纳米增敏与流动注射电化学发光分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要涉及纳米增敏电化学发光分析与流动注射电化学发光分析系统研制,共包括以下几部分内容:
     1纳米增敏鲁米诺电化学发光
     (1)纳米Pt-Au合金增敏鲁米诺的电化学发光用化学还原法制备了不同比例及不同粒径的纳米Pt-Au合金,并用UV-Vis、TEM、激光粒径、XRD等方法进行了表征,确认所合成物质确系双金属合金纳米粒子而非两种金属纳米粒子的混合物,通过改变合成方法(如直接滴加法、雾化与超声结合、超声滴加法、氢气还原法、氢气还原与雾化结合)和条件,可以得到一系列不同含量比和粒径范围在4.03-92.33nm之间的Pt-Au合金纳米溶胶。采用电化学沉积法可将所制备纳米粒子修饰到铂盘电极上,在碱性介质(pH=12)中,随着合金比例的改变和合金粒径的减小,鲁米诺的电化学发光强度显著增强,当合金中Pt:Au =6:1,粒子粒径为最小4.03nm时,所获得修饰电极上鲁米诺的电化学发光强度较裸电极增强近1个数量级。研究了纳米Pt-Au合金修饰电极对鲁米诺电化学发光增敏的机理。深入分析了纳米合金晶胞中的原子排布,纳米Pt-Au合金晶胞为面心立方结构,一个合金晶胞中有10个Pt原子和4个Au原子,这四个Au原子占据着晶胞中呈对角线的四个顶点,且分两次取代晶胞中的Pt原子。研究了纳米合金与鲁米诺的相互作用,纳米合金与鲁米诺之间存在吸附作用,易发生能量转移,从而增敏鲁米诺的电化学发光,具体原因可能是:一、纳米Pt-Au合金作为一种纳米粒子,本身具有小尺寸效应、表面效应等催化特性,延长了OH.和Luminol阴离子自由基的作用时间,从而增强了发光信号;二、当Pt与Au合金化后,Pt的d空穴增多,空的d空穴成为溶液中各种自由基的受体,使得电极表面吸附了更多的OH.与Luminol阴离子等,从而增强了鲁米诺发光强度。
     (2)纳米金属氧化物增敏铂电极上的电化学发光研究了纳米金属氧化物(ZnO、MnO_2、TiO_2)对鲁米诺在铂电极上电化学发光的影响。实验发现所研究的三种金属氧化物在溶液中对鲁米诺的电化学发光有明显的增敏作用,当用溶胶-凝胶法将纳米氧化物修饰固定在电极后,对鲁米诺的电化学发光亦有明显的增敏作用,在修饰电极上可以获得更稳定的发光信号和更高的信噪比。在此基础上采用溶胶-凝胶法把纳米金属氧化物和鲁米诺同时修饰于铂电极表面,制得纳米金属氧化物修饰的ECL电极。实验结果表明,纳米金属氧化物修饰ECL电极对H_2O_2均有响应,其中纳米TiO_2修饰的ECL电极的发光强度与过氧化氢在1.0×10~(-7)至1.0×10~(-5)mol/L浓度范围内成线性关系,检测下限可达1×10~(-8)mol/L。该ECL电极可用于葡萄抗氧化能力的综合评估,以每克水果消耗过氧化氢毫克数mgH2O_2/g为单位,葡萄肉汁为1.57,葡萄籽为4.72,即葡萄籽的抗氧化能力要显著强于葡萄肉。用循环伏安法和紫外-可见吸收光谱法研究了纳米金属氧化物的增敏机理,研究表明增敏原因有两点:一、鲁米诺分子被吸附在纳米金属氧化物表面,近距离接触使得能量传递成为可能。二、在外加电压的情况下,纳米金属氧化物催化产生活性氧,而活性氧可有效增强鲁米诺电化学发光。
     (3)纳米ITO增敏鲁米诺电化学发光
     纳米ITO为锡掺杂的氧化铟,纳米ITO粉末中氧化铟与氧化锡的含量比为In2O3:SnO_2=9:1。采用微乳液法、溶胶-凝胶法以及共沸蒸馏法合成了不同粒径的纳米In2O3并进行了透射电镜表征,考察了碱性条件下纳米In2O3对鲁米诺电化学发光的影响。实验结果表明,在碱性条件下纳米In2O3在溶液中对鲁米诺电化学发光有明显的增敏作用,并进一步研究了粒径大小与这种增敏作用的关系,采用紫外-可见吸收光谱和荧光光谱技术讨论了增敏机理。
     采用溶胶-凝胶法制备粒径为10nm左右的纳米SnO_2,该纳米粒子对碱性溶液中的鲁米诺-O_2化学发光有显著的增强,这种增敏作用与纳米SnO_2的加入量以及体系中溶解氧的浓度有关系,基于此得出了纳米SnO_2存在下溶解氧浓度与鲁米诺化学发光强度之间的线性关系,可用于溶解氧测定,检测下限可达0.3mg/L。采用紫外-可见吸收光谱和荧光光谱技术研究了纳米SnO_2增敏鲁米诺化学发光机理。
     基于上述研究合成了粒径为10nm左右的ITO纳米粒子,当溶液中纳米ITO含固量达到0.3mg/mL左右时,对鲁米诺的ECL强度增敏作用最强。当用溶胶—凝胶法将其固定修饰到铂电极表面后对鲁米诺的电化学发光有明显的增敏作用,考察了三种溶胶—凝胶成膜方式(红外灯烘干、烘箱烘干、自然晾干)固定纳米ITO及对增敏作用的影响,结果表明自然晾干成膜的纳米ITO修饰电极上鲁米诺的ECL强度高,增敏效果可以达到四倍左右,可以使用五天以上。实验对比发现溶胶-凝胶法修饰电极时成膜条件越缓和修饰效果越好,控制湿度在60%左右,温度低于30℃,隔夜自然晾干成膜效果最好。
     2 ITO玻璃上鲁米诺电化学发光行为及机理研究
     (1)研究了碱性溶液中氧化铟锡玻璃上活性氧的电化学发光行为。实验结果表明,以ITO玻璃为工作电极,在碱性溶液中观察到的电化学发光是活性氧系分子所发出的。该体系的电化学发光的可能机理是:在外加脉冲电压下ITO玻璃表面的氧化铟锡纳米粒子被激发至一定的能级,OH-、O_2及H2O_2分子在ITO玻璃电极表面发生氧化还原反应产生活性氧分子,处于一定能级的纳米ITO粒子吸附活性氧系分子并将能量转移给活性氧系分子使其到达激发态,当返回基态时能量以光子的形式释放而发光。
     (2)研究了在碱性溶液中鲁米诺在ITO玻璃电极上的电化学发光机理。鲁米诺在ITO电极上的电化学发光能在较低的电位下发生主要是由于鲁米诺分子与纳米ITO粒子的相互作用,这主要是鲁米诺分子被吸附在纳米ITO粒子表面,近距离接触使得能量传递成为可能。在较低的电压下,纳米ITO粒子被激发到一定能级,当电极表面鲁米诺被氧化至中间态时,两者之间发生能量转移导致鲁米诺氧化至激发态,当返回基态时能量以光子的形式释放而发光。
     (3)研究了鲁米诺在ITO玻璃上的电聚合,实验结果表明,在酸性条件下可以将鲁米诺电聚合修饰于ITO电极的表面,聚合在ITO玻璃表面的鲁米诺保持其良好的电化学发光性能,考察了此修饰电极的性能以及相关因素对聚合膜的电化学发光强度的影响。在碱性介质中该电聚合鲁米诺修饰ECL电极对碘离子、硫离子和双氧水均有响应。在选定条件下,上述物质显著增敏聚鲁米诺的ECL。在1.0×10~(-6)mol/L-8.0×10~(-6)mol/L范围内,电化学发光强度与碘离子浓度有良好的线性关系,r=0.9896;在8.0×10-7mol/L—1.0×10~(-5)mol/L范围内,电化学发光强度与硫离子浓度有良好的线性关系,r=0.9903;在8.0×10~(-6)- 6.0×10~(-5)mol/L范围内,电化学发光强度与双氧水浓度有良好的线性关系,r=0.9939.
