考虑动量管理和能量存储的空间站姿态控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
姿态控制技术是发展空间站待解决的关键技术之一。论文以载人航天三期空间站工程的关键技术预先研究为背景,系统地研究了考虑动量管理和能量存储的空间站姿态控制问题。全文主要研究成果如下:
     发展了力矩平衡姿态的求解方法和稳定性判断方法。1)针对传统力矩平衡姿态求解方法复杂且求解精度低的不足,提出采用拟牛顿迭代法求解力矩平衡姿态非线性方程组,该方法提高了力矩平衡姿态的求解精度和效率;2)采用Lyapunov理论中求解导算子特征值的方法进行力矩平衡姿态稳定性研究,并通过仿真验证力矩平衡姿态作为平衡姿态的优点和用导算子的特征值判断力矩平衡姿态稳定性方法的有效性。
     改进了空间站姿态控制与动量管理线性和非线性控制器。1)设计了一个基于力矩平衡姿态实时计算的自适应控制器,实现真正意义上的自适应控制;2)结合小脑模型神经网络控制的特点改进已有的反馈线性化非线性控制器,证明了改进后的控制器的稳定性;3)仿真验证了这两个控制器对姿态控制与动量管理控制的有效性。
     研究总结了空间站四种常用角动量交换装置的姿态控制与能量存储特性。这四种常用角动量交换装置包括单框架控制力矩陀螺、变速控制力矩陀螺、飞轮、单框架控制力矩陀螺和飞轮混合机构。1)总结了单框架控制力矩陀螺进行姿态控制和其它三类机构进行姿态控制与能量存储的奇异性、角动量包络和操纵律特性;2)推导了金字塔构型变速控制力矩陀螺的避免奇异条件数;3)总结了这四类执行机构进行姿态控制与能量存储的优缺点。
     研究提出了基于动量管理和基于动量反馈的两种姿态控制与能量存储框架。1)综合考虑姿态控制与动量管理和姿态控制与能量存储的优势,提出了考虑动量管理和考虑动量反馈的姿态控制与能量存储框架;2)证明了动量管理能使飞轮和变速控制力矩陀螺远离饱和和奇异,从理论上分析了动量反馈的稳定性条件,并通过仿真验证了这两个框架的有效性;3)总结了两种一体化框架的优缺点。
     建立了空间站通用姿态控制框架。1)结合我国的实际情况,分析了我国未来空间站的姿态控制模式和可能的姿态控制角动量交换装置,设计了面向空间站长期在轨各种可能姿态控制任务的考虑动量管理和能量存储的通用姿态控制框架;2)给出了一类用于姿态对地定向和姿态机动的自抗扰控制器;3)基于设计的通用框架,进行设备正常或故障情况时包括姿态机动、姿态对力矩平衡姿态定向和姿态对地定向三种姿态控制任务的仿真,验证了该通用姿态控制框架的有效性和通用性。
     论文拓展了现有的考虑动量管理和能量存储的空间站姿态控制的研究范畴,发展了力矩平衡姿态的稳定性判据,证明了基于动量管理和基于动量反馈的两种姿态控制与能量存储框架的稳定性,具有一定的理论意义;论文所研究的力矩平衡姿态计算方法、姿态控制与动量管理控制器、常用执行机构的姿态控制与能量存储特性分析以及空间站通用姿态控制框架考虑了工程设计需求,对发展我国空间站的姿态控制技术具有一定的参考价值。
Attitude control is a key technology for the development of the space station. With the background of China manned spaceflight advance study, the attitude control with momentum management and power storage is researched. The main results achieved in this dissertation are summarized as follows:
     The method for solving torque equilibrium attitude (TEA) and the method for judging the stability of TEA are developed. 1) Facing the complexity and low-precision of the classical method for solving TEA, a new method to obtain TEA value is proposed to improve precision and effectiveness of solving TEA, in which TEA equations are transformed into a system of nonlinear equations and the TEAs are resolved with quasi-Newton Method from these nonlinear equations. 2) The Lyapunov theory is used to judge the stability of TEA by calculating all the characteristic vectors and eigenvalues of the differential operator. The advantages of TEA as a balance attitude and the effectiveness of the stability judge method of calculating all the characteristic vectors and eigenvalues of the differential operator are proved by simulation results.
     A linear controller and a nonlinear controller are improved for Attitude Control/Momentum Management (ACMM). 1) An adaptive linear ACMM controller based on the in-line calculating TEAs is proposed, which achieves adaptiveness effectively. 2) An existed feedback linearized ACMM controller is improved with Cerebellar Model Articulation Control (CMAC), and the stability of the improved CMAC feedback controller is testified. 3) The ACMM can be controlled effectively by the adaptive linear controller and the CMAC feedback controller in this dissertation.
     The characteristic of four kinds of angular momentum exchange actuators used for attitude control and power storage are studied and summarized. These four kinds of actuators include single gimbal control moment gyroscope(SGCMG) cluster, variable speed control moment gyroscope (VSCMG) cluster, flywheel cluster, SGCMG and flywheel mixed cluster. 1) The singularity, angular momentum envelope and steering laws of SGCMG cluster for attitude control and these characteristics of VSCMG cluster, flywheel cluster, SGCMG and flywheel mixed cluster for Integrated Power and Attitude Control System (IPACS) are summarized. 2) The condition of singularity avoidance of the standard pyramid configuration VSCMG cluster is derived. 3) The advantages and disadvantages of all these four types of actuators for attitude control and power storage are summarized.
