium on Power Line Communication and Its Applications,Zaragoza,Spain,2004:69-73.
    [76] Byungseok Park,Younghoom Lim,et al. Adaptation of MV PLC system using DCSK modulation. Proc.ISPLC,Zaragoza,Spain,2004:200-205.
    [77]宋文淼,张晓娟,徐诚著.电磁波基本方程组[M],北京:科学出版社, 2003.
    [78]李宗谦,佘京兆,高葆新.微波工程基础[M].北京:清华大学出版社,2004.
    [79]胡庆主编.电信传输原理[M].北京:电子工业出版社,2004.
    [80]吕保维,王贞松著.无线电波传播理论及其应用[M].北京:科学出版社,2003.
    [81]楼仁海编著.工程电磁理论[M].北京:国防工业出版社,1983
    [82] M.D’Amore,M.S.Sarto.Electromagnetic Field Radiated from Broadband Signal Transmission on Power Line Carrier Channels[J].IEEE Trans on Power Delivery, April 1997,12(2):624-631.
    [83] Nelly Recrosio, Georges Fine .Analysis of Radiation Characteristics of Distribution Line Carriers with the NEC Code[J].IEEE Trans. on Electromagnetic Compatibility. FEBRUARY 1993,35(1):55-68.
    [84] Emmanuel Marthe, Farhad Rachidi.Indoor Radiated Emission Associated with Power Line Communication Systems[C]. IEEE Int. Symp. on EMC, Montreal,August13-17, 2001:517-520.
    [85] Bjrn Gustavsen.Wide Band Modeling of Power Transformers[J].IEEE Trans. on Power Delivery , JANUARY 2004,19(1):414-420.
    [86] Michael J.Gorman, John J.Grainger.Transformer Modeling for Distribution System Studies PartⅠ:Linear Modeling Basics[J].IEEE Trans. on Power Delivery, Vol.7,No.2,April 1992:567-574.
    [87] Michael J.Gorman, John J.Grainger.Transformer Modeling for Distribution System Studies PartⅡ:Addition of Models to Ybus and Zbus[J].IEEE Trans on Power Delivery, April 1992,7(2):575-580.
    [88] P.T.M.Vaessen, E.Hanique.A New Frequency Response Analysis for Power Transformers[J]. IEEE Trans. on Power Delivery, April 1992,7(2):384-391.
    [89] L.Satish,Subrat K.Sahoo.An Effort to Understand What Factors Affect the Transfer Function of a Two-Winding Transformers[J].IEEE Trans. on Power Delivery, April 2005,20(2):1430-1440.
    [90] Jone G. Proakis.Digital Communications (Fourth Edition)[M].McGraw-Hill Companies, Inc.2001.
    [91] Theodore S.Rappaport.Wireless Communications Principles and Practice[M]. Prentice-Hall,Inc.1996.
    [92] Philip A.Bello.Characterization of Randomly Time-Variant Linear Channels [J].IEEE Trans. on Communications Systems, Vol.Cs-11,December,1963:360-393.
    [93] Gregory D. Durgin.Space-Time Wireless Channels [M].Pearson Education,Inc.2003.
    [94] Ayman F. Abouraddy,Said M. Elnoubi.Statistical Modeling of the Indoor Radio Channel at 10 GHz Through Propagation Measurements Part I: Narrow-Band Measurements and Modeling [J].IEEE Trans. Vehicular Technology,2000,49(5):1491-1570.
    [95] Holger Philipps.Modeling of Powerline Communication Channels[C].Proc.3rd Int’l. Symp.Power-line Commun.and its Applications,Lancaster,UK,1999:14-21.
    [96] Steven J.Howard,Kaveh Pahlavan.Measurement and Analysis of the Indoor Radio Channel in the Frequency Domain[J].IEEE Trans. on Instrumentation and Measurement, 1990,39(5):751-755.
    [97] M.Zimmermann,K.Dostert.A Multipath Model for the Power Line Channel[J].IEEE Trans. Communications, April 2002,50(4):553-559.
    [98] Matthias G?tz, Manuel Rapp,Klaus Dostert.Power Line Channel Characteristics and Their Effect on Communication System Design[J].IEEE Communications Maganize,April 2004:78-86.
    [99] Despina Anastasiadou, Panayiotis Savvopoulos, Theodore Antonakopoulos.An Instrument for Real-Time Emulation of Multipath Fading in Indoor Power-Line Networks[C].IEEE Instrumentation and Measurement Technology Conference Vail, Colorado, UAS, May 20-22,2003:573-578.