     (4)进一步将具有较高增敏效率的纳米TiO_2修饰于ITO玻璃表面,研究其对鲁米诺ECL的增敏作用,通过Nafion作为载体可以均匀吸附于ITO表面,且具有较大的修饰量。修饰电极经650°C高温灼烧后去除Nafion,纳米TiO_2被烧结固定于ITO电极表面同时发生晶型改变得到锐钛矿相与金红石相的混晶,两相比例为43.64?56.36时,其对鲁米诺电化学发光的增敏最明显。结果表明,当粒径较小,经650°C煅烧处理形成混晶时,纳米TiO_2/ ITO修饰电极对鲁米诺电化学发光的增敏效果最明显,为裸电极的7.5倍。由于先将纳米二氧化钛均匀修饰在ITO电极表面,再对电极进行煅烧,有效避免了煅烧过程中TiO_2粒子间的相互烧结团聚,在有效控制TiO_2粒径的同时得到混晶。考察7支混晶TiO_2/ITO电极对浓度为4×10-7mol/L的碱性鲁米诺溶液的电化学发光响应,其ECL强度的相对标准偏差为1.88%,在连续7天使用中发光强度仅衰减5.88%,表明用该方法制备的修饰电极可以提供满意的重现性和稳定性。
     3流动注射电化学发光分析系统研制
     (1)研制了一套流动注射电化学发光分析系统,结合了电化学发光的高灵敏度和流动注射的实用性,并采用光纤传输模式工作,增强了仪器的连接柔软性,以计算机嵌入式设计,操作方便、数据处理功能强,经优化形成高性能的电化学发光分析系统。在此基础上研究了纳米ITO对流动注射体系中鲁米诺电化学发光的影响,考察了流量对ECL强度的影响,当流量为10mL/h时研究体系的发光强度最大。
     (2)为了克服现有的电化学发光池存在的不足,应用氧化铟锡(ITO)玻璃和有机玻璃等材料,研制出一种可以产生并检测电化学发光信号的流动注射电化学发光池,该池较好地解决了现有电化学发光池存在的一些问题,也为实验室以后开展此方面的实验工作提供硬件方面的准备。基于流动注射分析技术和电化学发光分析技术的综合应用,采用ITO玻璃作为工作电极,通过设计新的流通式电化学发光池,进行动态对流传质为主条件下ITO玻璃电极表面反应层中电化学发光反应的特征和分析特性的研究,探讨所设计的电化学发光池中鲁米诺发光体系的发光行为,考察相关因素对鲁米诺电化学发光分析特性的影响。通过对微型流动电化学发光池及ITO玻璃工作电极上鲁米诺电化学发光的相关因素的优化,提高电化学发光池的分析性能和应用范围。基于葡萄提取物对鲁米诺电化学发光的猝灭作用,考察了该流动注射电化学发光池的性能,结果表明猝灭效率与所加入水果提取液的量成线性相关,据此可评估样品的抗氧化性能,同时表明该电化学发光检测池具有良好的可实用性。在实际样品测定中,该流动注射电化学发光池具有较好的重现性,其设计和功能完全能满足电化学发光分析技术的要求,还可进一步开发与其它技术如毛细管电泳(CE)或高效液相色谱(HPLC)等联用,在实际应用研究分析中将有广阔的应用前景。
This thesis focuses on the sensitization of electrochemiluminescence by nanoparticles and related development of flow-injection analysis system with electrochemiluminescent detection. It consists of the following sections.
     1 Sensitization of Electrochemiluminescence by Nanoparticles
     (1) Sensitization of Luminol’s ECL by Pt-Au Bimetallic Nanoparticles Modified Electrode
     The platinum-gold bimetallic nanoparticles with different component ratio and size were prepared by chemical reduction. The methods such as UV-Vis spectra, TEM and XRD were applied to characterize the properties of the nanoparticles. The information from these methods revealed that the prepared bimetallic nanoparticles were truly of alloy structure and absolutely not the mixture of two kinds of metallic nanoparticles. The component of the nanoparticles could be regulated for a series of Pt/Au ratio and the diameter of nanoparticles, which were determined by Laser-granulometer, could be regulated from 4.03-92.33nm by the method or controlled condition. In alkaline medium of pH=12.0, the bimetallic Pt-Au nanoparticle modified electrode, which was modified on a Pt disk electrode by electrodeposition, sensitized the electrochemiluminescence of luminol. With the variation in the composition and size of the bimetallic nanoparticles, the sensitization efficiency varied as well, with a highest at a Pt/Au ratio of 6:1 and diameter of 4.03nm, at which the electrochemiluminescence intensity was an order of magnitude better than that obtained from unmodified electrode.
     The atom distribution in the cell of Pt-Au bimetallic nanoparticles was studied. Then found that the crystalline structure is face--centered cubic. A cell contains 10 Pt atoms and 4 Au atoms, The 4 Au atoms hold the 4 corners that are in the two diagonals, and they substitute Pt atoms in two steps. The paper also studied the interaction between bimetallic Pt-Au nanoparticle and luminol. Adsorption occurred between them, and energy transfers from one to the other, thereby Pt-Au bimetallic nanoparticles enhance the intensity of luminol. There are two reasons for sensitization for electrochemiluminescence of luminol from Platinum-Gold bimetallic nanoparticles modified electrode. One is as nanoparticle, the Pt-Au bimetallic nanoparticle has catalysis such as size effect, surface effect and etc. It prolongs the interaction time of OH. and luminol-.,thereby enhances the intensity of luminol. The other reason is when Pt and Au were alloyed; the d band cavity in Pt was increased. The cavity became the adsorption of radicals in the solution. So the electrode surface adsorped more OH. and Luminol-. , thereby enhances the intensity of luminol.
     (2) Sensitization of Luminol ECL by Metallic Oxide Nanoparticles on Pt Electrode
     In this work, the sensitization of luminol electrochemiluminescence by metallic oxide nanoparticles, as ZnO, MnO_2 and TiO_2, under alkaline condition was reported and the related mechanism was studied. It was found that all three types of nanoparticles exhibited similar enhancement toward the electrochemiluminescence reaction. Furthermore a sol-gel method was taken for the immobilization of the metallic oxide nanoparticles onto platinum electrodes. The so-obtained modified electrodes also showed enhanced electrochemiluminescence and better signal/noise ratio, and the stability of the signal was improved as well. Luminol together with the nanoparticles were directly immobilized onto the electrode surface and the performance of the sensors greatly improved. Also good linear response was obtained toward hydrogen peroxide. It was found that the developed modified ECL electrodes provided responses to H2O_2. For the TiO_2 modified one, a linear response was obtained with the range 1.0×10~(-7)~1.0×10-5mol/L. This could be used to measure the concentration of H2O_2 and the detection limit was low to 1×10~(-8)mol/L. This ECL electrode was applied to test the antioxidant capacity of grapes. The result was that the antioxidant capacity of the grape seed was much better than grape meat. Cyclic voltammetry and UV-visible absorption methods were taken for the study of the mechanism. It was proposed that the nanoparticles could enhance the production of reactive oxygen species, as well as the adsorption of luminescent reagent on nanoparticle surface. These two factors could give an enhancement on the electrochemiluminescent reaction.
     (3) Sensitization of Luminol ECL by ITO Nanoparticle on ITO Electrode
     Nanosized ITO particles were prepared from In2O3 and SnO_2 with an amount ratio at 9:1. A series of In2O3 nanoparticles at different sizes were synthesized by microemulsion, sol-gel or azeotropic distillation methods, and characterized by a transmission electron microscope (TEM). In alkaline solution of pH12.5, the influence of In2O3 nanoparticles on the ECL of luminol was studied. The results showed that the ECL intensity of luminol was enhanced obviously in the presence of In2O3 nanoparticles. The sensitization efficiency was related to the content and the size of In2O3 nanoparticles. The paper also discussed the mechanism of the sensitization by UV-Vis spectra and fluorescence spectra.
     Nanosized SnO2 were synthesized by sol-gel methods and characterized by a transmission electron microscope (TEM). The result showed that the average particle sizes of nanosized SnO2 was about 10nm.In the chemiluminescence system of luminol-O2,the CL intensity of luminol was enhanced obviously in the presence of nanosized SnO2.This sensitization efficiency was related to the content of nanosized SnO2 and the dissolved oxygen. Based on this, it was educed that the CL intensity of luminol was linear with the content of the dissolved oxygen in the presence of nanosized SnO2.This linear relationship could be used to determine the dissolved oxygen and the detection limit was 0.3mg/L. The paper also discussed the mechanism of the sensitization by UV-Vis spectrum and fluorescence spectrum.
     ITO nanoparticles with diameter around 10nm were prepared and the highest enhancement of luminol ECL was obtained with ITO content of 0.3mg/mL. When the nanosized ITO was immobilized to the surface of the Pt electrode by using the method of sol-gel, the ECL intensity of luminol is obviously enhanced. The work studied three different ways of sol-gel becoming film(dried by infrared radiation、dried in oven and drying naturally) to immobilize the nanosized ITO to the electrode and the effect to the enhancement of the ECL intensity .The research showed that when the sol-gel became film naturally, the ECL of luminol on the surface of nano ITO modified electrode is strong, the light emission is enhanced about four times and the electrode can be used for about five days. Through experiments we found that the milder the condition the better the film will be, so when the humidity is 60%, the temperature is under 30℃and drying the sol-gel for one night the film is the best .
     2 The ECL Behavior and Mechanism of Luminol on ITO Electrode
     (1)The ECL behavior of reactive oxygen species(ROS) on ITO electrode in the alkaline solution was studied. The results showed that when ITO glass as working electrode,the ECL observed was produced by reactive oxygen species in the alkaline solution.The possible mechanism was given: under the pulse voltage, ITO nanoparticles on the surface of ITO glass were excited to a level of energy and the redox reactions of OH-,O2 and H_2O_2 occurred producing ROS. Meanwhile ITO nanoparticles at a level of energy adsorbed ROS and translated the energy to them so that the active oxygen molecules could reach the state of excited and the light was relieved when they returned to the ground state.
     (2)The ECL mechanism of luminol on ITO electrode in the alkaline solution was studied. The results indicated that the phenomenon that the ECL of luminol on the ITO electrode could occur under the lower voltage was mainly related to the interaction between luminol molecules and ITO nanoparticles. Luminol molecules could adsorb onto the surface of ITO nanoparticles and it was possible that energy transferred during this process. Under the lower voltage, ITO nanoparticles were excited to a level of energy and when luminol molecules on the surface of ITO electrode were oxidized to a transitional state and the energy was translated from ITO nanoparticles to the middle state luminol. So the luminol molecules could reach the state of excited and the light was relieved when they returned to the ground state.