     Two frameworks for attitude control and power storage are proposed respectively based on momentum management and momentum feedback. 1) Integrating the merits of attitude control and IPACS, the momentum management based IPACS framework and the momentum feedback based IPACS framework are proposed. 2) It is testified theoretically that the momentum management keep the flywheel cluster and the VSCMG cluster away from saturation and singularity. The conditions of the stability for momentum feedback are analyzed. And the effectiveness of these two frameworks is proved by simulations. 3) The advantages and disadvangtages of these two frameworks are summarized.
     An all-purposed framework for space station attitude control is established. 1) According to China actual conditions, the possible attitude control modes and the possible attitude control momentum exchange actuators are analysized and the all-purposed framework of attitude control combining momentum management and power storage is designed for all possible attitude control tasks for long on-orbit time. 2) An active disturbance rejection controller (ADRC) is designed for earth-pointing attitude hold and attitude maneuver in this framework. 3) The effectiveness and universalness of the all-purposed framework are testified by the simulation results of test cases of three attitude control tasks with power storage, two devices modes combining SGCMGs with flywheels, two normal cases and four failure cases.
     This dissertation has some theoretical significance in extending the research domain of the current space station attitude control problem by combining momentum management and power storage, developing the TEA stability criterion, and proving the stability of the two proposed IPACS framework based on momentum management and based on momentum feedback. The method of resolving TEA, ACMM controllers, the performance analysis of the general angular momentum exchange actuators for IPACS, and the build of the all-purposed attitude control framework which all consider the pratical engineering requirements have some reference value for developimg China future space station attitude control technology.
引文
[1] Tsiotras P., Shen H., and Hall C. Satellite Attitude Control and Power Tracking with Energy/momentum Wheels[J]. Journal of Guidance, Control and Dynamics, 2001, 24(1): 23-34.
    [2] Richie D.J. Simultaneous Attitude Control and Energy Storage Using VSCMGs Theory and Simulation[R]. ADA392541, 2001.
    [3]贾英宏,徐世杰.采用飞轮的航天器集成能量与姿态控制系统研究[A].第十一届空间及运动体控制技术学术会议, 2004,云南: 75-80.
    [4]盖振伟.多自由度动量交换技术研究的新进展[J].航天控制, 2006, 24(6): 84-89.
    [5]屠善澄.卫星姿态动力学与控制[M].北京:宇航出版社, 2001.
    [6] Patel M.R. Energy-Momentum-Wheel for Satellite Power and Attitude Control Systems[A]. AIAA-2000-2909.
    [7] Bartlett R.O., Brown G.L., and Levinthal J.J. Energy Storage Flywheels on Spacecraft[A]. AAS 02-063.
    [8] Jacot A.D. and Liska D. Control Moment Gyros in Attitude Control[J]. Journal of Spacecraft and Rockets, 1966, 3(9): 1313-1320.
    [9] Will R.W., Keckler C.R., and Jacobs K.L. Description and Simulation of an Integrated Power and Attitude Control System Concept for Space-Vehicle Application[R]. NASA TN D-7459, 1974.
    [10] Bednarcyk B.A. and Arnold S.M. Design and Optimization of Composite Gyroscope Momentum Wheel Rings[R]. NASA/TM-2007-214967.
    [11] Ford K.A. and Hall C.D. Flexible Spacecraft Reorientations Using Gimbaled Momentum Wheels[J]. Advances in the Astronautical Science Astrodynamics, 1997: 1895-1914.
    [12] Schaub H., Vadali S.R., and Junkins J.L. Feedback Control Law for Variable Speed Control Moment Gyroscopes[J]. Journal of the Astronautic Sciences, 1998, 46(3): 307-328.
    [13] Lappas V., et al. Survey of Technology Developments in Flywheel Attitude Control and Energy Storage Systems[J]. Journal of Guidance, Control and Dynamics, 2009, 32(2): 354-365.
    [14] Babuska V., et al. A Review of Technology Developments in Flywheel Attitude Control and Energy Transmission Systems[A]. Aerospace Conference Proceedings, 2004: 2784-2800.
    [15] Kennel H.F. Angular Momentum Desaturation for Skylab Using Gravity Gradient Torque[R]. NASA TMX-64628, Dec. 1971.
    [16] Hahn E. and Hopkins M. Adaptive Momentum Management for the Dual Keel Space Station[A]. AIAA-87-2596.
    [17] Wie B., Byun K.W., and Warren V.W. New Approach to Attitude/Momentum Control for the Space Station[J]. Journal of Guidance, Control and Dynamics, 1989, 12(5): 714-722.
    [18] Mapar J. Innovative Approach to the Momentum Management Control for Space Station Freedom[J]. Journal of Guidance, Control and Dynamics, 1993, 16(1): 175-181.