    [100] H.Meng, S.Chen, Y.L.Guan, et al.Modeling of Transfer Characteristics for the Broadband Power Line Communication Channel[J].IEEE Trans. on Power Delivery, JULY 2004,19(3):1057-1064.
    [101] Homayoun Hashemi, David Tholl.Statistical Modeling and Simulation of the RMS Delay Spread of Indoor Radio Propagation Channels[J].IEEE Trans. on Vehicular Technology, February 1994,43(1):110-120.
    [102] H.Zaghloul.Frequency Response and Path Loss Measurements of Indoor Channel[J] Electronics Letter,1991,27(12):1021-1022.
    [103] Fawzi Issa, Daniel Chaffanjon.Outdoor Radiated Emission Associated with Power Line Communications Systems[C].IEEE Int.Symp.On EMC,Montreal,August 13-17,2001:521-526.
    [104] Agilent Technolgies Japan, Ltd. Agilent 4395A Network/Spectrum/Impedance Analyzer Operation Manual Sixth Edition[J].Printed in JAPAN,May 2003
    [105] Robert J.Weber.Introduction to Microwave Circuits_Radio Frequency and Design Applications[M].John Wiley&Sons,Inc,2001
    [106] Francisco Javier Ca?ete, JoséAntonio Cortés, et al..Modeling and Evaluation of the Indoor Power Line Transmisson Medium[J].IEEE Communications Magazine,April 2003:41-47.
    [107] Francisco Javier Canate, Luis Diez.Broadband Modelling of Indoor Power-line Channels[J].IEEE Trans. on Consumer Electronics, February 2002,48(1):175-183.
    [108] Jone G.Proakis, Masoud Salehi.Communication Systems Engineering Second Edition[M]. Prentice Hall,2002.
    [109] Nermin Suljanovi?, Aljo Muj?i?, Matej Zajc,et al..High-frequency Characteristics of High-voltage Power Line[C].IEEE EUROCON 2003,L,S:310-314.
    [110] M.Zajc, N.Suljanovi?, A. Muj?i?,et al.High Voltage Power Line Constraints for High Speed Communications[C].IEEE MELECON 2004,May 12-15,Dubrovnik,Croatia:285-288.
    [111] M.Arzberger, K.Dostert, T.Waldeck,et al..Fundamental Properties of the Low Voltage Power Distribution Grid[C]. Proc.1st Int.Symp.Power-Line Communications and its Applications (ISPLC1997),Mar 1997:45-50.
    [112] A.G.Burr,D.M.W.Reed.HF Broadcasting Interference on LV Mains Distribution Networks [C]. Proc. 2nd Int. Symp. Power-Line Communications and its Applications (ISPLC1998), Mar 1998:253-262.
    [113] D.Benyoucef.A New Statistical Model of the Noise Power Density Spectrum for Powerline Communication [C]. Proc. 7th Int. Symp. Power-Line Communications and its Applications (ISPLC2003), Mar 2003:136-141.
    [114] D.Tholl, M.Fattouche.A Comparison of Two Radio Propagation Channel Impulse Response Determination Techniques [J].IEEE Trans. on Antennas and Propagation, April 1993,41(4):515-517.
    [115] Michel C.Jeruchim,Philip Balaban,K.SamShanmugan.Simulation of Communication System Modeling,Methodology,Techniques [M].Kluwer Academic/Plenum Publishers,2000.
    [116] Homayoun Hashemi, Micchael McGuire, Thomas Vlasschaert, et al..Measurements and Modeling of Temporal Variations of the Indoor Radio Propagation Channel[J].IEEE Trans. on Vehicular Technology, August 1994,43(3):733-737.
    [117] Athanasios Papoulis,S.Unnikrishna Pillai. Probability,Random Variables and Stochastic Processes[M].McGraw-Hill,2002.
    [118] Steven J.Howard,Kaveh Pahlavan.Autoregressive Modeling of Wide-Band Indoor Radio Propagation[J].IEEE Trans. on Communications,September 1992,40(9):1540-1552.
    [119] Despina Anastasiadou,Theodore Antonakopoulos.Multipath Characterization of Indoor Power-Line Networks[J].IEEE Trans. on Power Delivery,January 2005,20(1):90-99.
    [120] Li Yanglong, Chen Weiqian.realization of carrier communications over the city 10kV power distribution network[J]. Power System Communications, NO.3, 2001:5-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700