     (3) The indium tin oxide (ITO) glass was applied as the electrode to study the electrochemical polymerization and electrochemiluminescent behavior of luminol on its surface. The experimental results had indicated that the luminol could be polymerized on the surface of ITO glass in acidic solution. The cyclic voltammetry and UV-Vis spectrometry were applied to confirm the polymerization of luminol. The polymerized luminol on ITO electrode kept the ECL property and some important effecting factors had been investigated. The influence of I-, S_2~- and H_2O_2 on the ECL of polymerized luminol on ITO electrode in alkaline medium has been studied. The iodide could be sensitively determined in the select conditions. The ECL intensity responded linearly to the concentration of iodide within the range from 1.0×10~(-6)mol/L to 8.0×10~(-6)mol/L(r=0.9896), of S_2~- within the range from 8.0×10-7mol/L to 1.0×10~(-5)mol/L(r=0.9903) and of H_2O_2 within the range from 8.0×10~(-6)mol/L to 6.0×10~(-5)mol/L(r=0.9939).
     (4) The nanosized TiO2 particles were further modified onto ITO electrode and their performance towards the enhancement of luminol ECL was investigated. Nafion was adopted as the support and homogenously adsorbed onto ITO surface, which provided a good platform for large amount of modification. After calcination under 650°C, nafion was removed and TiO_2 particles were tightly held on ITO electrode surface. At the same time, the crystalline of ITO changed into a mixture of anatase and rutile with ratio of 43.64-56.36, which gave the highest sensitization of luminol ECL. The ECL intensity of luminol was enhanced 7.5 times on this electrode compared with the bare ITO glass electrode. The aggregation has been avoided effectively because TiO_2 was modified previously and than send to be calcined, so the mixed crystal was obtained while the size of the particles was controlled. A group of seven mixed crystal TiO_2/ITO electrodes were used to the detection of ECL and the RSD was 1.88%. One electrode has been used for the detection of ECL for 7 days and the damping is 5.88%. The result shows that this kind of electrode has good stability and reproducibility.
     3 Development of Flow-injection Analysis Electrochemiluminescent System
     (1) A self-designed flow-injection analysis electrochemiluminescent (FIA-ECL) system was fabricated. The ECL analysis is a new method with high sensitivity and has the wider application on many special fields. But there is lack of high quality special instrument for research or practice of this method in our country. A specimen was designed and fabricated, which colligated the advantages of sensitivity of ECL analysis, the practicability of flow-injection and the connection feasibility of optical fiber transmission. It has been designed as a computer embedded one with facility of operation and powerful datum processing function. The work studied the effect of flux to the intensity of the ECL, when the flow was 10mL/h there will be a strongest light emission in the FIA-ECL system.
     (2) In order to get over disadvantages of existing electrochemiluminescent (ECL) cell, a novel micro-electrochemiluminescent (μ-ECL) cell based on flow injection was designed and fabricated. Made of indium tin oxide (ITO) and PDMS, it had solved the problems well and provided hardware for further study. The cell has many advantages and innovations. In this paper, the ECL behavior of luminol on the ITO glass based on the flow cell was studied. The influences of main effect factors on the cell were studied and optimized. The performance and application of the cell were improved after optimization of main effect factors and structure of the cell. Application of the cell to real samples was studied on anti-oxygen ability evaluation of fruits. The ECL intensity of detection cell decreased linearly with the concentration of red grape. The anti-oxygen ability of red grape seed was stronger than red grape flesh, which showed the practical applicability of developed ECL detection cell. The cell has good reproducibility in real sample determination. Its design and function have satisfied the ECL analysis. It also can couple with other technologies, such as HPLC and CE et al. It has a great potential for further application in the real research and analysis.
引文
[1]Dufford R.T., Nightingale D., J. Am.Chem.Soc., 1927, 49, 1858-1864
    [2]Harvey N., J.Phys. Chem., 1929 ,33 ,1456-1459
    [3]安镜如,林金明,陈曦,分析化学,1991, 19, 1340-1346
    [4]Faulkner L. R., Bard A J., J. Electroanal. Chem., 1977, 10, 1
    [5]Faulkner L. R., Method Enzymol., 1978, 57, 594
    [6]Park S. M., Tryk D A., Rev. Chem. Intermed., 1981, 4, 43
    [7]Boccara A.C., Duran J., Briat B., Chem.Phys, Lett..1973, 19,187-190.
    [8]Gerardi R.G., Barnett N.W., Lewis S.W, Anal.Chim.Acta, 1999,378 ,1-41.
    [9]Lee W.Y., Mikrochim. Acta, 997, 127,19-39.
    [10]Lyons C.H., Abbas E.D., Lee J. K., J.Am.Chem.Soc., 1998, 120, 12100-12107.
    [11]Zhang L.H., Xu Z.A., Sun X.P., Dong S.J., Biosensors and Bioelectronics, 2007, 22, 1097-1100
    [12]Zhao X.C., You T.Y., Qiu H.B, Yan J.L., Yang X.R., Wang E.K., J.Chromatography B, 2004, 810,137-142
    [13]Chiang Mei-Tsu, Whang Chen-wen, J. Chromatography A, 2001, 934,59-66
    [14]Chiu H.Y., Lin Z.Y., Tu H.L., Whang C.W., J.Chromat. A, 2008, 1177,195-198
    [15]Xu G, Dong S.J. , Electroanalysis, 1999, 11, 1180
    [16]Xu G, Dong S. J., Microchem., 1999, 62, 259
    [17]Xu G, Dong S. J., Analyst, 1999, 124, 1085
    [18]Zhang C.X., et al, J. Anal. Chim. Acta., 1998, 374,1,105
    [19]Huang J.C., Zhang Z. J., J. Anal. Chem., 1999,363, 126
    [20]Zheng X.W., Zhang Z. J., Analyst, 1999, 124, 763
    [21]郑行旺,章竹君,高等学校化学学报, 1999,221(2),124
    [22]郑行旺,章竹君,分析化学,1999,27(2),145
    [23]黄家初,张成孝,章竹君,分析化学, 1999,27(1),41
    [24]Zheng X.W., et al., J.Anal. Lett., 1999,32(15), 3013
    [25]Li B.X., Zhang Z.J., et al. ,J. Microchemical., 1999, 64, 374
    [26]Li B.X. , Zhang Z.J. et al., J. Anal. Lett., 2000, 33(8), 1577
    [27]Li B.X. , Zhang Z.J. et al., Talanta, 2000,51,515
    [28]Li B.X. , Zhang Z.J. et al., Microchim. Acta. , 2000
    [29]安镜如,陈曦,分析化学1989,17(10), 917-921
    [30]安镜如,林金明,分析化学,1991,19(11),1340-1346
    [31]姚晴,安镜如,高等学校化学学报,1991,12(4),469-470
    [32]王鹏,袁艺,分析化学,1999,27(10),1219-122