    [19] Tereshina I.N., Teslenko V.P., and Manzheley A.I. Attitude Simulation DuringMir Orbital Complex Flight[R]. SO96.5.20.
    [20] Bennett G.J., Sebelius K.P., and Barth A.L. ISS Russian Segment Motion Control System Operating Strategy During Orbiter Repair Maneuver[A]. AIAA-2005-5855.
    [21] Bedrossian N., et al. International Space Station US GN&C Attitude Hold Controller Design for Orbiter Repair Maneuver[A]. AIAA 2005-5853.
    [22] Harduvel J.T. Continuous Momentum Management of Earth-Oriented Spacecraft[J]. Journal of Guidance, Control and Dynamics, 1992, 15(6): 1417-1426.
    [23] Russian Segment Specification (Revision G)[R]. SSP 41163G, 1999, NASA Internation Space Station Program Johnson Space Center, Russian Space Agency.
    [24] R.Sims C. International Space Station U.S. GN&C Momentum Manager Controller Design for Shuttle Thermal Protection System Repair[A]. AIAA 2005-5854.
    [25] Nguyen L.H., et al. Shuttle Return to Flight: On-Orbit GN&C and Robotic System Operation Overview[A]. AIAA 2005-5850.
    [26] Rose J.B. An Electro-Mechanical Energy Storage System for Space Application[J]. Progress in Astronautics and Rochetry, 1961, 3: 613-622.
    [27] Kaplan K. Modern Spacecraft Dynamics and Control[M]. New York: John Whley and Sons, 1976.
    [28] Wie B. Space Vehicle Dynamics and Control[M]. American Institute of Aeronautics and Astronautics, Reston, Virginia, 1998.
    [29] Hall C.D. High Speed Flywheels for Integrated Energy Storage and Attitude Control[A]. Proceeding of the American Control Conference, 1997, Albuquerque, NM.
    [30] Anderson W.W. and Keckler C.R. An Integrated Power/Attitude Control System(IPACS) for Space Application[A]. Proceeding of the 5th IFAC Symposium on Automatic Control in Space, 1973, New York.
    [31] Notti J.E. and Cormack A. Integrated Power/Attitude Control System (IPACS) Study: Volume I—Feasibility Studies[R]. NASA CR-2383, 1974.
    [32] Notti J.E. and Cormack A. Integrated Power/Attitude Control System (IPACS) Study: Volume II—Conceptual Design[R]. NASA CR-2384, 1974.
    [33] Gross S. Study of Flywheel Energy Storage for Space Stations[R]. NASA-CR-171780, 1984, the Boeing Company.
    [34] Oglevie R.E. and Eiscnhaure D.B. Advanced Integrated Power and Attitude Control System (IPACS) Study[R]. NASA-CR-3912, 1985, Rockwell Internation Corporation, Downey, California, Charles Stark Darper Laboratory, Cambridge, Massachusetts.
    [35] Marcoux. High Energy Density Rechargeable Batery for Satellite Applications[R]. Air Force Wright Aeronautical Laboratories Rept. TR-83-2055, 1983, Hughes Aircraft Co.
    [36] Mclallin K.L., et al., Aerospace Flywheel Technology Development for IPACS Applications. NASA TM-2001-211093.
    [37] Christopher D.A. and Beach R. Flywheel Technology Development Program for Aerospace Applications[A]. IEEE Aerospace and Electronic Systems Magazing, 1998.
    [38] Santo G.E., et al. Feasibility of Flywheel Energy Storage Systems forApplications in Future Space Missions[R]. NASA Lewis Research Center NASA-CR-195422, 1995.
    [39] Truong L.V., et al. Simulation of the Interaction Between Flywheel Energy Storage and Battery Energy Storage on the International Space Station[R]. NASA/TM-2001-210341.
    [40]卫海岗,戴兴建,张龙,沈祖培.飞轮储能技术研究新动态[J].太阳能学报, 2002, 23(6): 748-753.
    [41] Roithmayr C.M., et al. Dynamics and Control of Attitude, Power, and Momentum for a Spacecraft Using Flywheels and Control Moment Gyroscopes[R]. NASA/TP-2003-212178.
    [42] Hebner R., Beno J., and Walls A. Flywheel Batteries Come Around Again[J]. IEEE Spectrum, 2002, 36(4): 46-51.
    [43] Fausz J.L. and Richie D.J. Flywheel Simultaneous Attitude Control and Energy Storage Using a VSCMG Configuration[A]. Proceedings of the 2000 IEEE, International Conference on Control Applications, September 25-27, 2000, Anchorage, Alaska: 991-995.
    [44] Yoon H. and Tsiotras P. Spacecraft Adaptive Attitude and Power Rracking with Variable Speed Control Moment Gyroscopes[J]. Journal of Guidance, Control and Dynamics, 2002, 25(6): 1081-1090.
    [45] Faymon K.A. and Fordyce J.S. Space Power Technology into the 21st Century[R]. NASA/TM-83690, 1984.
    [46] Varatharajoo R. and Fasoulas S. Methodology for the Development of Combined Energy and Attitude Control System for Satellites[J]. Aerospace Science and Technology, 2002(6): 303-311.