    [33]陈国南,林振宇,世界科技研究与发展,2004, 26(4),66-74
    [34]陈国南,林荣儿,分析科学学报,1999,15(4),332-337
    [35]章竹君,陕西师范大学学报(自然科学版), 2000, 28(3),79
    [36] Hu L .Z., Xu G. B. Chem. Soc. Rev., 2010, 39, 3275-3304
    [37]Karsten A. F., Miloslav P., George G.G., Talanta, 2001, 54, 531-559
    [38]Richter M . M., J. Chemical Reviews, 2004, 104(6), 3003-3036
    [39]Marcus R. S., J. Chem. Phys., 1965, 43, 2654
    [40]Feldburg S. W., J. Am. Chem. Soc., 1966, 88, 390
    [41]Kim J, et al., J.Electroanal. Chem. Interfacial Electrochem. , 1988, 242, 107
    [42]Bard A. J., Faulkner L.R., Electrochemical Methods, Fundamentals andApplications New York, Wiley, 1980, 621
    [43]Braun F. Ann., J. Physik. Chem., 1898, 65 ,361
    [44]Ikonopisovs., J. Electrochim. Acta, 1975, 20, 783
    [45]Tajima S., J.Electrochim. Acta, 1977, 22, 995
    [46]Kankare J, J. et al., Chem. 1977, 55, 1193
    [47]Haapakkak, Kankare J, Kulmala S., J.Anal. Chim. Acta, 1985,171, 259
    [48]Haapakka K., et al. ,J. Anal. Chim. Acta, 1988,207, 195
    [49]Haapakka K., et al. ,J. Anal. Chim. Acta, 1988,215, 341
    [50]Kulmala S., et al., J. Anal. Chim. Acta, 1991,252, 65
    [51]Kanare J. , et al., J. Anal. Chim. Acta, 1992, 256,17
    [52]Kanare, J. et al., J. Anal. Chim. Acta, 1992,256,205
    [53]Jackson W. A., et al., J. Microchem., 1994, 49, 99
    [54]Alaklene T., et al., J. Acta Chem. Seandinavica , 1997,51, 541
    [55]Vchikura K., et al., J. Anal. Sci. , 1991,7, 971
    [56]Brune S. N., et al., Talanta, 1991, 38, 419
    [57]He l., et al., J.Anal. Lett. , 1990, 23, 195
    [58]Chen X, et al. , J.Microchem. , 1998,58, 13
    [59]Hercules D. M., J. Am. Chem. Soc., 1966, 88, 4745
    [60]Tokel N. E., Bard A J., J. Am.Chem.Soc., 1972, 94, 2862
    [61]Noffsinger J. B., et al., J. Anal.Chem. , 1987, 59, 865
    [62]Kenten J. H., Cassadei J, et al. , J.Clin.Chem., 1991,37, 626
    [63]Kenten J. H., Gudikane S R, et al. , J.Mol.Cell. Probes. , 1992,6, 495
    [64]Harvery N., J. Phvs. Chem., 1929, 33, 1456
    [65]Haapakka K.E., Kankare J., J. Anal. Chim. Acta , 1982, 138, 263
    [66]林祥钦,孙玉刚,崔华,分析化学,1999,27(5),497
    [67]Cui H., Zhang Z.F., J. Electroanal. Chem.,2004, 566,305
    [68]Haapakka K.E., Anal.Chim.Acta, 1982, 139, 229-236
    [69]严凤霞,王伦,王筱敏,钱光宇,光谱学与光谱分析,1990,10,45-19
    [70]安镜如,姚晴,分析化学,1990, 18,867-870
    [71]An J.R., Lin J.M., Chem.Res.Chin.Univ., 1991, 7, 37-41
    [72]安镜如,林金明,谢增鸿,高等学校化学学报, 1991, 12, 610-612
    [73]Xu G., Dong S.J., J. Elecrtochem. Commun., 1999, 40, 463-470
    [74]安镜如,林金明,许雪琴,分析试验室,1993,12, 4-7
    [75]郑行望,章竹君,高等学校化学学报,1999,20,209—213
    [76]Sakura S., Imai H., Anal. Sci 1988, 4, 9-12
    [77]Laespada M.F.F., Pavon J.L.P., Cordero B.M., Anal.Chim.Acta, 1996, 327, 253-260
    [78]Sakura S.,Terao J., Anal.Chim.Acta,1992,262,59-65
    [79]Rubinstein I., Martin C. R., Bard A. J., Anal.Chem., 1983, 55, 1580-1582
    [80]Knight A.W., Greenway G.M., J. Analyst, 1995, 120, 2543-2547
    [81]Chen X., Sato M., J. Anal.Sci., 1995, 11,749-754
    [82]Sun Y.G., Cui H., Li Y.H., Li S.F., Lin X.Q., Anal.Lett., 2000, 33,3239-3252
    [83]Chen X., Sato M., Lin Y., J.Microchem. 1998, 58, 13-20
    [84]Uchikura K., Anal. Sci., 1999, 15, 1049-1050
    [85]Noffsinger J.B., Danielson N.D., J. Anal.Chem., 1987, 59, 865-868
    [86]Greenway G M., Knight P.J., J. Anal. Proc.1995, 32, 251-253
    [87]王鹏,张文艳,周泓,朱果逸,分析化学,1998, 26, 898-903
    [88]Bialk P., Vogel R., Mayr S., Clin. Chem., 1995, 41, S60
    [89]Ege D., Becker W.G., Bard A., J. Anal.Chem., 1984, 56, 2413-2417
    [90]王鹏,张文艳,周泓,朱果逸,科学通报,1998,43,2241-2247
    [91]徐国宝,董绍俊,分析化学,2001,29,103-108
    [92]Zhang X. R., Baeyen W. R. C., A. M. Garcia-Campana, J. Ouyang, Trends in Anal. Chem., 1999, 18, 384-391
    [93]Knight A.W., Greenway G. M., Analyst, 1994, 119, 879-890
    [94]Rubinstein, Bard A. J., J.Am.Chem. Soc., 1980, 102, 6641-6642
    [95]Zhang X., Bard A. J., J. Phys.Chem., 1988, 92, 5566-5569
    [96]Obeng Y S., Bard A. J., J. Langmuir, 1991, 7, 195-201
    [97]王炳全,程广金,董绍俊,分析化学,1999,27,982-988
    [98]李瑛绣,朱连德,朱果逸,分析试验室,2001,20,89-92
    [99]Fiaccabrino G.C., Rooij N.F., Koudelka-Hep M., Anal.Chim.Acta, 1998, 359, 263-267
    [100]Love J. C., Estro L. A., Kriebel J. K., Nuzzo R. G., Whitesides Cz M., Chem. Rev. 2005, 105(4), 1103-1170
    [101]Henning T. H., Salama F., Science, 1998, 282, 2204-2210
    [102]张立德,牟季美,纳米材料和纳米结构,科学出版社,2001
    [103]Kubo R., J. Phys. Soc. of Jap. 1962, 17, 975-986
    [104]Cavicchi R.E., Silsbee H., J. Phys. Rew. Lett. 1984, 52, 1453-1456
    [105]苏品书,超微粒子材料技术,武汉出版社,1989
    [106]张立德,材料新星一纳米材料科学,湖南科学技术出版社,1997
    [107]Siegal R. W., Mater. Sci. Forum. 1989, 37, 299
    [108]Legget A. J., Rev. Mod. Phys. 1987, 59, 1-85
    [109]陈洪杰,李志伟,赵彦保,张治军,党鸿辛,化学进展,2004,16(5),682-686
    [110]Alvisatos A P., J. Phys.Chem., 1996, 100, 13226- 13239
    [111]Hoffmann M. R., Martin S. T., Choi W., Bahnemann D. W., Chem. Rev., 1995, 95(1),69-96
    [112]Steeb H., Warlimont H., Rapidly Quenched Metals.Amsterdam Elsevier Press, 1985.1449
    [113]Haasen P., Jaffe R., Amorphous Metals and Semiconductors.London, Pergamon Press, 1986.365- 377
    [114]Anantharaman T R., TransTech Press, 1984.225
    [115]张立德,牟季美,纳米材料和纳米结构.北京科学出版社,2002.20-2l
    [116]Benjamin J. S., Met. Trans., 1970, 1, 2943-295l
    [117]Shingu P.H., Huang B., Nishitani S. R., et a1.,Supp1.Trans.Japan Inst.Metals, 1988, 29(3), 3-l0
    [118]杨景海,张永军.松辽学刊,自然科学版,2000,4,l-4
    [119]李来风,陈兆甲,李依依等.材料研究学报,1999,13(2),2l0-2l2
    [120]D’Souza L, Sampath S. Langmuir, 2000, 16, 8510-8517
    [121]Del Angel, P.Langmuir, 2000, 16, 7210-7217
    [122]张楠,翟秀静,翟玉春.中国有色金属学报,1998,8,39- 42
    [123]程起林,赵斌,古宏晨等.华东理工大学学报,1999,25(5),499-505
    [124]张邦维,易舸,郭映,矿冶工程,1997,17(4),55-58
    [125]Shafi K V P M, Gedanken A, Prozorov R.J.Mater.chem., 1998, 8(3), 769-773
    [126]Shafi K V P M , GedankenA, Prozorv R, et a1. J. Mater. Res., 2000, 15(2)
    [127]林金谷,魏狱年,邹炳锁等.金属功能材料1995, 4, l34-l35
    [128]Natter H., SchmeLzer M., Hempelmann R., J. Mater.Res., 1998,l3(5),1186-1197
    [129]谷历文,刘冠昆,童叶翔,彭新煜,材料保护,1998, 31(8), 8-l0
    [130]刘冠昆,王小晗,何山.材料保护,2001, 34(2), l9-2l
    [131]乔桂英,荆天辅,肖福仁,高聿为,金属学报,2001,37(8), 8l5-8l9
    [132]邓妹皓,龚竹青,陈文汩,电镀与涂饰,2002, 21(4), 4-8
    [133] Xu Y F, Huang X M, Wang W K. App1.Phys.Lctt., 1990, 56, l957-l958
    [134]姚斌,张强,苏文辉.高压物理学报,1990, 4(1),50-56
    [135]Larchev V T, Melnik N N, Popova S V, et a1.,Proc.Lebedev Phys.Institute, 1985, 1,7-10
    [136]姚斌,丁炳哲,李冬剑等.高压物理学报,1995, 9(2), 1l7-l23
    [137]刘建军,王爱民,张海峰等.材料研究学报,2001,15(3),299-02
    [138]Pithawalla Y. B., Elshall M. S., Deevi S. C., Strom V., Ran K .V.,J.Phys.Chem., 2001, 105(11), 2085-2090
    [139]Wada N., J. Jpn. App1. Phys., 1969, 8, 55l-555
    [140]Uda M., Bul1.Meta1.Soc .Jpn..1983.22, 4l2-4l6
    [141]Ohno S, Uda M., Jpn. ust. Metals, 1984, 48, 640-646
    [142]Dong X.L., Zhang Z.D.,Zhao X. G., et.a1., J. Mater.Res., 1999, 14(2),398-406
    [143]Lu K., Wang J. T., Wei W. D., J. App1. Phys., 1991, 69,522-524
    [144]卢柯,金属学报,1994, 30(1),Bl-B2l
    [145]Lu K., Mater. Sci. Eng.R., 1996, 16, l6l-22l
    [146]Zhou F., Zhang X. H., Lu K., J. Mater. Rcs., 1998, 13(3),784-788
    [147]夏熙,电池,1998, 28(6), 251-254
    [148]李娟,电池1999, 29(2), 47-52
    [149]李清文,应用科学学报1999, 17(2), 245-249
    [150]王晓慧,吉林大学学报(自然科学版)1992, 1, 66-78
    [151]李成韦,李龙泉,钱逸泰,高等化学学报1997,18(9),1236-1239
    [152]门传玲,夏熙,电池1997,27(5), 205-208
    [153]Bach S., Hery M., Bappier N., et al.,J Solid State Chem,1990,88,325
    [154]许小亮,施朝淑,物理学进展,2000, 20(4), 356
    [155]Cao H., Zhao Y.G., Ong H.C., Appl. Phys. Lett., 1998, 73(25), 3656
    [156]Vogel R., Hoyer P., Weller H.J., J. Phys. Chem., 1994, 98(12),3183
    [157]Hoffmann M.R., Martin S.T., Bahnemann D.W., Chem. Rev., 1995,95(1),69
    [158]Sakohar S., Tickanen L.D., Anderson M.A., J. Phys.Chem., 1992,96(26),1086
    [159]Zayer N.K., Greef R., Rogers K., Thin Solid Films, 1999,352,179
    [160]Shimizu Y., Lin F.C., Takao Y., J.Am.Cream.Soc.,1998,81(6),1663
    [161]祖庸,雷闫盈,王训,吴金龙,曾庆森,化工新型材料,2000, 27(3),14
    [162]Mo C.M., Li Y.H., Liu Y.S., J.Appl.Phys.1998, 83, 4389
    [163]Hao Y., Yang M., Li W., Solar Energy Materials & Solar Cells, 2000, 60,349
    [164]Huang M.H., Mao S., Feick H., Science, 2001, 292, 1897
    [165]Li Y., Meng G.W., Zhang L.D., J.Appl. Phys. Lett., 2000,76,2011
    [166]李强,高镰,奕伟玲,无机材料学报,1999,14(5),813
    [167]Jin Y., Zhang B., Yang S., Solid State Communications, 2001,119, 409
    [168]Li J.Y., Chen X.L., Li H., Crys.Growth, 2001, 233, 5
    [169]寇丽华,无机盐工业,1985, 68(1),43
    [170]豆俊峰,邹振扬,郑泽根,材料导报,2000,14(6), 35
    [171]高铁,钱朝勇,于向阳,材料导报,2000,14(7),27
    [172]王训,祖庸,李晓娥,化工进展,2000, 1,67
    [173]祖庸,高新,钛工业进展,1998, 2, 37
    [174]严东生,冯瑞,材料新星—纳米材料科学,长沙,湖南科技出版社,1997,38
    [175]冯乃谦,严建华,材料导报,1999, 13(6),39
    [176]张青红,高濂,郭景坤.无机材料学报,2000, l,21
    [177]张汝冰,高濂,无机材料学报, 2002, 17(2),253
    [178]Wei Z.X., et al., Inorganic Chemicals Industry, 1998, 5,5
    [179]赵文宽,周磊,刘昌,胡翎,方佑龄,木内正人,化学学报, 2003, 5, 65
    [180]范少华,崔玉民,河南科技大学学报, 2006,27(2),96-100
    [181]Bickiey B., Gonzaler-Carreno T., Lees J. S., et al., Solid State Chem, 1991,92, 178-183
    [182]高伟,昊凤清,罗臻,富菊霞,王德军,徐宝馄,高等学校化学学报,2001, 22(4),560-562
    [183]张青红,高镰,郭景坤,无机材料学报,2000, 15(3),556-560
    [184]Choi W. K., Termin A., Hoffmann M. R., Phys Chem, 1994, 98, 13669-13672
    [185]Gratzel M., Howe R.F., PhysChem, 1990, 94, 2566-2569
    [186]Dvoranova Dana, Brezova Vlasta, Applied Catalysis B, Environmental, 2002, 37, 91-105
    [187]丁士文,王利勇.中国科学(B辑),2003,33,306-311
    [188]Joshi J. C., J. Appl. Phys, 1980, 51(12), 6243
    [189]Hellegouarch F., Arefi—Khonsari F., et a1. , Sensors and Actuators B, 2001, 73, 27
    [190]Dewar A. L., Joshi J. C., Appl Phys, 1980, 51(12), 6243-6251
    [191]Chopra K. L., Major S., Pandya D K., Thin Solid Films, 1993, 102, 1-46
    [192]Vosson J.L., Thin Films, 1977, 7, 1-4
    [193]段学臣,黄蔚庄,中南工业大学学报,1999,30(2),176-178
    [194]陆凡,陈诵英,应用化学,1994,11(5),68-70
    [195]潘庆谊,徐甲强,刘宏民等,无机材料学报,1999,14(1),83-88
    [196]傅军,林吉,王林茂等,海南大学学报自然科学版,2000,18(2),119-122
    [197]李来凤,潘晓晴,材料研究学报,2000,14(1),38-41
    [198]Tamaki J., Naruo C., Yamamoto Y., et a1., Sensors and Actuators B, 2002, 83,190-194
    [199]Zahiml Alam A H M, Saha P. K., Hata T., et a1., Thin Solid Films, 1999, 352,133-137
    [200]黄启明,李伟善,邱仕洲,电池,2001,31 (5) ,233—235
    [201]周合兵.吕东生,李伟善等,电池,2002,32 (4) ,204—206
    [202]Gopchandran K.G., Joseph.B., Abraham.J.T., et al., Vacuum, 1997, 48,547-550
    [203]Hu J.Q, Zhu F.R, Zhang J., et al., Sens. Actuators B, 2003, 93,175-180
    [204]Shukla S., Ludwig L., et al., Sens.Actuators B, 2004, 97,256-265
    [205]刘明朗,龚鸣明,魏文武,有色冶炼,1999,28(6),32-36
    [206]Zhan Z.L., Song W.H., Jiang D.G., J. Colloid Interf. Sci., 2004, 271,366-371
    [207]Yu D.B., Yu S.H., Zhang S.Y., et al., Adv. Funct. Mater, 2003, 13(6), 491-501
    [208]马颖,张方辉,牟强,陕西科技大学学报,2003, 21(2),106-108
    [209]范志新,液晶器件工艺基础,北京,北京邮电大学出版社,2001
    [210]Masato Sawada, Masatoshi L., Thin Solid Films, 1998 , 317,157-160
    [211]Granqvist C. G., J. Appl. Phy., 1986, 60(1), 123-159
    [212]杨志伟,韩圣浩,杨田林等,太阳能学报,2001, 22(3),256-261
    [213]陈猛,白血冬,裴志亮等,金属学报,1999, 35(9),934-938
    [214]董绍俊,车广礼,谢远武,化学修饰电极,科学出版社,2003
    [215]Hokari H., Fujihira M., Thin Solid Films, 1996, 273,185
    [216]Miller C.J., Cord P.M., Bard A.J., Langmuir, 1991, 7, 2781
    [217]Xu X.H., Bard A.J., Langmuir, 1994, 10, 2409
    [218]王炳全,程广金,董绍俊,分析化学,1999,27,982
    [219]Zhao C.Z., Egshira N., Kurauchi Y., Ohga K., Anal.Sci, 1997, 13,333
    [220]Zhao C.Z., Egshira N., Kurauchi Y., Ohga K., Anal.Sci, 1998, 14,439
    [221]Zhuang Y.F., Ju H.X., Electroanalysis, 2004, 16(17), 1401
    [222]Cohen S.R., Naaman R., Sagiv J., J. Phys. Chem., 1986, 90,3054
    [223]汪尔康等,21世纪的分析化学,科学出版社,1999
    [224]Mirsky V.M., Trends in Analytical Chemistry, 2002, 21, 439
    [225]Satoshi W., Uichi A., Masamichi F., Colloids and Surfaces A, 2002, 18,785
    [226]Lee H., Kepley L.J., Hong H.G., Akhter S., Mallouk T.E., J.Phys.Chem., 1988, 92, 2597
    [227]Allara D.L., Biosensors & Bioelectronic, 1995, 10, 771
    [228]Mailley P., Cummings E.A., Mailley S.C., Eggins B.R., McAdams E., Cosnier S., Anal.Chem., 2003, 75, 5422
    [229]Pro M., Bohn C.C., Smela E., Reynolds J.R., Brennan A.B., Chem. Mater., 2003, 15, 916
    [230]Liu Y.C., Chuang T.C., J. Phys.Chem.B, 2003, 107, 12383
    [231]李江,李容,蔡铎昌,商丘师范学院学报第2007, 23(9),71-73
    [232]陈扬,陆祖宏,中国生物化学与分子生物学报,2003, 19,1
    [233]Shipway A.N., Lahav M., Willener I., Adv. Mater, 2000, 12,993
    [234]李风生,杨毅,马振叶,等,纳米功能复合材料及应用,北京,国防工业出版社, 2003
    [235]董绍俊,车广礼,谢远武,化学修饰电极,北京,科学技术出版社, 2003
    [236]蔡铎昌.电化学研究方法,成都,电子科技大学出版社, 2005
    [237]Daum P., Murray R.W., J. Phys.Chem., 1980. 113-193
    [238]Oyama N., Shigehara K., Anson F.C. ,J. Inorg.Chem., 1981, 20, 518.