    [47] Varatharajoo R. A Combined Energy and Attitude Control System for Small Satellites[J]. Acta Astronautica, 2004, 54: 701-712.
    [48] Varatharajoo R. and Fasoulas S. The Combined Energy and Attitude Control System for Small Satellites-Earth Observation Missions[J]. Acta Astronautica, 2005, 56: 251-259.
    [49] Sunkel J.W. and Shieh L.S. Multistage Design of an Optimal Momentum Management Controller for the Space Station[J]. Journal of Guidance, Control and Dynamics, 1991, 14(3): 492-502.
    [50] Elgersma M.R., et al. Robust Controllers for Space Station Momentum Management[A]. Proceedings of the 30th IEEE Conference on Decision and Control, 1991: 2206-2212.
    [51] Parlos A.G. and Sunkel J.W. Adaptive Attitude Stability and Control for Space Station/Orbiter Berthing Operations[A]. AIAA-92-4480-CP.
    [52] Parlos A.G. and Sunkel J.W. Adaptive Attitude Control and Momentum Management for Large-angle Spacecraft Maneuvers[J]. Journal of Guidance, Control and Dynamics, 1992, 15(4): 1018-1028.
    [53] Wu F. Fix-Structure Robust CMG Momentum Manager Design for the International Space Station[A]. AIAA Guidance, Navigation, and Control Conference and Exhibit, 14-17 August 2000, Denver, CO, AIAA-2000-4456.
    [54] Lee A.C. Robust Momentum Manager Controller for Space Station Applications[D]. Rice University, 2003.
    [55] Vadali S.R. and Oh H.S. Space station attitude control and momentum management: a nonlinear look[A]. AIAA-90-3353, 1992.
    [56]吴忠.空间站姿态/动量联合非线性控制[J].航空学报, 2006, 27(6):1155-1160.
    [57] Yeichner J.A., Lee J.F., and Barrows D. Overview of Space Station Attitude Control System with Active Momentum Management[A]. 11th Annual AAS Guidance and Control Conference, 1988, AAS 88-044.
    [58] Warren W., Wie B., and Geller D. Periodic-disturbance Accommodating Control of the Space Station for Asymptotic Momentum Management[J]. Journal of Guidance, Control and Dynamics, 1990, 13(6): 984-992.
    [59] Vadali S.R. and Oh H.-S. Attitude Control and Momentum Management of the Space Station[J]. Advances in the Astronautical Sciences 1991, 75: 609-620.
    [60] Sheen J.-J. and Bishop R. Spacecraft nonlinear control[J]. The Journal of the Astronautical Sciences, 1994, 42(3): 361-377.
    [61] Vadali S.R., Krishnan S., and Singh. Attitude Control of Spacecraft Using Neural Networks[J]. Advances in the Astronautical Sciences, 1993, 82: 271-285.
    [62] Paynter S.J. and Bishop R.H. Adaptive Nonlinear Attitude Control and Momentum Management of Spacecraft[J]. Journal of Guidance, Control and Dynamics, 1997, 20(5): 1025-1032.
    [63] Paynter S.J. and Bishop R.H. Indirect adaptive nonlinear attitude control and momentum management of spacecraft using feedback linearization[A]. AAS 95-418.
    [64] Parlos A.G. and W.Sunkel J. Attitude Control/Momentum Management of the Space Station Freedom for Large Angle Torque-Equilibrium-Attitude Configurations[A]. AIAA-90-3352: 348-358.
    [65] Balas G.J., Packard A., and Harduvel J.T. Application ofμ-Synthesis Techniques to Momentum Management and Attitude Control of the Space Station[A]. AIAA-91-2662.
    [66] Shain E.B. and Spector V.A. Adaptive Torque Equilibrium Control of the Space Station[A]. AIAA 23rd Aerospace Sciences Meeting, Reno, NV, USA, AIAA-85-0028.
    [67] Wie B., Hu A., and Singh R. Multibody Interaction Effects on Space Station Attitude Control and Momentum Management[J]. Journal of Guidance, Control and Dynamics, 1990, 13(6): 993-999.
    [68]吴忠,赵建辉.空间站姿态控制/动量管理系统设计与仿真[J].系统仿真学报, 2006, 18(1): 151-154.
    [69] Carter M.T. and Vadali S.R. Parameter Identification for the International Space Station Using Nonlinear Momentum Management Control[A]. AIAA-97-3524.
    [70] Singh S.N. and Bossart T.C. Feedback linearization and nonlinear ultimate boundedness control of the space station using CMG[A]. AIAA-90-3354.
    [71] Singh S.N. and Bossart T.C. Invertibility of map, zero dynamics and nonlinear control of space station[A]. AIAA Guidance, Navigation, and Control Conference Proceedings, 1991, AIAA-91-2663.
    [72] Singh S.N. and Iyer A. Nonlinear Regulation of Space Station: a Geometric Approach[J]. Journal of Guidance, Control and Dynamics, 1994, 17(2): 242-249.
    [73] Dzielshi J. and Bergmann R.H. Approach to Control Moment Gyroscope Steering Using Feedback Linearization[J]. Journal of Guidance, Control and Dynamics, 1991, 14(1): 96-106.