    [239]杨小红,王广,邓湘辉, J.应用化学, 2005,30(7),776-779
    [240]王亚珍,陈飞,吴天奎,J.江汉大学学报, 2005,33(4),26-28
    [241]MillerL L., Van deMarkM R., J. Am.Chem. Soc., 1978, 100, 639
    [242]Schroeder A.H., Kaufman F. B., J. Electroana. Chem., 1980,113,163
    [243]金晓艳,张宏,孙林,J.阜阳师范学院学报, 2003,20[2],7-10
    [244]褚道葆,沈广霞,周幸福, J.高等学校化学学报, 2002,4,678-681
    [245]褚道葆,姚文俐,王金平, J.应用化学,2004,10,1006-1010
    [246]褚道葆,王凤武,魏亦军, J.物理化学学报, 2004, 20(2), 182-185
    [247]褚道葆,沈广霞,朱琼霞, J.应用化学, 2002, 19(7), 633-636
    [248]褚道葆,姚文俐,顾家山, J.高等学校化学学报, 2004, 25(11), 2137-2139
    [249]魏亦军,陈士昆,褚道葆, J.吉林大学学报, 2003, 41(4), 521-525
    [250]王凤武,魏亦军,褚道葆,J.应用化学, 2004, 21(4), 378-382
    [251]王凤武,魏亦军,J.化工学报,2004,55(5),757-763
    [252]顾家山,褚道葆,董宗木,J.精细化工, 2004, 21(10),756-758
    [253]顾家山,褚道葆,周幸福,J.化学学报, 2003, 61(9),1405-1409
    [254]李嘉庆,李洛平,郑蕾, J.高等学校化学学报,2005, 26(10), 1808-1811
    [255]艾仕云,彭惠琦,李嘉庆,J.分子催化,2004,18(5),366-370.
    [256]张文,谢云峰,艾仕云, J.化学学报, 2003, 61(7),1030-1035
    [257]万芳利,张文,顾静, J.化学传感器, 2003, 23(4),15-22
    [258]Choi H.N., Cho S.H., Lee W.Y., J. Anal.Chem., 2003, 75, 4250
    [259]Guo Z., Shen Y., Wang M., Zhao F., Dong S.J., J. Anal. Chem., 2004, 76,184
    [260]姜灵彦,刘传银,蒋丽萍,陆光汉,化学研究与应用,2004 ,16(5),615-618
    [261]崔晓莉,江志裕,化学进展,2002 ,14(5),375
    [262]楮道葆,沈广霞,周幸福,等,高等学校化学学报,2002 ,23(4) ,678-681
    [263]董宗木,苏佳琴,褚道葆,安徽师范大学学报, 2003, 26(4), 364-366
    [264]郑行望博士论文,西南师范大学,流动注射与化学修饰电极电化学发光分析方法研究
    [265]董绍俊,车广礼,谢远武,化学修饰电极,科学出版社,2003
    [266]Rubinstein I., Bard A.J., J. Am. Chem. Soc., 1980, 102, 6641
    [267]Rubinsteln I., Martin C.R., Bard A.J., Anal. Chem., 1983, 55,1580
    [268]Xu X.H.,Yang H.C.,Mallouk T.E.,Bard A.J.,J.Am.Chem.Soc.,1994, 116, 8386
    [269]Taylor C.E., Creager S.E., J. Electroanal. Chem., 2000, 485,114
    [270]Ouyang S., Mou C., Wang C., J. Electroanal. Chem., 1999, 474, 82
    [271]Gerardi R.G., Barnett N.W., Lewis S.W., Anal.Chim.Acta, 1999, 378,1-41
    [272]Xu G.B., Zhang J.Z., Dong S.J., J. Microchem., 1999, 62, 259-265
    [273]方肇伦,流动注射分析法,第一版,北京,科学出版社,1999 ,280-307
    [274]Chi Y., Dong Y., Chen G., J.Electrochem. Commun. 2007, 9, 577
    [275]朱连德,电化学发光在分析化学中的应用研究[D],长春,中国科学院长春应用化学所,2002
    [276]Miao W, J. Chemical Reviews, 2008, 108, 7, 2506-2553
    [277]Zhu L.D., Li X.Y., Zhu G.Y., Sensors & Actuators, B, Chemical, 2002, 86, 209-214
    [278]Preston J.P., Nieman T.A., J. Anal. Chem., 1996, 68,966
    [279]Dickson J.A.,Ferris M.M., Milofsky R.E.,J. H.Res.Chromatogr.,1997, 20, 643
    [280]Huang X.J., Wang S.L., Fang Z. L., J. Anal. Chim. Acta., 2002, 456, 167-175
    [281]Kensuke Araikahashi K., J. Anal.Chem., 1999, 71, 2237-2240
    [282]Namba Y., Usami M., Suzuki O., J. Anal.Sci., 1999, 15, 1087
    [283]Greenway G.M., Knight P.J., J.Anal. Proc., 1995, 32, 251
    [284]Arora A., Mello A.J.de, Manz A., J. Anal.Commu., 1997, 34, 393-395
    [285]Arora A., Eijkel J.C., Morf W.E., Manz A., J.Anal.Chem., 2001 ,73, 3282
    [1]Alvisatos A.P., J. Phys. Chem.,1996,100,13226-13239
    [2]Hoffmann M.R., Martin S.T., Choi W., Bahnemann D.W., Chem. Rev., 1995, 95(1),69-96
    [3]Steeb H., Warlimont H., Rapidly Quenched Metals, Amsterdam, Elsevier Press, 1985,1449
    [4]Haasen P.,Jaffe R.I.,Amorphous Metals and Semiconductors, London,Pergamon Press, 1986,365-377
    [5]Anantharaman T.R., Rapidly Solidified Metals, Switzerland, Trans.Tech. Press, 1984. p225
    [6]Toshima N., Yonezawa T., New J. Chem., 1998, 1179
    [7]Wang C., Flynn N.T., Langer R.,Adv.Mater.,2004,16,1074
    [8]Biswas A.,Aktas O.C.,Schürmann U., Saeed U., Zaporojtchenko V., Faupel F.,Appl.Phys. Lett.,2004,84,2655
    [9]Shipway A.N.,Willner I.,Chem. Commun.,2001,20,2035
    [10]徐娇珍,杨平,华南平,杜玉扣,化学研究与应用,2003,15(6),838
    [11]Supriya D., Parthasarathi B., Sampath S., J. Col. Inter. Sci., 2005, 290, 117
    [12]Zhang Zhi-Feng, Cui Hua, Lai Chun-Ze, Liu Li-Juan ,Anal. Chem.2005, 77, 3324-3329
    [13]Maness K.M.,Masui H.,Wightman R.M.,Murray R.W.,J.Am.Chem.Soc., 1997, 119,3987
    [14]Landon P.,Collier P.J.,Carley A. F.,Chadwick D.,Papworth A. J., Burrows A.,Kiely C. J.,Hutchings G.,J.Phys.Chem.,2003,5,1917-1923
    [15]Zhang Z., Berg A., Levanon H., Fessenden R. W., Meisel D., J. Am. Chem.Soc.,2003,125,7959-7963
    [16] Kricka L.J., Voyta J.C., Bronstein I., Methods Enzymol. 2000, 305, 370-390
    [17]陈国珍,黄贤智,许金钩,荧光分析法,科学出版社,北京,1990,pp.115-118
    [18]Quayle O.R., Chem.Rev. 1953 , 53, 439
    [19]Lakowicz J. R., Principles of Fluorescence Spectroscopy, Plenum Press, New York, 1983, p.78
    [20]Joseph R.L., Gregorio W., Biochemistry, 1973, 12, 4171
    [21]Eckenhoff R. G.,Johansson J. S.,Pharmacol Rev.,1997,49,343
    [22]Ware W.R., J. Phys.Chem., 1962, 66 ,455.
    [23]Gao H., Lei L., Liu J.Q., Kong Q., Chen X.G., Hu Z.D., J. Photoch. Photobiol. A-Chem., 2004, 167, 213
    [24]张云河,李新海,吴显明,许名飞,邓凌峰,电源技术1002-087X,2004,08-0491-03
    [25] Elliot C.M.,Pichot F.,Bloom C.J., Rider L.S., J.Am.Chem.Soc., 1998,120,6781
    [26]储海虹,吴莹,屠一锋,分析化学,2006, 34(9),1303-1306
    [27]储海虹,狄俊伟,屠一锋,自然科学研究,2006, 6(4),76-82
    [28]刘雪宁,杨治中,物理化学报,2000,16(8),746
    [29]Cao H., Zhao Y.G., Appl. Phys. Lett., 1998, 73(25),3656
    [30] Vogel R., Hoyer P., Weller H.J., J. Phys. Chem.,1994,98(12),3183
    [31]Hoffmann M.R., Martin S.T., Bahnemann D.W., Chem.Rev., 1995,95(1),69
    [32]Zayer N.K., Greef R., Rogers K., Thin Solid Films,1999,352,179
    [33] Sakohar S., Tickanen L.D., Anderson M.A., J.Phys.Chem., 1992,96(26),11086
    [34]侯宪全,任湘菱,唐芳琼,陈东,王正平,分析化学,2006,34(3):303
    [35]Tu Y.F., Di J.W., Chen X.J., Sol-gel Science & Technology, 2005,33(2),187
    [36]安镜如,陈曦,陈恒,分析化学,1988,16(2):127
    [37]Mao Liqun, Li Qingli, Dang Hongxin, Mater Res Bull, 2005, 40( 2 ) ,201-208
    [38]Yoo Kye Sang, Lee Tai Gyu, Kim Jinsoo,–Microporous Mater, 2005,84 (1-3),211-217
    [39]Yang H.M., Zhang K., Shi R.R., et al., J. Alloys Compd, 2006, 413(1-2) , 302-306
    [40]Kim Ki Do, Kim Soon Hoi, Kim Hee Taik, Colloids Surf, A, 2005, 254(1-3) , 99-105
    [41]Lee M. S., Park S. S., Lee G. D., et al., Catal Today, 2005, 101,283-290
    [42]Zhang W.J., He Y.Q., Qi Q., Mater Chem Phys, 2005, 93 (2-3), 508-515
    [43]Zhu L., Chen C., Li Y.Z., Ci Y.X. ,J. Anal. Chim. Acta, 1998, 369 (3), 205
    [44]Tanner P. A. , Wong A. Y.S., J. Anal. Chim. Acta, 1998, 370 (2-3), 279
    [45]Schachl K., Alemu H., Kalcher K., Moderegger H., Svancara I., Vytras K. Fresenius J. Anal. Chem., 1998, 362(2) , 194
    [46]Lin J.M. , Arakawa H, Yamada M.,Anal. Chim. Acta, 1998, 371 (2-3),171
    [47]Price D., Mantoura R. F. C., Worsfold P. J.,Anal. Chim. Acta, 1998, 377,145
    [48]Leca B., Blum L., J. Analyst, 2000, 125(5),789
    [49]Sakura S, Imai H., Anal Sci.,l988, 4,9
    [50]Van Dyke D.A., Cheng H.Y., Anal Chem, l989, 61,623
    [51]Sariahmetoglu M., Wheatley R. A., Cakici I., et al., Anal. Lett., 2003, 36 (4),749-765
    [52]Dapkevicius A., Van Beek T. A., Niederlander H A G. J.Chromatogr.A, 2001, 912(1),73-82
    [53]Wheatley R.A., Sariahmetoglu M., Cakici I.,Analyst,2000, 125,1902-1904
    [54]蔡为荣,食品科学,2004,25(9),112-115
    [55]赵保路,氧自由基和天然抗氧化剂,北京,科学出版社,2002
    [56]Xiong H.P., Yang W.L., Zhang Y.S., et al., Nat Prod Res Dev.,2001, 13 (5) , 75-79
    [57]Negro C., Tommasi L., Miceli A. ,Bioresour Technol, 2003, 87(1) , 41-44.
    [58]HUBER W. Eur J., Rheumatol Imflamm , 1981 , 4(2),173-182
    [59]邹国林,桂兴芬,钟晓凌等.生物化学与生物物理进展,1986,(4),71.
    [60]彭人勇,吕新莲,湿法冶金, 2006, 25(1), 22
    [61]Sugantha M., Ramakrishnan P.A., Hermann A.M., Warmsingh C.P., Ginley D.S., International Journal of Hydrogen Energy, 2003, 28(6), 597
    [62]刘玲,夏熙,电化学, 1998, 4(2), 329
    [63]夏熙,李娟,李文清,高等学校化学学报, 1999, 20(10), 1584
    [64]Yuan L., Li Z., Sun J., Materials Letters, 2002, 1, 4093,
    [65]Kim H.S., Kim H.J., Cho W.I., J. Power Sources, 2002, 112, 660
    [66]毋伟,陈建峰,卢寿慈.超细粉体表面修饰,北京,化学工业出版社,2004,204
    [67]杨建广,唐谟堂,杨声海,唐朝波,中国涂料,2004,7,33
    [68]王建,云南冶金,2002,31(4),42
    [69]闪星,董国君,景晓燕,张密林,无机化学学报, 2001, 17(5), 669
    [70]Garcia T., Casero E., Revenga-Parra M., Pariente F., Lorenzo E., Anal. Chem. 2008, 80 ,9443 [71 ]Vitt J. E., Johnson D. C., J. Electrochem. Soc., 1991,138,1637
    [72]Lin X. Q., Sun Y.H. ,Cui, H., J.chinese journal of Analytical Chemistry , 1999, 27, 497-503
    [73]Sun Y. H., Cui H., Lin X. Q., J.Acta Chimica Sinica (Chinese), 2000, 58, 567-571
    [74]Sun Y. H., Cui H., Lin X. Q. J. Acta Chimica Sinica, 2000, 58,1151-1155
    [75]Wang W., Cui H., Deng Zh. X., Dong Y. P . , Guo J.Zh. J. Electroanal., Chem., 2008,612, 277-287
    [76]E.H. White, "Light and Life”, ed. by W. D. McElroy,B. Glass, The John Hopkins Press,Baltimore, 1961p.183
    [77]Schuldiner S.,Warner T. B., J. Electrochimica Acta,1966 ,11, 307-310
    [78]Wang Sh., Shiraishi F., Nakano K. J. Chemical Engineering 2002, 87, 261-271
    [79]Klare M., Waldner G., Bauer R., Jacobs H. , Broekaert J. A. C. J.Chemosphere, 1999,38,,2013-2027
    [80]Deng H.H., Zhou Y.M, Mao H.F., Lu Z.H. J.Synthetic Metals, 1998, 92 , 269-274
    [81]Lin Zh.Y., Liu Y., Chen G.N. ,J.Electrochemistry Communications 2008,10, 1629-1632
    [82]Carlos M., Sánchez-Sánchez, Joaquín Rodríguez-López, Bard A.J., J.Anal. Chem. 2008,80,3254 -3260
    [83]Heechang Ye, John A. Crooks, and Richard M. Crooks, J. Langmuir 2007, 23, 11901-11906
    [84]Liu J.F. , Grégoire Lagger , Philippe Tacchini , Hubert H. Girault,J. Electroanalytical Chemistry, 2008,619-620 , 131-136
    [85]Yoonjung Bae, Noseung Myung, and Bard A.J.,Nano Letters, 2004 ,4(6) 1153-1161
    [86]Bum G. K., J. Photochemistry and Photobiology A, Chemistry, 2008,199,112-118
    [87]Ding Zh.F., Bernadette M. Quinn, Santosh K. Haram, Lindsay E. Pell, Brian A. Korgel, Bard A. J., Science 2002,296, 1293-1297
    [88]Fockedey E., Lierde A. Van , Water Research 2002,36,4169-4175
    [89]Waldner G., Pourmodjib M. , Bauer R. , Neumann-Spallart M. Chemosphere , 2003,50,989-998
    [90]Thiagarajan Soundappan, Su B.W., Chen Sh.M., Sensors and Actuators B,2009,136,464-471
    [91]Rajalakshmi N., Lakshmi N., Dhathathreyan K.S. international journal of hydrogen energy, 2008, 33, 7521-7526
    [92]Deng H.H., Zhou Y.M., Mao H.F., Lu Z.H., Synthetic Metals , 1998,92 ,269-274
    [93]Lin Zh.Y., Liu Y., Chen G.N., Electrochemistry Communications, 2008, 10, 1629-1632
    [94]Kucza Witold., J. Electrochemistry Communications, 2002, 4(9), 669-673
    [95]Qu D Y. J.Electrochimica Acta, 2004, 49(4), 657-665.