    [74] Purns T.F. and Flashner H. Adaptive Control Applied to Momentum Unloading Using the Low Earth Orbital Environment[J]. Journal of Guidance, Control andDynamics, 1992, 15(2): 325-333.
    [75] Krishnan S. and Vadall S.R. Adaptive Control and Momentum Management of Spacecraft with Unknown Parameters and Disturbances[A]. AAS 93-616, 1993: 2027-2045.
    [76] Vadali S.R. and Oh H.S. Space Station Attitude Control and Momentum Management: a Nonlinear Look[J]. Journal of Guidance, Control and Dynamics, 1992, 15(3): 577-586.
    [77] Sheen J.-J. and Bishop R. Adaptive Nonlinear Control of Spacecraft[J]. The Journal of the Astronautical Sciences, 1994, 42(4): 451-472.
    [78] Paynter S.J. Adaptive Nonlinear Attitude Control of the Space Station[A]. AIAA-94-0014.
    [79] Dzielski J.E. A Feedback Linearization Approach to Spacecrft Control Using Momentum Exchange Devices[D]. Dept. of Aeronautics and Astronautics, Massachusetts Inst. of Technology, Cambridge, MA, 1988.
    [80] Paynter S.J. and Bishop R.H. Singularities of Nonlinear Attitude Control with Momentum Management[J]. Journal of Guidance, Control and Dynamics, 1997, 20(6): 1255-1257.
    [81] Paynter S.J. and Bishop R.H. The Singularities of Nonlinear Attitude Control with Momentum Management[A]. Aerospace Sciences Meeting & Exhibit, 35th, Jan. 6-9, 1997, Reno, NV, AIAA-97-0111.
    [82] Slotine J.E. and Li W. Applied Nonliear Control[M]. Prentice Hall, Inc., 1991.
    [83] Efrati T. Tracking Control of Mechanical System Using Artificial Neural Networks[D]. USC, 1997.
    [84] Choi M.-T. and Flashner H. Neural-Network-Based Spacecraft Attitude Control and Momentum Management[A]. AIAA-2000-4455.
    [85] Mapar J. and Hu T.-H.G. Momentum Management Controller Design for Space Station During Payload Maneuvers[A]. AIAA-95-3310CP.
    [86] Kumar R.R. and Seywald H. Attitude control and momentum management of spacecraft based on a sensitivity observation[A]. AAS 96-176: 1059-1071.
    [87]胡珊,袁建平,李文华.空间站姿态控制和动量管理研究[J].航天控制, 2004, 22(5): 36-41.
    [88] Sunkel J.W., Shieh L.S., and Zhang J.L. Digital Redesign of an Optimal Momentum Management Controller for the Space Station[J]. Journal of Guidance, Control and Dynamics, 1991, 14(4): 712-723.
    [89] Singh H. and Naidu D.S. Regional Pole Placement for Momentum Management for the Space Station[A]. AIAA-94-3616-CP.
    [90]李文华.空间飞行器交会对接动力学与控制研究[D].西北工业大学, 2001.
    [91] Yuan J., Li W., and Hu S. Research on attitude control and momentum management (ACMM) of large spacecraft[A]. 53rd International Astronautical Congress, 2002, Houston Texas, IAC-02-A.3.07.
    [92] Zhao X.M., et al. Self-tuning Control of Attitude and Momentum Management for the Space Station[J]. Journal of Guidance, Control and Dynamics, 1992, 15(1): 17-27.
    [93] Zuo W. Multivariable Adaptive Control for a Space Station using Genetic Algorithms[A]. Control Theory and Applications, IEEE Proceedings, 1995: 81-87.
    [94]吴刚,刘昆,张育林.磁悬浮飞轮技术及其应用研究[J].宇航学报, 2005, 26(3): 385-390.
    [95]魏彤,房建成.磁悬浮控制力矩陀螺的动框架效应及其角速率前馈控制方法研究[J].宇航学报, 2005, 25(1): 19-23.
    [96]魏彤,房建成.磁悬浮控制力矩陀螺磁轴承的变工作点线性化自适应控制方法[J].机械工程学报, 2007, 43(6): 110-115.
    [97] Yoon H. Spacecraft attitude and power control using variable speed control moment gyros[D]. Georgia Institute of Technology, 2004.
    [98]张军.含变速控制力矩陀螺的航天器能量姿态一体化控制研究[D].北京航空航天大学, 2007.
    [99]张军,徐世杰.柔性航天器IPACS建模与动力学分析[J].北京航空航天大学学报, 2006, 32(4): 377-381.
    [100] Yoon H. and Tsiotras P. Singularity Analysis of Variable-Speed Control Moment Gyros[J]. Journal of Guidance, Control and Dynamics, 2004, 27(3): 374-386.
    [101] Lappas V.J., et al. Combined Singularity Avoidance for Variable Speed Control Moment Gyroscope Clusters[R]. ADA446272, 2006.
    [102]张锦江,李季苏,吴宏鑫,邹广瑞.大型航天器SGCMG系统的奇异性分析研究[J].中国空间科学技术, 2001(3): 36-41.
    [103]吴忠,丑武胜.单框架控制力矩陀螺系统运动奇异及回避[J].北京航空航天大学学报, 2003, 29(7): 579-582.