    [96]King S L , Gardeniers J G E, Boyd I W.,J.Appl Surf Sci , 1996 , 96 - 98,811~818
    [97]Qiu D.J., Wu H.Z.,Xu X.L.,etal., Chin.Phys.Lett,2002,19(11),
    [98]Akira F, Tata N R, Donald A T. ,J Photochem Photobiology C, Photochem Rev, 2000, 1,11-21
    [99]Reddy M., Sunkara V., Manorama A., et a1., J. Materials Chem and Phy, 2002 ,78, 239-245
    [100]Daude N., Gout C., Jouanin C., J. Phys Rev, B , 1977 , 15(3) 229
    [101]French R.H., J.Am Chem.Soc..,2005 ,73(3),477-489
    [102]Gurlo A., Ivanovskaya M., Pfau A., Weimar U. , Gopel W., Thin Solid Films, 1997, 307,288-293
    [103]马颖,张方辉,牟强,陕西科技大学学报,2003, 21(2),106-108
    [104]John S., Akozbek N., Physical Review Letters. 1993, 71(8), 1168-171
    [105]马勇,孔春阳,重庆大学学报(自然科学版),2002,8(25),114-117
    [106]周合兵,李伟善,广东化工,2003,2(30),15-18
    [107]Hu J.Q, Zhu F.R, Zhang J.,et al.,Sens. Actuators., 2003,B93,175-180
    [108]Jiao Z., Wu M.H., Gu J.Z., J. Sensors and Actuators, 2003, B94, 216-221
    [109]刘兴芝,司伟,丁超,王鲁宁,藏树良,无机化学学报,2004,20,975-978
    [110]Zhan Z.L., Song W.H., Jiang D.G.., J. Colloid and Interface Science.2004, 271,366-371
    [111]Gopchandran.K.G, Joseph.B, Abraham.J.T. , Vacuum,1997, 48,547-550
    [112]徐甲强,李惠萍,沈嘉年,陈玉萍,硅酸盐学报,2005,7(33),832-841
    [113]潘庆谊,程知萱,张剑平,王廷富,硅酸盐通报,2003,5(22),3-6
    [114]张永红,陈明飞,彭天剑,湖南有色金属,2002,4(18),26-27
    [115]Sun X.P., Du Y., Dong Sh.J. , Wang E.K.,Anal.Chem.,2005, 77,8166-8169
    [116]Henglein A., Chem. Rev., 1989, 89(8), 1861
    [117]张立德,纳米材料学,成都:科学出版社,1994
    [118]李敏,材料导报,2006,5(20),8-12
    [119]Kyaw T, Kumooka S, Okamoto Y, et al. Anal.Sci.,1999, 15(3),293-297
    [120]Zui O.V., Birks J.W., J. Anal.Chem., 2000,72(7),1699-1703
    [121]徐溢,分析化学,2000,28(7),876-878
    [122]Safavi A., Karimi M.A., J. Anal, Sci.,2002,18(7),827-829
    [123]Chen H., Gao F., et al., Colloid Interface Science.2007, 315(1), 158-163
    [124]Zhang Zh.F., Cui H., et al. Anal. Chem., 2005, 77(10), 3324-3329
    [125]Xu Sh.L., Cui H.,Luminescence,2006, 22(2), 77- 87
    [126]沈晓冬,吕军华,王庭慰,蔡永明,南京工业大学学报,2003,25(1):69-72
    [127]Sun X.P., Du Y., Dong Sh.J., Wang E.K. Anal. Chem. 2005, 77, 8166-8169
    [128]Du Y., Wei H., Kang J.Z., Yan J.L., Yin X.B., Yang X.R., Wang Er K.,Anal. Chem, 2005, 77, 7993-7997
    [129]Masato Sawada, Masatoshi lliguchi., Thin Solid Films,1998 (317),157-160
    [130]周洪庆,吕军华,沈晓冬,王庭慰,蔡永明,黄杏芳,南京工业大学学报,2004,26(4):27
    [131]张维佳,王天民,吴小文,钟立志,崔敏,稀有金属材料与工程,2005,34(9):1352-1356
    [1]Sun X.P., Du Y., Dong S.J., Wang E.K., J. Anal. Chem., 2005, 77, 8166-8169
    [2]Du Y., Wei H., Kang J.Z., Yan J.L., Yin X.B., Yang X.R., Wang E. K., Anal. Chem, 2005, 77, 7993-7997
    [3]Masato Sawada, Masatoshi lliguchi. Thin Solid Films, 1998, 317,157-160
    [4]Fukushi Y., Kominami H., Nakanishi Y., Hatanaka Y., Applied Surface Science, 2005, 244, 537-540
    [5]Zhang Lihua, Xu Zhiai, Sun Xuping, Dong Shaojun, Biosensors and Bioelectronics, 2007, 22, 1097-1100
    [6]Zhao Xiaocui, You Tianyan, Qiu Haibo, Yan Jilin, Yang Xiurong, Wang Erkang, Journal of Chromatography B, 2004, 810,137-142
    [7] Chiang M.T., Whang C.W., Journal of Chromatography A, 2001,934,59-66
    [8] Chiu H.Y., Lin Z.Y., Tu H.L., Whang C.W., Journal of Chromatography A, 2008, 1177, 195-198
    [9]S.M.Park, D.A.Tryk, Rev. Chem. Intermed., 1981, 4, 43
    [10]林惠,成建波,陈文彬,杨刚,杨健军,现代显示,2004,5,34-36
    [11]李文连,液晶与显示,2000,15(2),108-113
    [12]T. Garcia, E. Casero, M. Revenga-Parra, F. Pariente, E. Lorenzo, Anal. Chem., 2008, 80, 9443.
    [13]Quayle O. R., Chem. Rev., 1953, 53 , 439
    [14]Lakowicz J. R., Principles of Fluorescence Spectroscopy., Plenum Press, New York, 1983, p.78.
    [15]陈国珍,黄贤智,许金钩,荧光分析法,科学出版社,北京,1990,pp. 115-118.
    [16]Eckenhoff R. G., Johansson J. S.,Pharmacol Rev.,1997,49,343
    [17]Joseph R.L., Gregorio W., Biochemistry, 1973, 12, 4171
    [18]Ware W.R., J. Phys. Chem., 1962, 66, 455
    [19]Gao H., Lei L., Liu J.Q., Kong Q., Chen X.G., Hu Z.D., J. Photoch. Photobiol. A-Chem., 2004,167,213
    [20]O’Mullane A. P., Neufeld A.K., Harris A.R., Bond A.M., Langmuir, 2006, 22 , 10499
    [21]Bae Y. J., Myung N., Bard A.J., Nano Letters, 2004, 4, 1153
    [22]Sánchez-Sánchez M. C., Rodríguez-López J., Bard A. J., Anal. Chem., 2008, 80 , 3254
    [23]Lin Z. Y., Liu Y., Chen G. N., Electrochem. Commun., 2008,10,1629
    [24]Sánchez-Sánchez M. C., Rodríguez-López J. , Bard A. J., J.Anal. Chem. 2008,80,3254
    [25]Ye H., Crooks J. A., Crooks R. M., Langmuir, 2007,23, 11901
    [26]Liu J. F., Lagger G., Tacchini P., Girault H. H., J. Electroanal. Chem., 2008, 619-620, 131
    [27]Kwon B. G., J. Photochem. Photobio. A, Chemistry, 2008,199, 112
    [28]Ding Z. F., Quinn B. M., Haram S. K., Pell L. E., Korgel B. A. , Bard A. J., Science,2002,296, 1293
    [29]Waldner G., Pourmodjib M., Bauer R. , Neumann-Spallart M., Chemosphere, 2003,50,989
    [30]Thiagarajan S., Su B. W. , Chen S.M.,Sensors Actuators B, 2009 136,464
    [31] Zhang G.F.,Chen.H.Y,J. Ana1.Chim.Acta,2000,419,25-31
    [32]储海虹,齐莹莹,徐杨,黄炳强,屠一锋,光谱学与光谱分析,2005,25(5),675-677
    [33]丁士文,董伟,王利勇,王静,齐化杰,李南南,湘潭大学自然科学学报, 2008, 30(1), 69-72
    [34]徐瑞芬,控制纳米二氧化钛晶型的方法及由此得到的纳米TiO2,中国,02104344. 2 [P/OL]. 2003-9-17
    [35]吴凤芹,姚超,王茂华,等, J.日用化学工业. 2008, 38(6), 370-373
    [36]Wang B.Q., Jing L.Q., Qu Y.CH., et al., J.Applied surface science, 2006, 252 ,2817-2825
    [37]Zhou W.Y., Cao Q.Y., Tang Sh.Q.,J. Powder Technology 2006,168,32-36
    [38]李书国,陈辉,李雪梅,等. J.中国粮油学报. 2009,24(2),106-112
    [39]Snejana Bakardjieva, Jan Subrt, Vaclav Stengl, et al., J. Applied Catalysis B,2005(58),193-202
    [40]王建春,刘平,韩炜,等. J.福州大学学报,2009,37(1),137-141
    [41]许天翼,张杨,黄橙,等. J.环境工程学报,2009,3(10),1898-1901
    [1]郑行望,章竹君,高等学校化学学报,1999, 20(2),209-213
    [2]王建,池毓务,陈曦,陈国南,福州大学学报,1999, 27(增刊),60-61
    [3]Zhu L.D.,Li Y.Xx.,Zhu G.y., Sensors & Actuators,B, Chemical,2002,86,209-214
    [4]Arai K., Takahashi K., Kusu F., Anal.Chem.,1999, 71, 2237-2240
    [5]Preston J.P., Nieman T.A., Anal.Chem.,1996, 68, 966
    [6]Wilson R., Akhavan-Tafti H., DeSilva R., Schaap A.P. , Electroanalysis, 2001,13,1083-1092
    [7]Blackburn G.F.,Shah H.P.,Kenten J.H.,et a1., Clin Chem, 1991, 37(9):1534-1539
    [8]Yan G.H.,Xing D.,Tan Sh.C., J.lmmunol Methods, 2004, 288, 47-54
    [9]Gatto M.D. L., Yu H., Bruno J.G., et a1., Biosensors&Bioelectronics,1995,10(6),501-507
    [10]Yu H., Bruno J.G., Appl Environ Microbiol, 1996, 62(2),587-592
    [11]Tomita T., Luis M. ,Anlytica Chimica Acta, 2001, 422, 201-206
    [12]Chen G.N.,Rong E.L.,Zheng F.B.,et a1., Analytica Chim Acta,1997, 341,251-256.
    [13]Wilson R.,Schiffrin D. , J.Anal. Chem., l996, 68(7),l254
    [14]Wang Y,Yeung E S., Anal. Chim. Acta, 1992, 266,295
    [15]Nieman T.A.,Microchim Acta,l988, 3, 239
    [16]Preston J.P.,Nieman T.A., Anal Chim,1996, 68(6), 966
    [17]Xu G B.,Dong S. J. ,Electroanalysis,l999,11(16), 1l80
    [18]Safavi A.,Karimi M.A., Anal. Sci.,2002, 18(7),827-829
    [19]Safavi A,Karimi M.A. ,Anal.Chim.Acta, 2002,468(1),53-63
    [20]Chen Z. F., Zu Y. B. ,Langmuir 2007, 23, 11387-11390
    [21]Yin,X B,Wang E.K. ,Anal. Chim. Acta ,2005,533, 113-120
    [22]Miao W., J. Chemical Reviews, 2008,108(7), 2506-2553

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700