    [104]吴忠,丑武胜.考虑框架伺服特性时SGCMG系统操纵律设计[J].北京航空航天大学学报, 2004, 30(6): 489-492.
    [105]吴忠.单框架控制力矩陀螺动态操纵律设计[J].宇航学报, 2005, 26(1): 25-28.
    [106] Kurokawa H. Survey of Theory and Steering Laws of Single-Gimbal Control Moment Gyros[J]. Journal of Guidance Control and Dynamics, 2007, 30(5): 1331-1340.
    [107]张锦江.单框架控制力矩陀螺系统的构型分析和对比研究[J].中国空间科学技术, 2003, 3: 52-56.
    [108] Lei J. and Shijie X. Study on Failure Analysis and Improved Constrained Steering Law Design for SGCMGs[A]. Proceedings of the 11th International Space Conference of Pacific-basin Societies, 2007: 200-209.
    [109] Weitai Z. and Shijie X. Geometrical Study of Configuration Singularity for SGCMGs with some Gyros Failure[A]. Proceedings of the 11th International Space Conference of Pacific-basin Societies, 2007: 342-349.
    [110]吴忠,吴宏鑫.“和平号”空间站SGCMG系统及其操纵[J].航天控制, 1999(2): 76-80.
    [111]房建成.单框架控制力矩陀螺方案论证与太阳帆板平面度测量系统研制[D].北京航空航天大学, 1999.
    [112] Yoon H. and Tsiotras P. Singularity Analysis and Avoidance of Variable-Speed Control Moment Gyros-Part I: No Power Constraint Case[A]. AIAA 2004-5207.
    [113] Yoon H. and Tsiotras P. Singularity Analysis and Avoidance of Variable-Speed Control Moment Gyros-Part II: Power Constraint Case[A]. AIAA 2004-5208.
    [114]贾英宏.航天器姿态与能量一体化控制研究[D].哈尔滨工业大学, 2004.
    [115] Yinghong J., Shijie X., and Liang T. Bias Momentum Attitude Control System Using Energy/Momentum Wheels[J]. CHINESE JOURNAL OF AERONATICS, 2004, 17(4): 193-199.
    [116] Yinghong J. and Shijie X. Spacecraft Attitude Tracking and Energy StorageUsing Flywheels[J]. CHINESE JOURNAL OF AERONATICS, 2005, 18(1): 1-7.
    [117]贾英宏,徐世杰.采用变速控制力矩陀螺的一种姿态/能量一体化控制研究[J].宇航学报, 2003, 24(1): 32-37.
    [118]汤亮,徐世杰.灵敏小卫星能量/姿态一体化控制研究[J].北京航空航天大学学报, 2005, 31(6): 668-672.
    [119]汤亮,徐世杰.采用变速控制力矩陀螺的航天器自适应姿态跟踪和稳定控制研究[J].航空学报, 2006, 27(4): 643-669.
    [120]张军,徐世杰.采用VSCMG的航天器IPACS设计的一种投影矩阵方法[J].宇航学报, 2006, 27(4): 609-615.
    [121]贾英宏,徐世杰.利用变速控制力矩陀螺的航天器集成能量与姿态控制[J].航空学报, 2007, 28(3): 647-653.
    [122] Jun Z. and Shijie X. Discrete Steering Law of Variable-speed Control Moment Gyros in Intergrated Power/Attitude Control System[A]. Proceedings of the 11th International Space Conference of Pacific-basin Societies, 2007: 334-341.
    [123]张军,徐世杰.使用VSCMGs的IPACS的奇异性分析与操纵律设计[J].航空学报, 2008, 29(1): 123-130.
    [124]张景瑞,李俊峰.航天器能量/姿控一体化控制器设计及功率规划[J].清华大学学报(自然科学版), 2005, 45(2): 280-284.
    [125] Wilson B.C., et al. Power System Design for a Spacecraft Simulator using Energy Storage Flywheels[A]. AIAA 2005-5643.
    [126] Peczalski A., Elgersma M., and Quenon D. Micro-wheels for Attitude Control and Energy Storage in Small Satellites[A]. Prodeeding of the IEEE Aerospace Conference, 2001(5): 2483-2492.
    [127]汤双清,杨家军,廖道训.飞轮储能系统研究综述[J].三峡大学学报, 2002, 24(1): 78-82.
    [128]赵韩,杨志轶,王忠臣.新型高效飞轮储能技术及其研究现状[J].中国机械工程, 2002, 13(17): 1521-1524.
    [129]周宇,蒋书运,赵雷.磁悬浮储能飞轮系统研究进展[J].低温与超导, 2003, 31(1): 42-46.
    [130]张建成,黄立培,陈志业.飞轮储能系统及其运行控制技术研究[J].中国电机工程学报, 2003, 23(3): 108-111.
    [131]冯香枝,吴庆彪.卫星用储能/姿控两用飞轮[J].微计算机信息, 2004, 20(10): 29-30.
    [132]魏凤春,张恒,蔡红,陈东明.飞轮储能技术研究[J].洛阳大学学报, 2005, 20(2): 27-30.
    [133] Liu H. and Jiang J. Flywheel Energy Storage-An Upswing Technology for Energy Sustainability[J]. Energy and Buildings, 2006, 39: 599-604.
    [134]褚立新,林辉.航天器储能飞轮的发展与应用[J].宇航学报, 2007, 28(6): 1147-1151.
    [135]夏永江,张云,牛睿.卫星储能/姿控一体化飞轮构型及其误差分析[J].上海航天, 2005, (1): 19-23.
    [136]阎耀辰,张恒,刘怀喜.复合材料储能飞轮分层结构研究[J].纤维复合材料, 2004(3): 20-22.
    [137]秦勇,夏源明,毛天祥.计及复合材料飞轮内孔卸载影响的多厚环套装的简化分析[J].复合材料学报, 2004, 21(2): 117-122.
    [138]秦勇,夏源明,毛天祥.多环环间混杂复合材料飞轮离心应力分析[J].复合材料学报, 2004, 21(4): 157-161.
    [139]秦勇,夏源明.复合材料飞轮结构及强度设计研究进展[J].兵工学报, 2006, 27(4): 750-756.
    [140]赵韩,王勇,杨志轶.复合材料飞轮结构设计[J].农业机械学报, 2004, 35(4): 140-143.
    [141]赵丽滨,张建宇,高晨光,韩邦成,房建成.基于结构可靠性的姿控/储能飞轮转子[J].宇航学报, 2006, 27(5): 942-946.
    [142]李文超,沈祖培.复合材料飞轮结构与储能密度[J].太阳能学报, 2001, 22(1): 96-101.
    [143]鞠立华,蒋书运.飞轮储能系统机电耦合非线性动力学分析[J].中国科学E辑技术科学, 2006, 36(1): 68-83.
    [144] Jansen R.H. and Dever T.P. G2 Flywheel Module Design[A]. AIAA 2004-5603.
    [145] JANSEN R.H. Integrated Power and Attitude Control System Demonstrated With Flywheels G2 and D1[R]. N20050217188.
    [146] Jansen R., et al. Single Axis Flywheel IPACS 1300W, 0.8N-m[R]. N20060005119.
    [147]刘治华.双功能飞轮控制方法的研究[D].中国科学院长春光学精密机械与物理研究所, 2006.
    [148]白越,杨作起,黎海文,贾宏光,吴一辉,宣明.储能/姿态一体化飞轮能耗试验研究[J].光学精密工程, 2007, 15(2): 243-247.
    [149]韩邦成.单轴飞轮储能/姿态控制系统的仿真及其实验研究[D].中国科学院长春光学精密机械与物理研究所, 2004.
    [150]马立,王存斌,白越,吴一辉.卫星复合材料储能/姿控一体化飞轮的设计制造[J].宇航学报, 2009, 30(1): 290-292.
    [151]韩邦成,房建成,吴一辉.单轴飞轮储能/姿态控制系统的仿真研究[J].系统仿真学报, 2006, 18(9): 2511-2515.
    [152]刘治华,王春丽,李成,杨杰伟,韩邦成.单轴储能及姿态控制系统建模与仿真研究[J].中国石油大学学报, 2007, 31(1): 154-158.
    [153]杨春帆,刘刚,张庆荣.磁悬浮姿控/储能飞轮能量转换控制系统设计与实验研究[J].航天控制, 2007, 25(3): 91-96.
    [154]廖芳,马力,杨橙,王仲范.复合材料高速储能飞轮的设计与仿真[J].机械设计, 2004, 21(3): 20-21.
    [155]刘军,韩潮.卫星储能技术及其研究进展[A].中国宇航学会飞行器总体专业委员会2006年学术研讨会.
    [156] Jung D. and Tsiotras P. An Experimental Comparison of CMG Steering Control Laws[A]. AIAA 2004-5294.
    [157] Kulick W.J. Development of A Control Moment Gyroscope Controlled, Three Axis Satellite Simulator, with Active Balancing for the Bifocal Relay Mirror Initiative[D]. Naval Postgraduate School, 2004.
    [158] Shuster M.D. A Survey of Attitude Representations[J]. Journal of Astronautical Science, 1993, 41(4): 439-517.
    [159]章仁为.卫星轨道姿态动力学与控制[M].北京航空航天大学出版社, 1998.
    [160]余天庆,毛为民.张量分析及应用[M].清华大学出版社, 2006.
    [161]薛定宇.反馈控制系统设计与分析[M].清华大学出版社, 2000.
    [162] Sunkel J.W. and Shieh L.S. Optimal Momentum Management Controller for the Space Station[J]. Journal of Guidance, Control, and Dynamics, 1990, 13(4): 659-668.
    [163] Likins P.W. and Roberson R.E. Uniqueness of Equilibrium Attitudes for Earth Pointing Satellites[J]. Journal of Astronautical Science, 1966, 13: 87-88.
    [164] Elgersma M.R. and Chang D.S. Determination of torque equilibrium attitude for orbiting space station[A]. AIAA-92-4481-CP.
    [165]周黎妮,唐国金,李海阳.基于稳定度设计的空间站姿态TEA稳定LQR控制器[J].宇航学报, 2007, 28(5): 1142-1148.
    [166] Nocedal J. and Wright S.J. Numerical Optimization[M]. Springer Science+Business Mdia, Inc., 1999.
    [167]黄象鼎,曾钟钢,马亚南.非线性方程的数值解法[M].武汉:武汉大学出版社, 2000.
    [168]高普云.非线性动力学[M].国防科技大学出版社, 2005.
    [169]戴先中.多变量非线性系统的神经网络逆控制方法[M].科学出版社, 2005.
    [170] Johnson E.N., Calise A.J., and Turbe M.A. Fault Tolerance through Direct Adaptive Control using Neural Nerworks[A]. AIAA 2006-6553.
    [171]朱荣刚,姜长生,邹庆元,蔡世龙.新一代歼击机超机动飞行的动态逆控制[J].航空学报, 2003, 24(3): 242-245.
    [172]刘金琨.先进PID控制Matlab仿真(第2版)[M].电子工业出版社, 2005.
    [173] Coomuri S. and Lewis F.L. CMAC Neural Networks for Control of Nonlinear Dynamical Systems: Structure, Stability and Passivity[J]. Automatica, 1997, 33(4): 635-641.
    [174]杨旭,张友安,崔平远,邹经湘. CMAC神经网络用于一类不确定MIMO非线性系统的鲁棒自适应反馈线性化[J].哈尔滨工业大学学报, 2001, 33(1): 20-23.
    [175]张友安,周绍磊,崔平远,杨涤.基于CMAC神经网络的一类MIMO非线性系统的自适应反馈线性化[J].控制与决策, 2000, 15(1): 83-85.
    [176]刘延柱.航天器姿态动力学[M].国防工业出版社, 1995.
    [177]彭祺擘,李海阳.基于虚拟样机技术的机械臂建模与仿真[J].华东理工大学学报(自然科学版), 2007, 33(增刊): 58-62.
    [178]游世明,陈思忠,梁贺明.基于ADAMS的并联机器人运动学和动力学仿真[J].计算机仿真, 2005(8): 181-185.
    [179]吴忠,吴宏鑫,丑武胜. SGCMG系统运动奇异机理及研究进展[J].中国空间科学技术, 2000(3): 31-36.
    [180] Tsiotras P. Nonlinear Spacecraft Control with Applications to Combined Attitude and Energy Storage[R]. ADA423478, 2004.
    [181] Bedrossian N.S., Paradiso J., and Edward V B. Redundant Single Gimbal Control Moment Gyroscope Singularity Analysis[J]. Journal of Guidance, Control and Dynamics, 1990, 13(6): 1096-1101.
    [182] Bedrossian N.S., Paradiso J., and Edward V B. Steering Law design for Redundant Single-Gimbal Control Moment Gyroscopes[J]. Journal of Guidance, Control and Dynamics, 1990, 13(6): 1083-1089.
    [183] Vadali S.R., Oh H.S., and Walker S.R. Preferred Gimbal Angles for Single Gimbal Control Moment Gyros[J]. Journal of Guidance, Control and Dynamics, 1990, 13(6): 1090-1095.
    [184] Wie B., Bailey D., and Heiberg C. Singularity Robust Steering Logic for Redundant Single-gimbal Control Moment Gyros[J]. Journal of Guidance, Control and Dynamics, 2001, 24(5): 865-872.
    [185]张洪华,吴宏鑫,陈义庆.挠性卫星姿态的角动量反馈控制[J].宇航学报, 2002, 23(3): 8-12.
    [186]李太玉,张育林.基于能量最优解析解的飞轮磁卸载方法[J].上海航天, 2006(6): 1-9.
    [187]韩京清.从PID技术到“自抗扰控制”技术[J].控制工程, 2002, 9(3): 13-18.
    [188]黄一,张文革.自抗扰控制器的发展[J].控制理论与应用, 2002, 19(4): 485-492.
    [189]雷仲谋,吕振铎.非线性自抗扰控制器在航天器姿态控制系统中的应用[J].航天控制, 2000, 4.
    [190] Huang Y., et al. Flight Control Design Using Extended State Observer and Non-Smooth Feedback[A]. Proceedings of the 40th IEEE conference on Decision and Control, 2001, Oriando, Florida USA.
    [191]朱承元,杨涤,翟坤.无陀螺大挠性多体卫星的自抗扰姿态控制[J].计算机仿真, 2005, 22(1): 43-47.
    [192]韩京清.非线性状态误差反馈控制律—NLSEF[J].控制与决策, 1995, 10(3): 221-225.
    [193]马红雨,苏剑波,刘成刚.基于耦合自抗扰控制器的无标定手眼协调[J].系统工程与电子技术, 2003, 25(11): 1385-1388.
    [194]黄焕袍,万辉,韩京清.安排过渡过程是提高闭环系统“鲁棒性、适应性和稳定性”的一种有效方法[J].控制理论和应用, 2001, 18(增): 89-94.
    [195]韩京清.一类不确定对象的扩张状态观测器[J].控制与决策, 1995, 10(1): 85-88.
    [196]刘鸣,邵诚.异步电动机的自抗扰控制器及其参数整定[J].控制与决策, 2003, 18(5): 541-544.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700